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(46) Recursive functions and computability
(47) Axiom of Choice
(48) The age of paradoxes
(49) Geometric paradoxes
(50) New directions in the 20th century
(51) Computational mathematics
(52) Complexity theory
(53) The golden age of algebra
(54) Algebraic topology
(55) Algebraic K theory
(56) Physicists classify low-dimensional manifolds
(57)
(58)
(59)
(60)
(61)
(62)

Our goal is to trace the development of mathematical thought, and how it has
tied in to the historical political and cultural development of the world.

What is mathematics?

Definition from the Random House Dictionary
Mathematics: The systematic treatment of magnitude, relationships between

figures and forms, and relations between quantities expressed symbolically.
How does this relate to modern algebraic geometry?
Wikipedia:
“Mathematics is the study of quantity, structure, space, and change. Mathemati-

cians seek out patterns, formulate new conjectures, and establish truth by rigorous
deduction from appropriately chosen axioms and definitions.”

Mathematics is used throughout the world as an essential tool in many fields,
including natural science, engineering, medicine, and the social sciences. Applied
mathematics, the branch of mathematics concerned with application of mathe-
matical knowledge to other fields, inspires and makes use of new mathematical
discoveries and sometimes leads to the development of entirely new mathematical
disciplines, such as statistics and game theory. Mathematicians also engage in pure
mathematics, or mathematics for its own sake, without having any application in
mind, although practical applications for what began as pure mathematics are often
discovered.”

Alternative Definition? Mathematics is the use of a given set of assumed facts
(axioms) to deduce other assertions by means of accepted methods of inference.

A key difference with other forms of inquiry is that mathematical truth is its
independence of time; a proof will always be valid under those axioms.

Wikipedia: “There is debate over whether mathematical objects such as numbers
and points exist naturally or are human creations. The mathematician Benjamin
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Peirce called mathematics “the science that draws necessary conclusions”. Albert
Einstein, on the other hand, stated that “as far as the laws of mathematics refer
to reality, they are not certain; and as far as they are certain, they do not refer to
reality.”

In this course, we do not deal with the interpretation of mathematics, except
where it affected mathematical development. Thus the question of whether 2+2 = 4
is trivial for us, since we are not concerned about determining when we have 2.

Likewise the difficulty of deducing by strict mathematical rules was observed as
early as the ancient Greek Epimenides: Is the sentence “ I am lying” true or false?

Problems with definition:

(1) Perhaps the axioms are not comprehensive enough to yield all theorems
that we would like to obtain (How do we know this also?)

(2) Perhaps the axioms are inconsistent
(3) How do we know that a proof is true?

Gödel’s incompleteness theorem shows that any consistent set of axioms will
NEVER suffice to obtain all assertions. There are various famous axioms which
have been shown to be independent of the previous ones: Euclid’s 5th postulate,
Axiom of Choice, Continuum hypothesis, which we shall discuss later.

Examples:

(1) The sphere-packing problem (Kepler’s conjecture), Wu-Yi Hsiang (1990),
published in International Journal of Mathematics (1993).

(2) Wile’s proof of Fermat’s Last Theorem (Annals of Math. 1995). His original
proof was spotted wrong only after a half year, by a single person.

(3) The Classification (of simple groups). A simple group has no normal sub-
groups other than itself and {e}. For an Abelian group, any subgroup is
simple. So any simple Abelian group is cyclic (since it has a subgroup gener-
ated by any given element). The order is prime; thus the only cyclic Abelian
groups are isomorphic to Zp. So question is what are the finite nonAbelian
simple groups, called FNASG for short? Galois knew An was simple for
n ≥ 5, and even before Hilbert’s time, the classical simple groups over a
finite field (PSL, which is the matrices of determinant 1 modulo the scalars)
and those analogously arising from bilinear forms) had been discovered. On
the other hand, Mathieu (1860-1867) had found five simple permutation
groups. Burnside (1906?) proved that the order of a FNASG has to be
divisible by at least 3 distinct prime numbers.

The problem became mainstream mathematics when, perhaps inspired
by Chevalley’s work in obtaining simple groups from Lie theory, Brauer
(1950’s) pushed for a classification, and proved a sample theorem classifying
those simple groups for which the centralizer of an element of order 2 is
cyclic. Feit-Thompson (1963) proved the order of a FNASG is even. In
the 1970’s and 1980’s, Gorenstein (and Aschbacher) organized a program,
apportioning out important cases to a dozen mathematicians, and 15,000
journal pages later, announced there was a proof. Gorenstein started a
projected series of 5 volumes which would contain a complete proof from
beginning to end, but died in 1992 after publishing only 1 of the 5 volumes.
The Classification has since been used in dozens of theorems in group theory
and its applications. The only problem is that it turned out that one of the
key cases (quasi-thin groups) was not complete. The author (Mason) wrote
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a 500-page manuscript where somewhere in the middle of the argument
he simply stopped, but hardly anyone had paid attention. Aschbacher and
Smith (2004) finally finished this case, and by 2009 it was generally believed
that the proof is complete. R. Solomon is now overseeing a project of 12
volumes which hopefully will contain the full proof, but as of now a unified
proof has not been written down.

(4) The four-color map problem (Francis Guthrie). Can a map be colored
with 4 colors, such that any two adjacent countries have different colors?
(Ignoring water) Guthrie asked his brother, who asked De Morgan, who
wrote to Hamilton in 23 October 1852.

1879. The British mathematician Kempe published a “proof” in Amer.
J. Math.. Soon elected as Fellow of the Royal Society of Math. and later
knighted.

1880. Peter Guthrie Tait published a second “proof.”
1890. Percy John Heawood found error in Kempe’s proof, but showed 5

colors is enough. He also recognized that Tait’s proof is incomplete, but a
counterexample to Tait’s main claim was only found in 1946 by Tutte.

1960’s. Heinrich Heesch discovered reducing algorithms.
1976. W. Haken and K. Appel (U. Illinois at Urbana) reduced to 1482

basic maps (published in Ill. J. Math.) Errors kept cropping up, so Appel
and Haken wrote an error-correcting routine, which (until 1989) had taken
care of all mistakes which came up.

1997. Robertson, Sanders, Seymour, and Thomas reduced the unavoid-
able configurations to 633, and streamlined the reduction process by a factor
of 10. All in all, they provided a quadratic algorithm to color any map (as
opposed to the quartic algorithm by Haken and Appel.)

As we shall see, the great early civilizations (Bablyonians, Egyptians, and Chi-
nese) all had their special contributions to mathematics. Wikipedia: “ The system-
atic study of mathematics in its own right began with the Ancient Greeks between
600 and 300 BC. ... most notably in Euclid’s Elements. Mathematics continued
to develop, for example in China in 300 BCE, in India in 100 CE, and in Ara-
bia in 800 CE, until the Renaissance, when mathematical innovations interacting
with new scientific discoveries led to a rapid increase in the rate of mathematical
discovery that continues to the present day.”

The mathematics of the ancients

Before starting, let me stress that, for convenience, we use modern notation,
including use of symbols for unknown quantities; this is anachronistic, since they
were not used until the Arab mathematicians of 1000 years ago.

All of the famous ancient civilizations had well developed mathematical theories,
which were utilized for counting and measuring. Uses of numbers in the tora include
counting days in creation, calendar, measurements for construction, counting people
and animals, and monetary transactions.

The word geometry means “measure the earth”, and the ancients also wanted to
determine the positions of the stars and planets in the sky, since they believed this
had an impact on their day-to-day lives. Thus arithmetic, geometry and astronomy
(or astrology) became prime forces in the development of mathematics.

Number systems.
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Sometime in the beginning of civilization humans began to count both with the
notion of ordinal and cardinal. This is reflected in Bereshit, in the account of
creation (Vayehi Erev Vayehi Boker, Yom Echad; Vayehi Erev Vayehi Boker, Yom
Sheni (note this is ordinal). One of the crucial advances in counting was a notation
for counting.

