Example questions, 2016

July 16, 2018

1. (a) The Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{c}{r} . \tag{1}
\end{equation*}
$$

(b) From E.L equation fro θ it follows that

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)=\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0 \tag{2}
\end{equation*}
$$

therefore $L \equiv L_{\theta}=m r^{2} \theta=$ const.
(c) Substituting L in (1) it follows that

$$
\begin{equation*}
U_{e f f}=\frac{L^{2}}{2 m r^{2}}-\frac{c}{r} \tag{3}
\end{equation*}
$$

(d) Assuming $r(0)=r_{0}, \dot{\theta}(0)=q, \dot{r}(0)=0$ yields $E=m r_{0}^{2} q^{2}-c / r_{0}$ and $L=m r_{0}^{2} q$.
(e) As the energy is conserved, we can get the distances by olving $U_{\text {eff }}=$ E. This yields

$$
\begin{equation*}
r_{\min , \max }=\frac{c}{2|E|} \pm \sqrt{\frac{c^{2}}{4 E^{2}}-\frac{L^{2}}{2 m|E|}} \tag{4}
\end{equation*}
$$

2. (a) Since the problem has cylindrical symmetry, it is conventeint to work with cylindrical frame. The Lagrangian is the given by (assuming the spring has a zero length at rest)

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} m \omega^{2}\left(r^{2}+z_{0}^{2}\right) \tag{5}
\end{equation*}
$$

(b) The Hamiltonian $\mathcal{H}=r p_{r}+\theta p_{\theta}-\mathcal{L}$ then reads

$$
\begin{equation*}
\mathcal{H}=\frac{p_{r}^{2}}{2 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}+\frac{1}{2} m \omega^{2}\left(r^{2}+z_{0}^{2}\right) . \tag{6}
\end{equation*}
$$

(c) Hamilton's equations are

$$
\begin{align*}
\dot{r} & =\frac{\partial \mathcal{H}}{\partial p_{r}}=\frac{p_{r}}{m} \tag{7}\\
\dot{\theta} & =\frac{\partial \mathcal{H}}{\partial p_{\theta}}=\frac{p_{\theta}}{m r^{2}} \tag{8}\\
\dot{p}_{r} & =-\frac{\partial \mathcal{H}}{\partial r}=\frac{p_{\theta}^{2}}{m r^{3}}-m \omega^{2} r \tag{9}\\
\dot{p}_{\theta} & =-\frac{\partial \mathcal{H}}{\partial \theta}=0 \tag{10}
\end{align*}
$$

From (10) it follows that the angular momentum p_{θ} is conserved.
(d) From (6) it follows that

$$
\begin{equation*}
U_{e f f}=\frac{L_{0}^{2}}{2 m r^{2}}+\frac{1}{2} m \omega^{2}\left(r^{2}+z_{0}^{2}\right) \tag{11}
\end{equation*}
$$

(e) Using $\Omega=\sqrt{U_{\text {eff }}^{\prime \prime}\left(r_{0}\right) / m}$ where r_{0} solves $\dot{p}_{r}=0$ (eq. (9)) gives $\Omega=\omega \sqrt{3}$.
(f) Performing similar calculation as in (1e) gives $r_{\text {min }, \max }=\sqrt{a \pm \sqrt{a^{2}-b}}$ where
$a=\left(2 m E_{0}-m^{2} \omega^{2} z_{0}^{2}\right) / 2 m^{2} \omega^{2} E_{0}, b=L_{0}^{2} / m^{2} \omega^{2}$.
3. (a) Schroedinger's equation for a free particle is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=E \psi \tag{12}
\end{equation*}
$$

Denoting $k^{2}=2 m E / \hbar^{2}$ the eigenvalues and eigenvectors are k^{2} and

$$
\begin{equation*}
\psi_{k}(x)=\frac{e^{i k x}}{\sqrt{2 \pi}} \equiv|k\rangle \tag{13}
\end{equation*}
$$

respectively.
(b) There are no boundary conditions, therefore the eigenvalues are continuous.
(c) A straightforward calculation gives from $\langle\psi \mid \psi\rangle=1 A=\sqrt{\alpha}$.
(d) Calculating $P(k)=|\langle k \mid \psi\rangle|^{2}$ where

$$
\begin{equation*}
\langle k \mid \psi\rangle=\sqrt{\alpha} \int_{-\infty}^{\infty} \frac{e^{-\alpha|x|-i k x}}{\sqrt{2 \pi}} d x \tag{14}
\end{equation*}
$$

gives

$$
\begin{equation*}
P(k)=\frac{2 \alpha^{3}}{\pi} \frac{1}{\left(\alpha^{2}+k^{2}\right)^{2}} \tag{15}
\end{equation*}
$$

