First-order logic:
 First-order logical equivalence. Negation of first-order formulae.

Valentin Goranko
DTU Informatics

September 2011

Logical equivalence in first order logic

Formulae A and B are logically equivalent, denoted $A \equiv B$, iff

$$
A \models B \text { and } B \models A .
$$

Equivalently, $A \equiv B$ iff

$$
\models A \leftrightarrow B
$$

For example, any first-order instance of a pair of equivalent propositional formulae is a pair of logically equivalent formulae.

Some basic properties of logical equivalence:

1. $A \equiv A$
2. If $A \equiv B$ then $B \equiv A$.
3. If $A \equiv B$ and $B \equiv C$ then $A \equiv C$.
4. If $A \equiv B$ then $\neg A \equiv \neg B, \forall x A \equiv \forall x B$, and $\exists x A \equiv \exists x B$.
5. If $A_{1} \equiv B_{1}$ and $A_{2} \equiv B_{2}$ then $A_{1} \circ A_{2} \equiv B_{1} \circ B_{2}$ where \circ is any of $\wedge, \vee, \rightarrow$ and \leftrightarrow.

Some logical equivalences involving quantifiers

- $\neg \forall x A \equiv \exists x \neg A$.
- $\neg \exists x A \equiv \forall x \neg A$.
- $\forall x A \equiv \neg \exists x \neg A$.
- $\exists x A \equiv \neg \forall x \neg A$.
- $\exists x \exists y A \equiv \exists y \exists x A$.
- $\forall x \forall y A \equiv \forall y \forall x A$.

NB: $\forall x \exists y A \not \equiv \exists y \forall x A$. Why?
For instance, "For every integer x there is an integer y such that $x<y$ " is true, but it does not imply "There is an integer y such that for every integer $x, x<y$.", which is false.

More logical equivalences and non-equivalences

- $\forall x(P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x)$
- $\forall x(P(x) \vee Q(x)) \not \equiv \forall x P(x) \vee \forall x Q(x)$
- $\forall x(P(x) \rightarrow Q(x)) \not \equiv \forall x P(x) \rightarrow \forall x Q(x)$
- $\exists x(P(x) \vee Q(x)) \equiv \exists x P(x) \vee \exists x Q(x)$
- $\exists x(P(x) \wedge Q(x)) \not \equiv \exists x P(x) \wedge \exists x Q(x)$
- $\exists x(P(x) \rightarrow Q(x)) \stackrel{?}{=} \exists x P(x) \rightarrow \exists x Q(x)$

Negating first-order formulae

Using appropriate equivalences, all negations in a first-order formula can be driven inwards, until they reach atomic formulae.

For example, to negate
"For every car, there is a driver who, if (s)he can start it, then (s)he can stop it."
we first translate it to first-order logic:

$$
\forall x(\operatorname{Car}(x) \rightarrow \exists y(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y))))
$$

Negating first-order formulae: example cont'd Now negating:

$$
\begin{aligned}
& \neg \forall x(\operatorname{Car}(x) \rightarrow \exists y(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y)))) \\
\equiv & \exists x \neg(\operatorname{Car}(x) \rightarrow \exists y(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y)))) \\
\equiv & \exists x(\operatorname{Car}(x) \wedge \neg \exists y(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y)))) \\
\equiv & \exists x(\operatorname{Car}(x) \wedge \forall y \neg(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y)))) \\
\equiv & \exists x(\operatorname{Car}(x) \wedge \forall y(\neg \operatorname{Driver}(y) \vee \neg(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y)))) \\
\equiv & \exists x(\operatorname{Car}(x) \wedge \forall y(\neg \operatorname{Driver}(y) \vee(\operatorname{Start}(x, y) \wedge \neg \operatorname{Stop}(x, y))))
\end{aligned}
$$

Since $\neg A \vee B \equiv A \rightarrow B$, the last formula is equivalent to

$$
\exists x(\operatorname{Car}(x) \wedge \forall y(\operatorname{Driver}(y) \rightarrow(\operatorname{Start}(x, y) \wedge \neg \operatorname{Stop}(x, y))))
$$

Negating first-order formulae: example completed

Thus, the negation of the sentence
"For every car, there is a driver who, if (s)he can start it, then (s)he can stop it."
formalized in first-order logic as

$$
\forall x(\operatorname{Car}(x) \rightarrow \exists y(\operatorname{Driver}(y) \wedge(\operatorname{Start}(x, y) \rightarrow \operatorname{Stop}(x, y))))
$$

is equivalent to

$$
\exists x(\operatorname{Car}(x) \wedge \forall y(\operatorname{Driver}(y) \rightarrow(\operatorname{Start}(x, y) \wedge \neg \operatorname{Stop}(x, y))))
$$

which, translated back to natural language, reads:
There is a car such that every driver can start it and cannot stop it.

Negating restricted quantifiers

$$
\begin{aligned}
& \neg \forall x(P(x) \rightarrow A) \quad \equiv \quad \exists x(P(x) \wedge \neg A) \\
& \neg \exists x(P(x) \wedge A) \quad \equiv \quad \forall x(P(x) \rightarrow \neg A),
\end{aligned}
$$

and hence:

$$
\begin{aligned}
\neg \forall x \in \mathbf{X}(A) & \equiv \exists x \in \mathbf{X}(\neg A) \\
\neg \exists x \in \mathbf{X}(A) & \equiv \forall x \in \mathbf{X}(\neg A)
\end{aligned}
$$