There are two main types of number systems. The first system, which is more
primitive, largely involves assigning a number value for each letter or symbol, such
as with gematria. This is known to us through midrashim on the tora, and also
through Roman numerals, which were used throughout the Greco-Roman world.
However, it was extremely difficult to carry out even the most fundamental arith-
metic operations: What is DCCCLIX times CCXLVII?

Far more advanced is the notion of a “place” system, in which numbers are
denoted by a series of digits where the places of the digit distinguish among the
numbers. For example, in the modern decimal system, 172 = 2 · 10 · 10 + 7 · 10 + 2
and 721 = 7 · 101̇0 + 2 · 10 + 1 are different numbers.

The number of digits required in a place system varies of course, and is called
the base of the system. For example, the decimal system has base 10, and the
binary system has base 2 (requiring only the symbols 0 and 1). More recently,
computers have been built based on the hexidecimal system, which requires 16
symbols, namely the digits 0, 1, · · · , 9 as well as the letters A, B, C, D, E, and F.

Egyptian mathematics. The Egyptians had a crude number system and only
used basic arithmetic (based on successive doubling and halving), but developed
measurements well enough to build the pyramids. The famous “Moscow papyrus”
(Also the “Rhine papyrus”) describes the area of the triangle and trapezoid. They
also had the formula (89d)

2 for the area of a circle with diameter d. This makes

π to be 4 · 64
81 = 3.1604. (Interesting note: There is a hint in the Bible that π is

3 × 111
106 which gives the value 3.1415. The hint is that kav is spelled kaveh when

describing the circumference of a circle, which hints the numerical value of kav
(106) is replaced by that of kaveh (111). The Egyptians developed triangulation,
the division of polygons into triangles in order to measure area (since the area of
a triangle is well known). Interestingly enough, this method does not work in 3
dimensions (see discussion of Hilbert’s 3rd problem).

The Egyptian seked, or seqed was the ratio of the run to the rise of a slope
(cotangent). The seked is at the base of problems 56, 57, 58, 59 and 60 of the
Rhind papyrus - an ancient Egyptian mathematics document. This influenced the
early Greek mathematicians such as Thales.

However, the influence of the ancient Egyptians in arithmetic was limited by
their lack of a workable number system.

Babylonian mathematics.

The Babylonians [Mi, p. 48] invented a place system to the base 60 by the year
1900 BCE-1600 BCE. This is called the Old Babylonian period.

They had symbols for the the numbers 1 through 60 but then needed to use
“transposition” to represent numbers greater than 60; for example (in modern
notation) 1,15 denotes 75 and 2,15 denotes 135. (The comma is part of the modern
representation.) They also had decimal-type notation for fractions. The main
problem is that they did not have a 0, so 65 and 3605 would both look like 1,5,
whereas we can differentiate between 15 and 105.
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Tablet Plimpton 322 (Analyzed by O. Neugebauer and A. Sachs).
One incredible tablet lists 15 solutions to integral sides of right triangles, in

decreasing angles (albeit with four numerical errors); they give only the two larger
sides, since a2 = c2 − b2 = (c+ b)(c− b) can then be calculated easily:

1, 59 2, 49
56, 7 1, 20, 25

1, 16, 41 1, 50, 49
3, 31, 49 5, 9, 1
1, 5 1, 37
5, 19 8, 1
1, 59 2, 49
38, 11 59, 1
13, 19 20, 49
8, 1 12, 49

1, 22, 41 2, 16, 1
45 1, 15
2, 41 4, 49
29, 31 53, 49
56 1, 46

In decimal notation:

b c b
c factors of a

119 169 .704 2, 3, 5
3367 4825 .698 2, 3
4601 6649 .692 2, 3, 5
12709 18541 .6854 2, 3, 5
65 97 .6701 2, 3
319 481 .6632 2, 3, 5
2291 3541 .647 2, 3, 5
799 1249 .6397 2, 3, 5
481 769 .6255 2, 3, 5
4961 8161 .608 2, 3, 5
45 75 .6 2, 3, 5
161 289 .5571 2, 3, 5
1771 3229 .5485 2, 3, 5

Note that the sine of the smaller angle ( bc ) is always decreasing, and the factors of
the third side are always from 2,3, and 5. (For example, in the second line. Here
c − b = 1458 = 2 · 36 and c + b = 8192 = 213.) This later fact is very significant,
because it indicates that the calculations were not purely empirical, and also that
they had some methods for multiplying by 2, 3, and 5. (Since these divide 60, their
multiplication tables are far simpler than for the other numbers.) If one works this
out using Pythagorean triples, the computations are not that difficult.

Other tablets describe solutions of various linear algebraic equations. See tablet
A24194 transcribed in Midonick (pp. 77-83). They also could solve certain equa-
tions of the form ax = b, so in this sense knew the rudiments of logarithms.

The Babylonians also were far advanced in using mathematics in astronomy, i.e.
to calculate the positions of the heavenly bodies (although their physical concept
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of the universe was most primitive). Avraham Avinu, who left Babylon around
this time, therefore had access to the most advanced mathematical methodology
of ancient times. The one disadvantage of the Babylonian approach was that it,
like the Egyptian, was very application oriented, and there is no record of the
Babylonians studying abstract mathematics.

Chinese mathematics. The Chinese knew how to solve elementary algebraic
equations, and already had encoded arithmetic in the legendary text called the
K’iu-ch-ang, which by Chinese tradition dates from around 2500 BCE.

It is possible that the Chinese were the first with many major discoveries; archeol-
ogists found bones with markings, starting with pre-historic times. The Oracle bone
script of Shang dynasty (14th to 11th century BCE) has a complete (non-place) dec-
imal numeral system, with separate symbols for 40,50,60,70,80,90,100,200,300...900,
1000,2000,....9000, 10000, up to 40000. There are indications that the Chinese had
a place notation in the “Spring and Autumn” period, from the second half of the
8th century BCE to the first half of the 5th century BCE. Also see [OL], which
claims that the Chinese book Yi-King (the book of changes) contains a description
of a binary positional system with zero. If he was right, the zero is from China. The
Chinese became masters in the art of numbers, including magic triangles, powers
of numbers, mostly in terms of mystical properties. Discovered remnants (-1000)
also contain a statement of the Pythagorean theorem.

Unfortunately the emperor Ts’in Shih Huang-Ti declared possession of mathe-
matical works a capital crime, and burned all known books, greatly reducing their
impact. Chang Tsang (b. 152) resurrected what he could.

The classical Greek period

The Greeks developed mathematics into a far-reaching science, bringing in ap-
plications to mechanical physics, and developing astronomy to heights which would
only be matched 1500 years later. Most of our knowledge is based on the historian
Procleus (412-485 CE), so there is much uncertainty containing dates. However,
we can identify main periods, identified with the mathematical giants of antiquity.

Thales of Miletus (c. 624 BC – c. 546 BC) from Asia Minor, was one of the
“Seven Sages of Greece,” who flourished 620 BC –550 BC. Aristotle regards him as
the first philosopher in the Greek tradition, and he also is credited with some basic
results:

(1) Thales’ intersesction theorem. Proportions of sides in similar triangles are
always constant.

(2) Thales’ theorem. If A, B and C are points on a circle where the line AC is
a diameter of the circle, then the angle ABC is a right angle.

(3) Eudemus attributed to him the discovery that a circle is bisected by its
diameter, that the base angles of an isosceles triangle are equal, and that
vertical angles are equal.

Pythagoras of Samos (-569– -495?, or c. 420 BCE?) is best remembered for
stating the Pythagorean Theorem (although it was already known by the Babylo-
nians, and probably also the Chinese and Egyptians). (Classical proofs use similar
triangles. Easy proof: Inscribe square of side c into square of side a+ b.