4. (a) Noticing that $|\psi|^{2}$ is a Gaussian we have that $\langle x\rangle=a$.
(b) Similar considerations imply that since $\left\langle p_{x}\right\rangle=-i \hbar I$ where I is a real number, and since clearly $\left\langle p_{x}\right\rangle$ is a real, I must be zero and so $\left\langle p_{x}\right\rangle=0$.
(c) solving

$$
\begin{equation*}
\hat{p}\left|\psi_{k}\right\rangle=p\left|\psi_{k}\right\rangle \tag{16}
\end{equation*}
$$

for $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ and $\left|\psi_{k}\right\rangle=\frac{e^{i k x}}{\sqrt{2 \pi}}$ gives $p=\hbar k$. This means that (16) is an eigenvalues problem with eigenvectors and eigenvalues $\left|\psi_{k}\right\rangle=\frac{e^{i k x}}{\sqrt{2 \pi}}$ and $p=\hbar k$, respectively.
(d) An integral expression for $\left|\left\langle\psi_{k} \mid \psi\right\rangle\right|^{2}$ for $k=p_{0} / \hbar$ is

$$
\begin{equation*}
\left|\left\langle\psi_{k} \mid \psi\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left\{-\frac{(x-2)^{2}}{2}-i \frac{p_{0}}{\hbar} x\right\} d x\right|^{2} \tag{17}
\end{equation*}
$$

5. Suppose the road has a deflection angle α with respect to the horizon. The rider "fills" the normal force N operated by the road, his weight $m g$ and the centrifugal force $m \omega^{2} R$ which balances the normal force in the horizontal directions. Solving

$$
\begin{align*}
N \cos \alpha & =m g \tag{18}\\
N \sin \alpha & =m \omega^{2} R \tag{19}
\end{align*}
$$

for α gives $\tan \alpha=\omega^{2} R / g$.
6. (a) Denoting the orthonormal eigenstates of A corresponding to eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=2$ by $|1\rangle$ and $|2\rangle$, respectively, it follows that

$$
\begin{equation*}
|\psi\rangle=|x\rangle=\langle 1 \mid x\rangle|1\rangle+\langle 2 \mid x\rangle|2\rangle . \tag{20}
\end{equation*}
$$

(b) The probabilities are given by

$$
\begin{align*}
P(\lambda=0) & =|\langle 1 \mid x\rangle|^{2} \tag{21}\\
P(\lambda=2) & =|\langle 2 \mid x\rangle|^{2} \tag{22}
\end{align*}
$$

(c) Decomposing A using the spectral theorem yields $A=2|2\rangle\langle 2|$. Clearly

$$
\begin{equation*}
\langle A\rangle=2 P(\lambda=2)=2|\langle 2 \mid x\rangle|^{2} \tag{23}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\langle\psi| A|\psi\rangle=(\langle x \mid 1\rangle\langle 1|+\langle x \mid 2\rangle\langle 2|) 2|2\rangle\langle 2|(\langle 1 \mid x\rangle|1\rangle+\langle 2 \mid x\rangle|2\rangle)=2\langle x \mid 2\rangle\langle 2 \mid x\rangle=2|\langle 2 \mid x\rangle|^{2} . \tag{24}
\end{equation*}
$$

(d) From $U=e^{i A t}$ operating on $|\psi\rangle$ we have

$$
\begin{equation*}
|\psi(t)\rangle=e^{i A t}|x\rangle=\langle 1 \mid x\rangle|1\rangle+\langle 2 \mid x\rangle e^{2 i t}|2\rangle \tag{25}
\end{equation*}
$$

(e) Expressing $|y\rangle$ using the eigenstates of A gives

$$
\begin{equation*}
|y\rangle=\langle 1 \mid y\rangle|1\rangle+\langle 2 \mid y\rangle|2\rangle \tag{26}
\end{equation*}
$$

A mixed state occurs with some nonzero a probability $|\langle y \mid \psi(t)\rangle|^{2}>0$. Thus, the liftime of the state $|\psi(0)\rangle=|x\rangle$ is obtained by solving

$$
\begin{equation*}
\left|\left\langle y \mid \psi\left(t_{0}\right)\right\rangle\right|^{2}=\left|a+e^{2 i t_{0}} b\right|^{2}=|a|^{2}+|b|^{2}+2 \operatorname{Re}\left(a b e^{2 i t_{0}}\right)=0 \tag{27}
\end{equation*}
$$

for t_{0} where $a=\langle 1 \mid y\rangle\langle 1 \mid x\rangle$ and $b=\langle 2 \mid y\rangle\langle 2 \mid x\rangle$
7. (a) In $x_{1}, y_{1}, x_{2}, y_{2}$ system the Lagrangian reads

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \tag{28}
\end{equation*}
$$

Together with the constraint

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=L^{2} \tag{29}
\end{equation*}
$$

\mathcal{L} can be written using 3 generalized coordinates.
(b) In CM and $\mathbf{r}=\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{2}}\left(r=\left|\mathbf{r}_{\mathbf{1}}-\mathbf{r}_{\mathbf{2}}\right|\right)$ system the Lagrangian takes the form

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} M \dot{R}^{2}+\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) \tag{30}
\end{equation*}
$$

where $M=m_{1}+m_{2}$ and $\mu=m_{1} m_{2} / M$ is the reduced mass. Adding the constraint $r=L,(30)$ reduces to

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} M \dot{R}^{2}+\frac{1}{2} \mu L^{2} \dot{\theta}^{2} \tag{31}
\end{equation*}
$$

(c) Since (31) does not depend on R it follows that $P_{C M}=M \dot{R}$ is conserved.
(d) Similarly, since (31) does not depend on θ it follows that the angular momentum $\mu L^{2} \dot{\theta}$ is conserved. Therefore $\dot{\theta}$ in (31) can be replaced by ω constant.

