Moed Aleph, 2016

July 17, 2018

1. (a) The Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}\right)^{2}-C e^{-\alpha r} \tag{1}
\end{equation*}
$$

(b) E.L equation for r, θ are

$$
\begin{array}{r}
m \ddot{r}=m r \dot{\theta}^{2}+C \alpha e^{-\alpha r}, \\
\frac{d}{d t}\left(m r^{2} \dot{\theta}\right)=0, \tag{3}
\end{array}
$$

(c) From (3) we deduce conservation of angular momentum.
(d) Taking an angular momentum L_{0} the effective potential is given by

$$
\begin{equation*}
U_{e f f}=\frac{L_{0}^{2}}{2 m r^{2}}+C e^{-\alpha r} \tag{4}
\end{equation*}
$$

(e) Using the initial conditions $r(0)=r_{0}, \dot{r}(0)=0, \dot{\theta}(0)=\omega$ the initial energy is

$$
\begin{equation*}
E=\frac{1}{2} m r_{0}^{2} \omega^{2}+C e^{-\alpha r_{0}} \tag{5}
\end{equation*}
$$

Since the effective potential after a very long time is very small, we get from energy conservation

$$
\begin{equation*}
\dot{r} \approx \sqrt{r_{0}^{2} \omega^{2}+\frac{2 C}{m} e^{-\alpha r_{0}}}=\text { Const } \text {, } \tag{6}
\end{equation*}
$$

and so $r \sim t$ and from conservation of angular momentum $\theta \sim t^{-2}$.
2. (a) The Hamiltonian is given by

$$
\begin{equation*}
\mathcal{H}=\frac{p_{r}^{2}}{2 m}+\frac{p_{\theta}^{2}}{2 m r^{2}}+U(r) \tag{7}
\end{equation*}
$$

(b) Hamilton's equations read

$$
\begin{align*}
\dot{r} & =\frac{p_{r}}{m} \tag{8}\\
\dot{\theta} & =\frac{p_{\theta}}{m r^{2}} \tag{9}\\
\dot{p}_{r} & =\frac{p_{\theta}^{2}}{m r^{3}}-U^{\prime} \tag{10}\\
\dot{p}_{\theta} & =0 \tag{11}
\end{align*}
$$

(c) In Cartesian frame the Lagrangian takes the form

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-U\left(\sqrt{x^{2}+y^{2}}\right) \tag{12}
\end{equation*}
$$

Making the transformation $x \rightarrow x^{\prime}=x+\epsilon y, y \rightarrow y^{\prime}=y-\epsilon x$ result in a new Lagrangian

$$
\begin{equation*}
\mathcal{L}^{\prime}=\frac{1}{2} m\left((\dot{x}+\epsilon \dot{y})^{2}+(\dot{y}-\epsilon \dot{x})^{2}\right)-U\left(\sqrt{(x+\epsilon y)^{2}+(y-\epsilon x)^{2}}\right) . \tag{13}
\end{equation*}
$$

The new Lagrangian (13) can be written as

$$
\begin{equation*}
\mathcal{L}^{\prime}=\mathcal{L}+O\left(\epsilon^{2}\right) \tag{14}
\end{equation*}
$$

so indeed the Lagrangian is invariant under infinitesimal rotation.
(d) Eq. (14) implies that Noether's theorem applies, and therefore

$$
\begin{equation*}
y \frac{\partial \mathcal{L}}{\partial \dot{x}}-x \frac{\partial \mathcal{L}}{\partial \dot{y}}=m \dot{x} y-m \dot{y} x=L \tag{15}
\end{equation*}
$$

which is the angular momentum in Cartesian frame, is conserved.
3. (a) Schroedinger equation is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}=E \psi \tag{16}
\end{equation*}
$$

The eigenstates solving the boundary problem (16) with the boundary conditions $\psi(0)=\psi(a)=0$ are given by

$$
\begin{equation*}
\varphi_{n}=\frac{1}{\sqrt{a}} \sin \left(\frac{\pi n}{a} x\right) \tag{17}
\end{equation*}
$$

and the energies are $E_{n}=\frac{\pi \hbar^{2}}{2 m a} n$.
(b) The normalized ψ is $\psi=1 / \sqrt{a}$.
(c) Writing

$$
\begin{equation*}
|\psi\rangle=\sum_{n}\left\langle\varphi_{n} \mid \psi\right\rangle\left|\varphi_{n}\right\rangle, \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle\varphi_{n} \mid \psi\right\rangle=\frac{1}{a} \int_{0}^{a} \sin \left(\frac{\pi n}{a} x\right) d x=-\frac{2}{\pi(2 n-1)} \tag{19}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\psi(x, t)=-\frac{2}{\pi \sqrt{a}} \sum_{n=1}^{\infty} \frac{e^{-i E_{n} t / \hbar}}{2 n-1} \sin \left(\frac{\pi n}{a} x\right) . \tag{20}
\end{equation*}
$$

(d) The probability to find the particle at the nth level is

$$
\begin{equation*}
P_{n}=\left|\left\langle\varphi_{n} \mid \psi\right\rangle\right|^{2}=\frac{4}{\pi^{2}(2 n-1)^{2}} . \tag{21}
\end{equation*}
$$

4. (a) It is easily seen that

$$
\begin{equation*}
B|\varphi\rangle=0 \tag{22}
\end{equation*}
$$

(b) A straightforward calculation implies

$$
\begin{align*}
C|\chi\rangle & =|\mu\rangle \tag{23}\\
C|\mu\rangle & =|\chi\rangle \tag{24}
\end{align*}
$$

(c) The two eigenstates of C are $|\varphi\rangle$ and $|\eta\rangle=(|\chi\rangle+|\mu\rangle) / \sqrt{2}$ with eigenvalues 0 and 1 , respectively.
(d) Using the spectral theorem we obtain

$$
C=|\eta\rangle\langle\eta|=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \tag{25}\\
1 / 2 & 1 / 2
\end{array}\right)
$$

(e) Expressing $|\psi\rangle$ in terms of $|\varphi\rangle,|\eta\rangle$ results in

$$
\begin{equation*}
|\psi\rangle=\frac{1}{2}((1+i)|\varphi\rangle+(1-i)|\eta\rangle), \tag{26}
\end{equation*}
$$

which implies $P\left(\lambda_{C}=0\right)=P\left(\lambda_{C}=1\right)=1 / 2$.
5. (a) Taking the weight $m g$ to be equal to the centrifugal force $m \omega^{2} R$ we obtain $\omega=\sqrt{g / R}$.
(b) $a_{c}=2 v \omega$ directed right (in a frame where the radial direction is pointing up).
(c) Let α be the deflection angle due to a_{c}, then

$$
\begin{equation*}
\tan \alpha=a_{c} / g=2 v / \sqrt{R g} . \tag{27}
\end{equation*}
$$