Pythagoras was perhaps the first person to study numbers as abstract entities.
He believed that the essence of matter was contained in numbers. Thus his very im-
portant school (the Philosophs), established in Samos (and later in Italy), studied
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the properties of numbers, often with mystical overtones. They constructed num-
bers by means of compass and straight edge, in particular rational numbers which
can be constructed using parallel lines and Thales’ theorem on similar triangles.
In fact, the Greeks, lacking a decent number system, approached most problems
geometrically. This is one reason why the Greeks only considered positive numbers.
This should be borne in mind throughout the study of ancient Greek mathematics.

Unfortunately one of the students, Hippasus of Metapontum, proved that
√
2 is

irrational.
Although Hippasus’ proof was geometric, here is a modern algebraic proof: We

start with the fact that if a2 is even then a is even. Suppose 2 = a2

b2 We shall show

both a and b are even, and then cancel 2 ad infinitum. But b2 = 2a2 is even, so
b is even, and writing b = 2c we see that 2c2 = a2 is even, implying a is even, as
desired. His reward was to be drowned by his colleagues for his blasphemy.

Nevertheless, this awareness of the difference between rational and irrational
numbers was a major advance, since it advanced numbers from a mere tool of
measurement to an object of learning. It also gave rise to the question of which
numbers are constructible by means of compass and straight edge. This gave rise
to a number of constructions:

(1) Constructing a perpendicular (anach) from a given point of a line;
(2) Constructing a perpendicular from a given point outside a line to the line;
(3) Constructing a line parallel to a given line, through a given point;
(4) Constructing the product and ratio of two numbers (using similar triangles);
(5) Constructing the square root of a number. (This relies on Thales’ second

theorem, constructing a right-angle triangle inside a semicircle and noting

that (1 + a)2 − (1− a)2 = 4a = 2
√
a
2
.)

Four famous problems involving construction of numbers:

(1) Doubling the cube;
(2) Trisecting the angle;
(3) Squaring the circle;
(4) Constructing a regular n-gon for n ≥ 7.

Since the square root of any natural number could be constructed, the Greeks
of Pythagorus’ school knew how to construct roots of quadratic equations.

Although their method was geometric, we express it in algebraic terms, in mod-
ern notation. Suppose we want to solve the equation x2 = ax+b. This is equivalent
to finding two numbers x > y such that x− y = a and xy = b. Putting

z = x− a

2
= y +

a

2

yields

b = xy = (z +
a

2
)(z − a

2
) = z2 − (

a

2
)2,

so z =
√
(a2 )

2 + b. The same argument solves y2 + ay = b. Significantly the Greeks

could not solve x2 + b = ax, since they thought geometrically and did not know
about negative numbers.

The Pythagoreans had a sworn code of secrecy, and one reason their geometry
survived was because they granted an exception to Hippocrates of Chios since he
had lost his fortune and needed to make a living teaching geometry. His Elements
include the squaring of a certain lune (whose argument is rather elementary).
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A competing school of Eleatics was founded by Parmenides at Elea (now Velia),
a Greek colony in Campania, Italy, in the early fifth century BCE. Other members
of the school included Zeno of Elea and Melissus of Samos. Zeno is mostly known
for his paradoxes:

Achilles and the tortoise: In a race, the quickest runner can never overtake the
slowest, since the pursuer must first reach the point whence the pursued started,
so that the slower must always hold a lead.

Plato wrote about this school in the dialogue called the Parmenides, in which
Plato describes a visit to Athens at a time when Zeno is ”nearly 40” (Parmenides
127b) and Socrates is ”a very young man” (Parmenides 127c). Assuming an age
for Socrates of around 20, and taking the date of Socrates’ birth as 470 BCE, gives
an approximate date of birth for Zeno of 490 BCE, and death perhaps at 430 BCE.

The great philosopher Plato was surpassed in mathematics by many mathemati-
cians, but his school did provide the so-called Platonic solids; these are convex
polyhedra whose faces are all congruent regular polygons, with the same number
of faces meeting at each vertex. For example, the tetrahedron is comprised of
four congruent equilateral triangles, and the cube (hexahedron) is comprised of six
congruent squares. There are five of these Platonic solids (the others being the
octahedron, made of eight equilateral triangles, the dodecahedron, made of twelve
regular pentagons, and the icosahedron, made of twenty equilateral triangles, the
first four of which were identified respectively in Plato’s dialogue Timaeus c.360
B.C. with the four classical elements (fire, earth, air, and water). Although these
four solids were studied previously by Pythagoras’s school and had been in evidence
long before, Plato’s contemporary Theaetetus described all five Platonic solids. (We
shall give a quick proof later, in the discussion of Euler’s formula.)

One of the great early Greek mathematicians was Eudoxos of Cnidus(now Knidos,
Turkey), 406 BCE - 355 BCE. Eudoxos was a Greek mathematician and astronomer
who contributed to Euclid’s Elements. He studied with Archytas who was a disciple
of Pythagoras. Then Eudoxos studied at Plato’s famous Academy in Athens. But
he surpassed Plato in mathematics and established his own school in Cyzicus (Asia
minor). After another trip to Athens, he returned to Cnidus, set up an observatory,
and wrote several books, including the Mirror and the Phaenomena.

Eudoxos is generally credited with the concept of order in the number system,
including the so-called Archimedean postulate.

Eudoxos was also the first to build a mathematical model of the universe, built
on an elaborate system of spheres. The problem here is that if one assumes that
the universe is geocentric, i.e., with the earth at the center, then the orbits of
the planets must involve secondary orbits, called epicycles, and the mathematics
becomes complicated.

The planetary system of Eudoxos is geocentric, involving 27 spheres, and is given
in his book, On velocities and is described by Aristotle in the latter’s Metaphysics.
He also wrote a book about the different peoples in the civilized world. He mapped
the stars and compiled a map of the known world. Eudoxos is said to have doubled
the cube (by means of intersections of curves) and is quoted extensively by Euclid
and Aristotle.

Eudoxos introduced the method of exhaustion, based on Antiphon’s earlier ideas
of approximating the area of a circle by inscribing regular polygons with increasing
numbers of sides. Eudoxos made Antiphon’s theory rigorous and gave rigorous
proofs of the theorems, first stated by Democritus, that



10 LOUIS H. ROWEN

1. the volume of a pyramid is one-third the volume of the prism having the same
base and equal height; and

2. the volume of a cone is one-third the volume of the cylinder having the same
base and height.

The Golden age of Hellenistic Mathematics.
Hellenistic culture reached a zenith in Alexandria, which was founded by Alexan-

der in 332 BCE with the intention of making it the capital of the world. Ptolemy
I Soter was a Macedonian general under Alexander the Great who became ruler
of Egypt (323 BCE–283 BCE) and founder of both the Ptolemaic Kingdom and
the Ptolemaic Dynasty. Ptolemy was one of Alexander the Great’s most trusted
generals, perhaps his half-brother. Ptolemy is reputed to have founded the leg-
endary library. Any traveller to Alexandria had to deposit his books at the library,
where they were copied before being returned to him, and soon the library had
over 600,000 books. This was a suitable home for the perhaps the world’s first
university at Alexandria. (Another famous ancient university was in Pergammum,
whose library of Pergammum served as the reference center for many geometers.

Euclid (b. -330) was a prominent mathematician in Athens who accepted the
position as head of the mathematics department in Alexandria, around -300. Amaz-
ingly, we know almost nothing about his life, but he seems to have preceded
Archimedes and been quoted by him. Euclid’s great work is Elements: axiomatic
foundation of geometry, included conic sections, and number theory. Other books
attributed to him include Data, De Divisionibus (on dividing areas), Optics, and
Phaenomena (on the sphere). Euclid also formalized the argument of reductio ad
absurdum.

Euclid’s number theory:

(1) Euclidean algorithm for finding gcd of numbers (book VII, Prop. 1,2);
(2) Infinite number of primes (book IX, Prop. 20);
(3) Properties of primes (if p|ab, then p|a or p|b, book VII, Prop. 30);
(4) Perfect numbers. We say n is perfect if the sum of the divisors of a number

S(n) equals 2n. Note that

S(pi) = 1 + p+ p2 + · · · = pi+1 − 1

p− 1
,

and S(mn) = S(m)S(n) if m,n are relatively prime. Thus for n =
∏

piuu ,
we have

S(n) =
∏ piu+1

u − 1

pu − 1
,

and the question of whether a number n is perfect is to determine whether

or not S(n)
n = 2, i.e.,

t∏
u=1

piu+1
u − 1

piuu (pu − 1)
= 2.

For n = 2i, S(n)
n = 2i+1−1

2i = 2 − 1
2i , so high powers of 2 are “almost”

perfect; this is the basis of the following discussion. Indeed, taking n = 2ip
where p = 2i+1 − 1 is prime, we have

S(n)

2n
=

2i+1 − 1

2i
p+ 1

p
=

2i+1 − 1

2i
2i+1 − 1

2i+1 − 1
= 2,
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so n is perfect.

(ASIDE: Note: that if 2r − 1 is prime then r must also be prime, since
otherwise if r = uv we have 2uv − 1 = (2u)v − 1 is divisible by 2u − 1.)

There are 30 known primes of this form, including r = 2, 3, 5, 7, and
216091, yielding 3, 7, 31, 127, and 2216091 − 1.

Conversely, suppose n is perfect. If p1 = 2 and i = i1 ≥ 1, then the first

factor is 2i+1−1
2i . In order to arrive at the integer 2, some other prime pu or

a prime divisor of pu − 1 has to divide 2i+1 − 1. Writing p = pu and j = iu,
we have

S(pj)

pj
>

pj + pj−1

pj
=

p+ 1

p
≥ 2i+1

2i+1 − 1
,

unless p = 2i+1 − 1, so S(n) > 2 unless j = 2 and p2 = 2i+1 − 1, without
any other prime factors. In other words, n = 2ip, where p+ 1 is a power of
2.

Thus, we have determined all even perfect numbers up to the primality
of 2r − 1. However, it is not known if there are an infinite number of them,
and even worse, it is not known if there is an odd perfect number.

A similar argument shows that if p = 2q + 1 is prime then q must be a

power of 2. (Indeed, writing q = 2ks for k ≥ 0 and s odd, then 2(2
k) + 1

divides p = 2q+1, contrary to p prime unless s = 1.) These numbers, called
‘Fermat primes,’ played an important role later on.

(5) Amiable numbers. These are numbers a, b such that S(a) = S(b) = a + b.
The example known to Euclid was 220 and 284 (where S(220) = S(284) =
504).

(6) (Book X) There are an infinite number of Pythagorean triples. (The formula
for Pythagorean triples is given in his book; also, he gave a direct argument
that does not rely on the formula. Indeed, the squares 1, 4, 9, 16, 25, . . . differ
by successive odd numbers, 1, 3, 5, 7, 9 . . . , so whenever this odd number is
a square we will have a Pythagorean triple (in which c = b+ 1).

Euclid’s geometry: Euclid is best known for his formulations of the postulates
of geometry, although he relied on Eudoxos and others.

Euclid’s notions of point, line, etc. were not relevant to the development of his
theory, so these are left formally as undefined terms. (See Archimedes below for
a definition of a line.) The basic (unprovable) properties of these undefined terms
are called postulates. The theorems are those properties that can be proved from
the postulates, using accepted principles of deduction.

Euclid’s fifth postulate:

If a straight line crossing on two straight lines makes the interior angles on
the same side less than two right angles, then the two straight lines, if extended
indefinitely, meet on that side on which are the angles less than the two right angles.

In other words, as noted by Proclus, there is only one line through a point par-
allel to a given line. This postulate was thought from the outset to be superfluous.
For twenty centuries, mathematicians tried to prove this postulate from the oth-
ers. It seems clear that it is consistent with the other axioms, especially, since
Descartes later gave an algebraic model of Euclidean geometry (Affine space). On
the other hand, in the 19th century it was shown that there are non-Euclidean
models. (Hyperbolic geometry).
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Note: Projective space is a model of the other postulates, but fails the basic
(assumed) postulate that through every point there exists a line parallel to any
given line!

Euclid also gave a complete mathematical description of the Platonic solids in
the Elements. When asked by King Ptolemy I Soter how one can learn geometry
quickly, Euclid is reputed as saying, “There is no royal road to geometry.”

Aristarchus of Samos, during the golden period, proposed the heliocentric theory
in his lost work On the sizes and distances of the sun and moon, which by its title
must have been steeped in mathematics. (Quoted by Archimedes (sand reckoner,
-216) and later by Ptolemy (Syntaus) and Plutarch (On the Face in the Moon).)
His assumptions are a bit off – he assumes that the moon reflects full light when it is
half full. From this, he concludes that the distance of the sun from the earth is only
18 to 20 times that of the distance of the moon from the earth. This calculation
was improved by Eratosthenes (-275)

He seems to have understood continued fractions. This is because he esti-
mates 7921

4050 as 88
45 which is the beginning of the expansion of

1 +
1

1 + 1
21+ 1

2+···

and he estimates 71755875
61550073 as 43

37 which is the beginning of the expansion of

1 +
1

6 + 1
6+···

As pointed out by a student in the course, perhaps he had some other way of making
the calculations, since 7920

4050 = 88
45 .

Classical Greek mathematics reached its zenith under Archimedes (287-212), one
of the all-time mathematical greats. Two of his mathematical masterpieces were
“On the Sphere and Cylinder,” and The Sand Reckoner, -216. in the former book,
developing Eudoxos’ methods further, Archimedes computed volumes and areas of
cones and spheres via successive approximation, thus anticipating integral calculus!
His way of avoiding the formal notion of limits was to approximate circles by n-
polygons enclosing them, noting that if for some function f(n), that f(∞) < a iff
f(n) < a for suitably large n; this gives him a bound from above, and likewise,
approximating a circle by inscribed polygons, he can bound f from below. In this
way he calculated the surface of a sphere of radius r to be 4πr2 and the volume to
be 4

3πr
3.

He also explicitly defined a straight line as the shortest distance between two
points, and likewise a plane to be the surface having the smallest area of any
surface whose boundary is a given set of (coplanar) lines.

He claims to have solved the equation

a− x

b
= (

c

x
)2

(which would be equivalent to solving the cubic equation!) by means of intersections
of conics, and he discovered the discriminant of the cubic equation (to be discussed
later). (His methods were rigorous, but in this case he referred the reader to a
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later portion of the book which later was lost, but finished by Eutocius in his
commentary); also see discussion of Omar Khayyam below).

Archimedes also proposed the famous cattle problem, which showed that he could
solve equations involving huge numbers.

FromWikipedia, the free encyclopedia: Archimedes’ cattle problem (or the prob-
lema bovinum or problema Archimedis) ... Attributed to Archimedes, the problem
involves computing the number of cattle in a herd from a given set of restrictions.
The problem was discovered by Gotthold Ephraim Lessing in a Greek manuscript
containing a poem of forty-four lines, in the Herzog August Library in Wolfenbuttel,
Germany in 1773.

The problem remained unsolved for a number of years, due partly to the difficulty
of computing the huge numbers involved in the solution. The general solution
was found in 1880 by A. Amthor; he gave the exact solution using exponentials
and showed that it was about 7.76 × 10206544 cattle. The decimal form is too
long for humans to calculate exactly, but multiple precision arithmetic packages on
computers can easily write it out explicitly.

On his tomb is engraved a sphere inscribed in a cylinder; he computed their rela-
tive volumes, which he considered one of his great achievements. He also developed
three-dimensional curves such as the spiral, and applied them in inventions (the
water screw).

Archimedes utilized the Archimedean postulate of the real numbers, that given
x, y there is always n such that nx > y, although nowadays Eudoxos is generally
credited for discovering this (in the form that any for any number x there is an
integer n > x).

Archimedes discovered the laws of displacement while in the bath, in order to
help the Syracusan king determine that a crown claimed to be made of pure gold
was actually a fake, since it was only gold plated over silver.

Archimedes was killed by the Romans during the fall of Syracuse. (For good
reasons - his inventions, inspired by geometric notions, included the triple pulley
and multiple levers which enabled the Syracuse army to haul huge weights against
Roman ships, and he focused sunlight via prisms to set the ships on fire, and delayed
their advance by 3 years). This is probably the greatest impact the Romans had
on mathematics.

Conon of Samos - Friend of Archimedes. Died early but proposed classical ques-
tions, for example:

Given a sphere construct a cone or cylinder of same volume

Divide volume of sphere into two parts according to a given rational ratio of
their volumes.

Divide volume of sphere into two parts according to a given rational ratio of
their areas.

All of these are impossible, but he also proposed the question: Find a planar
figure with same area as surface of sphere. (Possible, since this is constructing a
figure with area 4

3π, so a circle with radius 2√
3
suffices.)

Appolonius of Perga (-262 to -190), born in Ionis, now in modern Turkey, and
died in Alexandria) codified the works on conics, with great sophistication (tangents
to conics, such as a circle tangent to three given circles, normal lines, harmonic
quadruples, asymptotes, focal properties of spherical and parabolic mirrors, pencils
of lines).
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The twilight of the classical Hellenistic period

Many of the mathematical advances at this time were related to astronomy,
especially movements of the planets, which required spherical geometry. Since
it was believed the sun moves around the earth, the calculations were extremely
intricate. Interestingly, trigonometry (both 2- and 3-dimensional, studied in terms
of chords) developed under Menelaus (first century) and Ptolemy (2nd century) to
the extent that Ptolemy could calculate the sophisticated epicyclic motion required
under his theory of planetary motion. Ptolemy also mastered the stereographic
projection. This is, perhaps, the most geometric of the projections, obtained by
rotating a line passing through one point of a sphere to project onto the plane
tangent at the other end.

The great mathematician of the late Hellenistic period, Diophantus, continuing
the tradition of Pythagoras and Euclid, codified the theory of numbers. Strangely
enough, we do not know exactly when he lived. He is not quoted by Nicomachus or
Theon of Smyrna, so he probably was born after 130. On the other hand, Theon
of Alexandria (c. 365) quotes him, and Theon’s daughter Hypatia preserved part
of his masterpiece “Arithmetica” (13 books) in her commentary. Thus Diophantus
probably wrote the Arithmetica around the year 300. Diophantine equations (poly-
nomial equations with rational solutions) inspired Fermat’s Problem. One thing we
know about Diophantus was his age when he died, because of a famous epitaph on
his tomb (described in the Paletine anthology written 100 years after his death),
composed by a friend in terms of a Diophantine equation. (One sixth of his life
was in childhood; after a twelfth more he grew a beard; after a seventh more he
married; 5 years later a son was born, who lived to be half his father’s total life; he
died four years after his son.

A sample question solved in ”Arithmetica,” Book V: To find three squares such
that the sum of their squares is a square. In other words, solve

a4 + b4 + c4 = d2.

(Solution: 144
25 , 9, 16; or in integers, a = 12, b = 15, c = 20, d = 481.) This should

be compared with Euler’s problem described below.
In Book II, Diophantus discovered a geometric way to solve the Pythagorean

triples, probably making him the first person to have a proof that all Pythagorean
triples have this form. First of all, dividing through by z, we need to find rational
numbers x, y such that (xz )

2+(yz )
2 = 1, or, in geometric terms, we want the rational

solutions on the unit circle C (described by x2 + y2 = 1). First one starts with a
“trivial” solution. Take a line x = 1 − ty passing through (1, 0), where t varies in
Q. In other words, we are rotating a ruler around the point (1, 0) and looking for
the other intersection point with C.

This point (x, y) satisfies (1− ty)2 + y2 = 1. Solving, one gets the equation

1− 2ty + t2y2 + y2 = 1;

cancelling y yields y = 2t
t2+1 ; x = 1−t2

t2+1 . Writing t = − v
u yields y = 2uv

u2+v2 ; x =
u2−v2

u2+v2 .) Multiplying through by u2 + v2 yields the famous Pythagorean triples.

Diophantus discovered the technique of infinite descent (equivalent to present-
day mathematical induction), which enables one to prove the impossibility of solving
certain Diophantine equations, by the following reasoning:
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If one has some solution in natural numbers, one can find a smaller solution, but
this process cannot continue indefinitely since the solutions would decrease to 0, a
contradiction.

Diophantus also studied different properties of Pythagorean triples, including
triangles for which the two shorter sides differ by 1. Examples: 3,4,5; 20,21,29.
Note that this is the reverse problem of that studied by Euclid. Diophantus’s
method: u2 − v2 = 2uv ± 1, so (u − v)2 = 2v2 ± 1. Now solve this parametrically,
and build up by working backwards from a known solution.

The following Diophantine equation is very significant: Find a rational solution
to the equation y(6 − y) = x3 − x, other than the obvious solutions x ∈ {±1, 0}.
Here is a geometric solution: (−1, 0) also lies on the line x = ty − 1; the other
intersection point satisfies 6y − y2 = t3y3 − 3t2y2 + 2ty. For t = 3, this becomes

−y2 = 27y3 − 27y2,

which degenerates to the linear equation 27y = 26, or

y =
26

27
; x =

17

9
.

Diophantus must have seen that any equation of this form (cubic in x and square in
y) with a “trivial” solution, has another solution obtained by intersecting its curve
with a suitable line. Such a curve y2 = q(x) with deg q = 3 is called an elliptic
curve, and has played an extremely important role in mathematics since 1950.

Note: One of the students in my class, Ron Held, solved Diophantus’ equation
in a few minutes, using elementary properties of integers to arrive at the solution
x = −9 and y = 30. Later, using the same methods, he came up with x = −9 and
y = 30 or −24; x = −35 and y = −204 or 210; x = −37 and y = −222 or 228; But
these solutions presumably would not be available to Diophantus, since, in each
case, x < 0.

Pappus (4th cent.), Theon.
Hypatia (370 CE? – 415 CE), Theon’s daughter, and perhaps the first great

female mathematician, wrote commentary on six books of Diophantus’ 13-volume
Arithmetica. She also edited the third book of her father’s commentary on Ptolemy’s
Almagest, as well as her father’s commentary on Euclid’s Elements, and simplified
Apollonius’s Conics. Hypatia was lynched by a Christian mob, and this symbolizes
the death of Classical Hellenistic mathematics.

Proclus (412 – 485), and Eutocius (480–540) mastered many of the classical
Hellenistic works, but did not add much to them. It would be over 1000 years
before Western mathematics reached this plateau again.

What happened to classical Hellenistic mathematics? In the early middle ages,
classical civilization was often identified with heathenism, which and the fall of
classical learning ensued.

The fate of Hellenistic mathematics is tied to the fate of the library in Alexandria,
which in turn was tied to the political situation

First Triumvirate: Julius Caesar, Pompeius, Pompeius Magnus, Marcus Crassus
(died -55)

Second Triumvirate: Augustus Caesar, Marcus Antonius, Marcus Lepidus
Julius Caesar is reputed to have destroyed the library in order to subdue Egypt.

To impress Cleopatra, Marcus Antonius reconstituted the library of Alexandria, by
raiding the library of Pergammum.
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The library of Alexandria, symbol of classical Hellenistic knowledge, was sacked
by Christians (389), and then by Moslems (642). Caliph Omar’s infamous quote: If
it is against the Koran it should be burned and if it is for the Koran it is superfluous
and thus should be burned.

However, this does not explain why the last great mathematical advance in
Hellenistic Europe came several hundred years earlier. Here is another hypothesis:
Philosophical constraints most likely put the brakes on mathematical development.
The great philosophical minds missed the mark when considering basic physical
principles.

The Hellenist mathematicians could not progress further in number theory with-
out a reasonable number system. The great philosopher Aristotle had opposed the
notion of 0, since one cannot divide by it.

Geometry was saddled with the Herculean task of supplying the computations
for an untenable physical theory: Aristotle’s theory required continuous force to
keep an object in motion, together with his geocentric theory of the universe The
physical theory of motion requiring a mover had no mathematical basis, and thus
there was no need for development of the theory of functions. The reliance on
the circle diverted attention from other conics such as the ellipse, and removed
the incentive for discovering differential calculus (which may have been natural
considering the Greeks’ understanding of tangents, but which also relies on limits).

Likewise, mathematics was dominated by philosophy in astronomy, where the
geocentric theory, featuring spheres, was adopted by Aristotle and led to great ef-
forts in putting everything in terms of epicenters etc. This was done with high
accuracy by Ptolemy, but again diverted attention from non-spherical geometry.
The greatest computational minds were needed to calculate the unnecessarily com-
plicated orbits of the heavenly bodies.

Another stumbling block: Zeno’s paradoxes, as reported by Aristotle (Physics
VI:9, 239b15):

(Physics VI:9, 239b10) That which is in locomotion must arrive at the half-way
stage before it arrives at the goal.

(Physics VI:9, 239b5) If everything when it occupies an equal space is at rest,
and if that which is in locomotion is always occupying such a space at any moment,
the flying arrow is therefore motionless.

Archimedes had developed a method to derive a finite answer for the sum of
infinitely many terms that get progressively smaller. But Zeno’s paradoxes, pointing
out the logical difficulties with limits, may have stifled the development of this
theory (for 2000 years.)

Hebrews. Elaborate astronomical calculations which enabled them to calculate
their sophisticated solar-lunar calendar; traditionally ascribed to Rabbi Akiva?.

India

As advanced as Greek mathematics became, it was apparently in India that 0
and the negative numbers were discovered. (Perhaps these were discovered earlier
in China, but if so, these discoveries were lost.) A copper plate from Gujarat, India
mentions the date 595, written in a decimal place value notation, although there is
doubt as to its authenticity. Decimal numerals recording the years 683 have also
been found in stone inscriptions in Indonesia and Cambodia.
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Bakhshali manuscript, written on birch bark. Although the manuscript was
written in the ninth century, its contents are considered to be from a much earlier
time, because it uses the sloka measure which was replaced in 500 by the arya
measure. Also the arithmetic is written in Sarada script in the ancient Gatha
dialect, which was replaced by Sanskrit. Finally the currencies mentioned are the
dinara and dramma, which were from the classical Hellenistic period (dinar and
drakhma). (This also shows the influence of the Greeks and Romans on Indian
mathematics.) The modern concensus puts the date after 2nd century BCE and
up to the 3rd century. Major innovations: Use of · for the numeral 0 (and also for
an unspecified unknown), and negative numbers.

Indians also introduced sine notation into trigonometry, replacing the chords
of the Greeks. The Surya Siddhanta (c. 400) (authorship unknown) contains the
roots of modern trigonometry. This ancient text uses the following as trigonometric
functions for the first time:

Sine (Jya), cosine (Kojya), arc sine (Otkram jya), tangent, secant. The Hindu
cosmological time cycles, copied from an earlier work, give: The average length of
the sidereal year as 365.2563795 days, only 1.4 seconds longer than the modern
value of 365.2563627 days; the average length of the tropical year as 365.2421756
days, only 2 seconds shorter than the modern value of 365.2421988 days. Later
Indian mathematicians such as Aryabhata made references to this text, and there
were later Arabic and Latin translations.

Aryabhata (b. 476) wrote the Aryabhatiya (c. 499) in Kusumapura above the
Ganges; interested in astronomy. He knew to take square roots, cube roots, solve
quadratic equations, compute sines, and sum powers of numbers.

Brahmagupta (b. 598) Head of Ujjain astronomical observatory. and expert in
astronomical calculations. Wrote Brahmasphutatidd’hanta (628) which reviewed
much of the classical Hellenistic mathematics, including planar geometry, set out
rules of arithmetic (including negative numbers). Interestingly, he attacked Aryab-
hata’s work.

Bhascara Acharya (The Learned, 1114-1185?) Head of Ujjain astronomical ob-
servatory. Wrote Sidd’hanta siromani. Contains permutations, rules of arithmetic
and solving equations over Q, as well as solutions of various Diophantine equa-
tions in several unknowns (using colors to designate the unknowns), and a diagram
indicating the proof of the Pythagorean theorem.

Golden age of Islamic mathematics. The Muslims of Baghdad collected Greek
works from Byzantium and also were influenced by the Indians, who had the most
active current tradition. The Arabs quickly became the world leaders in mathe-
matics, with no competition from the rest of the Western world.

Mohammed Ben-Musa Al-Khowarizmi was a great astronomer and expert in
trigonometry, but his most famous work is Al–jabr w’al mugahala (825), which
lent its name to the subject of Algebra. (“Algebra” means rectification, i.e. trans-
position of equal parts on both sides of an equation.) In it, he invented alge-
braic notation (x is the indeterminate), and found the algebraic solution for qua-
dratic equations, by means of completing the square. In other words, if we have
to solve x2 + 10x = 39, we take a square x + 5 units long. Then the area is
x2 + 5x + 5x + 25 = 64, so x + 5 = 8, i.e., x = 3. This work was the main mathe-
matical work on solving equations, for over 700 years.

Abu’l Hasan Ahmad ibn Ibrahim Al-Uqlidisi wrote the earliest surviving book
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on the positional use of the Arabic numerals, around 952, especially notable for its
treatment of decimal fractions.

Abu Wefa (1000) knew the sine theorem, and the Islamics had sine and cosine
tables; sophistication continued until Al-Kashi (1400), who used the law of cosines,
and computed π to 16 places in the decimal system. The Islamics also could extract
n-th roots by iteration. At this time, most Europeans did not even use decimal
notation!

Omar Khayyam (d. 1123 or 1132) the famous Islamic poet and scholar, provided
a solution to the equation x3 + b2x = 2b2c, displaying it as the intersection of the
parabola x2 = by with the circle (x − c)2 + y2 = c2. Indeed if x2 = by then

x2 − 2cx = −x4

b2 , so cancel x and solve. (Although there could be four points of
intersection of these two curves, one of them, (x, y) = (0, 0) dropped out in the
reduction to the cubic, so we are left with at most three solutions.) Note the
parallel to the (geometric) parametric method used by Diophantus. The reason
that this does not enable one to construct the root of a cubic is that the parabola
is not constructible via our strict rules.

Omar Khayyam also studied Euclid’s fifth postulate, noting that its negation
would lead to hyperbolic space (although he tried to prove this would lead to a
contradiction); likewise he had the beginnings of projective geometry.

The dark ages in Western Europe. The mathematics in Western Europe dur-
ing this period was truly in a “dark age,” with nothing remotely comparable to
The Greco-Indian school.

Abraham bar Hiyya was a Spanish Jewish mathematician and astronomer, work-
ing in Barcelona, who wrote Hibbur ha-Meshihah ve-ha-Tishboret (Treatise on
Measurement and Calculation), translated into Latin by Plato of Tivoli as Liber
Embadorum in 1145. This book is the earliest treatise on Arab algebra written in
Europe, and contains the complete solution of the general quadratic. He had the
Hebrew title ’Ha-Nasi,’ meaning ’the leader,’ but he is also known by the Latin
name Savasorda which comes from his ’job description’ showing that he held an
official position in the administration in Barcelona.

For the most part, the best Westerners could do was translate Arabic texts.
Leonardo of Pisa (c.1170-c. 1245), otherwise known as Fibonacci, was the leading
Medieval mathematician in Europe. He wrote Liber Abaci (1202) which advocated
use of the Hindu-Arabic decimal notation, but took time to be accepted.

Alphonso the Wise, king of Castile, assembled an academy at Toledo (c. 1250),
largely composed of Jews who utilized astronomical calculations to refine their
calendar, and these techniques spread through Europe.

Immanuel ben Jacob Bonfils (1350?) Decimal notation. (Largely of historical
value, since manuscript was lost for years)
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Ancient, Classical Greek, and Medieval periods:

Babylonians Egyptians
↓ ↘ ↙ Chinese

Greeks

↓ ↓ ↘
Talmudic Jews Indians

↓ ↘ ↙

Arabs
↓ ↙ ↓

Medieval Jews
Spaniards → Italians

In summary, let us compare the status of mathematics in 1150 in the different
cultures:

In the Islamic Empire, the number system was quite modern, with Arabic nu-
merals, there was a geometric solution of equations of degree 3, as well as advanced
calculations of trigonometric functions.

In India, there was a thorough knowledge of arithmetic and solving equations
over Q, including Diophantine equations in several unknowns.

Europe was beginning to emerge from a period of relative mathematical stagna-
tion.

The Renaissance

Although the renaissance gets its name from the rebirth of Hellenistic influence,
the mathematicians also benefited from the interim advances of the Indians (the
non-positive integers) and the Muslims.

Solution of algebraic equations of degree ≤ 4. Perhaps the leading mathemat-
ical advances in the Renaissance was in algebraic equations. With the well-known
solution of quadratic equations by “ completing squares,” the next step was the
cubic equation y3 + ay2 + by + c = 0. Taking x = y + a

3 , i.e., replacing y by x− a
3 ,

i.e., one has

0 =
(
x− a

3

)3

+ a
(
x− a

3

)2

+ b
(
x− a

3

)
+ c = x3 − 3

ax2

3
+ 3ax2 + · · · ,

and thus sees that the coefficient of x2 is 0, so the general form of the cubic is

(1) x3 = bx+ c.

In general, when solving the equation

xn + an−1x
n−1 + · · ·+ a0 = 0
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of degree n, one may assume the coefficient of xn−1 is 0. Indeed, let x = y + a
n .

then x = y − an−1

n , so

xn + an−1x
n−1 + an−2x

n−2 = yn−n
an−1

n
yn−1 +

n(n− 1)

2

(an−1

n

)2

yn−2 + · · ·

+ an−1(y
n−1 − (n− 1)

an−1

n
yn−2 + · · · )

+ yn−2 + · · ·

= yn + (
(n− 1)

2n
(an−1)

2 −n− 1

n
an−1 + 1)yn−2 + · · ·

Chuquet wrote a text, Triparty en la science des nombres.
Despite the publications of the Arabs, as late as 1494 Pacioli claimed the general

solution of x3 +mx = n will be as impossible as the quadrature of a circle.
But in 1515 Scipione del Ferro (1465–1526) obtained a solution, which he kept

secret so that he could challenge others to solve specific equations. (This might
sound strange, until we consider recent attempts by the NSA to suppress papers
on factorizing prime numbers.) In 1535 Niccolo Fontana (1500–1557), known as
Tartaglia, ”the stutterer,” solved the cubic in time to beat such a challenge, and
he confided his solution to Cardano, who in 1539 proceeded to publish the solution
in his great work Ars Magna, which he credited to del Ferro; namely the solution
to (1) is

x =
3

√√
(
c

2
)2 − (

b

3
)3 +

c

2
+

3

√√
(
c

2
)2 − (

b

3
)3 − c

2
.

Note that although every equation (1) has a real root (seen in modern terms by
applying the intermediate value theorem), one only can get a real root directly from
this solution when 27c2 − 4b3 is positive; this is called the discriminant. The idea
in Cardano’s solution to (1) was to reduce to an equation of lower degree. Namely
writing x = 3

√
t+ 3

√
u for t, u to be determined, one gets

x3 = t+ u+ 3(
3
√
t+ 3

√
u)

3
√
tu,

so plugging into (1) yields

(t+ u− c) + (
3
√
t+ 3

√
u)(3

3
√
tu− b) = 0.

Matching parts yields

t+ u = c, tu = (
b

3
)3,

Substituting u = t− c yields

(2) t(t− c) = (
b

3
)3,

a quadratic equation which can be solved for t (and thus for u), and thus which
provides x. Equation (2) is called the “resolvent” equation for the cubic.

Even though Cardano’s method gives a formula, it is by no means as “clean”
as the quadratic formula, in the sense that sometimes it is extremely difficult to
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recognize the solution (as in the equation x3 + x = 2) and other times, the formula
misses the only (real) solution, as in the equation x3+16x = 64. (Also, the formula
applied to the equation x3 +16 = 12x produces −4 instead of 2.) These difficulties
were discussed in length in Cardano’s book. Today, we would note that, read
properly, the formula provides three distinct solutions (including multiplicities).

This method of solving via a resolvent equation was so powerful that Cardano’s
student Lodovico Ferrari solved the general quadric

x4 + px2 + qx+ r = 0

in a similar manner. Taking a quantity u to be determined, one has(
x2 +

p

2
+ u

)2

= −qx− r +
(p
2

)2

+ 2ux2 + pu+ u2

=

(√
2ux− q

2
√
2u

)2

− q2

8u
− r +

(p
2

)2

+ pu+ u2.

If

− q2

8u
− r +

(p
2

)2

+ pu+ u2 = 0,

we can take square roots to get x2 + p
2 + u =

√
2ux− q

2
√
2u

which we solve via the

quadratic formula. Thus, rearranging and clearing denominators, we need to solve
the equation

8u3 + 8pu2 + (2p2 − 8r)u− q2 = 0.

This cubic equation in u, called the resolvent cubic, can be solved by Cardano’s
formula. Although Cardano included Ferrari’s solution in Ars Magna, he felt un-
comfortable with equations of degree higher than 3, because this seemed unnatural,
exceeding the dimensions occurring in nature. Nevertheless, the mere fact Cardano
treated fourth powers showed that algebra was freeing itself from the geometric
constraints which had shackled the Greeks.

One of the reasons why mathematics developed so rapidly in Italy was the devel-
opment of movable type for the printing press, invented by Gutenberg (and perhaps
others) around 1440, leading to mass-printed books in 1450 and developed through
the 15th century. By 1500 Italy possessed the facility for quick publication and
distribution of books.

Algebra in the years 1550–1625.
As noted above, Cardano’s formula has the difficulty that sometimes a naive

application produces the “wrong” root or an unrecognizable root. Even worse,
when the resolvent quadratic has no real roots, one cannot find the real root of
the cubic without passing to complex numbers. Thus, complex numbers were a
necessary consequence of Cardano’s formula (despite Cardano’s discomfort with
non-real solutions), and indeed appear in full flower in Rafaele Bombelli’s 1572
book on algebra. Bombelli seems to be the first major mathematician after the
early Greeks to consider the continuity of the real numbers. This sophisticated
concept is necessary for his method of determining a root of a polynomial via
successive approximation. Nevertheless, progress was faster for studying precise
solutions than approximating in the real (or complex) number system, which had
to wait for methods from calculus.



22 LOUIS H. ROWEN

Franois Vieta, or Viète (1540-1603) used letters for symbolic computations in In-
troduction to the Analytic Art (1591), distinguishing between unknowns (designated
by vowels) and parameters (consonants). Thus Viète was the first mathematician
to deal with polynomials. Viète (1595) solved van Roomen’s challenge from 1593:

A =45x− 3795x3 + 95634x5 − 1138500x7 + 7811375x9 − 34512075x11

+ 105306075x13 − 232676280x15 + 384942375x17 − 488494125x19

+ 483841800x21 − 378658800x23 + 236030652x25 − 11769100x27

+ 46955700x29 − 14945040x31 + 3764565x33 − 740259x35

+ 111150x37 − 12300x39 + 945x41 − 45x43 + x45.

If fn(X) =
∑[n/2]

i=0 (−1)i n
n−i

(
n−i
i

)
xn−2i then

2 sin(nα) = (−1)(n−1)/2fn(2 sinα).

Thus given 2 sin(45α) one wants to find 2 sinα. How do you do this? First divide
by 2, take the arc sine, divide by 15, and take the sine.

Vieta’s contemporary, Simon Stevin (1548-1620), rediscovered and popularized
decimal notation, and also viewed real numbers in terms of infinite strings of deci-
mals, so may be considered the first modern mathematician to view the continuum
of real numbers. In fact, he had a method of approximating solutions of polynomi-
als via the decimal expansion. With Napier’s invention of logarithms in 1614, all
the arithmetical tools for computation were in place.

Western Europe had grabbed the reins for the great revolution in mathematics,
in which Islamic and Hindu mathematics were left far behind.

Astronomy in the late Renaissance.
With the development of mathematical techniques, mathematicians turned again

to the skies, to try to find a workable system to calculate orbits of the stars and
planets (which according to the Aristotelian-Ptolemaic theory all moved around
the Earth). The first Renaissance scientist to present an alternative quantitative
theory was the priest Nikolas Copernicus (1473-1543). His system of the universe
was designed to simplify computations (although it still needed epicycles since he
was stuck on circular orbits; in fact he increased the number of epicycles from
Ptolemy’s 40 to 48).

Johannes Kepler (1571-1630). Kepler’s 3 laws:

(i) The orbits are elliptical, where the larger body is at one of the foci;
(ii) the area swept out from a focus of the orbit is proportional to the time;
(iii) the square of the orbital period of a planet is proportional to the cube of

the semi-major axis of its orbit.

Kepler and Copernicus were mathematicians in the sense that their careers were
devoted mostly to curve-fitting. However, Kepler’s great contribution was that by
presenting reasonably shaped orbits, people could start considering the velocity of
the planet, and Kepler’s last two laws deal with this.

By the beginning of the 17th century, European mathematics was on its feet,
and strong enough that Galileo Galilei (1564-1642) could assert that scientific truth
is the supreme test for a physical theory (although this brought him into conflict
with the Inquisition). Galileo was largely responsible for the development of physics
along mathematical principles.
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The beginning of the classical period: the 17th century

Politically, Spain and Italy were stagnating, with France and England on the
rise. Albert Girard (1595–1632) was a modest mathematician born in France who
lived in Leiden. He gave the inductive definition for the Fibonacci numbers, and
was the first to use the abbreviations ’sin’, ’cos’ and ’tan’ for the trigonometric
functions in a treatise. In 1632, Girard was the first to state Fermat’s theorem,
that each prime number of the form 4k + 1 is the sum of two squares.

Cartesian geometry.
Galileo’s quest for scientific truth paved the way for the great French mathe-

matician Descartes (1596-1650) who invented analytic geometry, bringing the mys-
teries of geometry down to earth. In 1637 he published Discours de la méthode,
which enabled one to describe the Classical Hellenistic theorems of geometry more
transparently, using algebra. Descartes used the term the term ”imaginary” for
expressions involving square roots of negative numbers, although he thought any
such solution is nonexistent. (Thus he did not think that one could arrive at a real
solution via an imaginary one.)

Pierre Fermat had anticipated him in private correspondence. Also, they saw
the interplay between curves and algebraic equations, the foundation of modern
algebraic geometry. It was now an easy matter to calculate slopes of secants, and
to describe limits, a concept which seems to have escaped the later Greeks, perhaps
because of their preoccupation with Zeno’s paradoxes.

Probability. In 1654, Pascal (1623-1662), apparently at the invitation of some
gamester friends, and with the help of his friend Pierre Fermat, developed the theory
of probability, a subject completely outside the realm of classical mathematics.

Pierre Fermat. Who was this person involved in the great theories of the 17th
century? Pierre Fermat (1601- 1665) was a French jurist (in Toulouse) who only did
mathematics as an avocation. Perhaps Fermat’s most famous contributions were
to number theory. Bachet had translated Diophantus’ Arithmetica in 1621, thereby
reviving the theory of Diophantine equations. One of Fermat’s fortes was proving
the impossibility of solving a given Diophantine equation by reviving and refining
Diophantus’ technique of infinite descent (equivalent to present-day mathematical
induction).

Other results in number theory
Fermat found a new amicable pair of numbers (as did his friend Descartes) and

studied prime numbers. He proved that any prime number of the form 4n+ 1 is a

sum of two squares, and studied primes of the form 22
k

+ 1, called Fermat primes.
(Actually, his only recorded mistake was that he thought these numbers are all
prime, whereas Euler showed that k = 5 provides a counterexample.)

Fermat’s Last Theorem
Diophantus’s discussion of Pythagorean triples must have aroused Fermat’s imag-

ination. Fermat wrote in the margin of his copy of Arithmetica that he had a “mar-
velous demonstration” that there are no natural numbers a, b, c, n, n > 2, such
that an + bn = cn, but which the margin is too narrow to contain. Elsewhere, for
n = 4, Fermat did write down the proof, by infinite descent. In honor of Fermat’s
manifold contributions to mathematics and the sublimity of the conjecture, it is
called “Fermat’s Last Theorem,” or FLT for short.
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The number system
In anticipating differential calculus, Fermat had to deal with limits. He in-

troduced the notion of “adequality,” where two sequences of numbers, although
intuitively not equal, yield the same result, such as .9999 · · · and 1.000 · · · .

The great influx in curves that could be studied via Cartesian coordinates gave
rise to the study of tangents to curves. Fermat was the first to describe a tangent
to a point P as the limit of secants as the second point approaches P . Differential
calculus

The integral Calculus. Kepler (1615) had devised a method of infinitesimals, but
it was up to the British mathematician Newton (1642-1726) and his counterpart
from Hanover, Leibniz (1646-1716), to change the face of mathematics forever.
Leibniz and Newton, building on Fermat’s work on differentials (in collaboration
with Descsartes) and by finding areas through summations (as done by the ancients,
updated by Wallis and Isaac Barrow, Newton’s mentor), found that integration is
the inverse of differentiation.

Newton’s great work, Philosophiae naturalis principia mathematica, appeared in
1687. Some major mathematical discoveries of Newton:

(1) binomial expansion for rational powers.
(2) Newton’s method to find roots of functions via successive approximation.

Namely, using f(x + δx) = f(x) + f ′(x)δx, for δ(x) relatively small, if we
want f(x+∆x) = 0 then we solve

∆x = − f(x)

f ′(x)
.

For example, to find
√
a we take f = x2 − a so f ′(x) = 2x, and

∆x = −x2 − a

2x
.

To find
√
7 we might start with x = 3, so ∆x = − 2

6 , and our next approxi-

mation is 3− 1
3 = 8

3 . Now

∆x = −
64
9 − a
16
3

= − 1

48
,

and 127
48 is already a good approximation. This method was improved over

the years by Sturm, Sylvester, and others.
(3) Newton-Girard identities (anticipated by Girard in 1629) for computing

the trace of a power of a matrix in terms of the characteristic coefficients of
the matrix. For example, the invariant tr(A2) equals tr(A)2 − 2 det(A).

(4) The Newton polytope of a polynomial describes many of its properties.

The notion of limits was somewhat shaky, and calculus still was not on a rigorous
foundation, and it remained for Robin (1735) and MacLaurin (1742) to begin to
carry out this task, whereas later Weierstrass introduced the famous δ − ϵ proofs
which still confound students. This approach is fundamentally different from Leib-
niz’s use of infinitesimals, which was rejected at the time by many leading math-
ematical pedagogues. In the 1950’s, Robinson finally carried out Leibniz’ idea of
using infinitesimal numbers (rather than limits) in “nonstandard analysis,” and
these ideas were formulated in a Calculus text by Keisler (1970).

Cauchy (1829) founded the theory of calculus in a complex variable, and Riemann
and Lebesgues furthered the study of multi-dimensional calculus.
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The Bernoulli family. One of the great mathematical families of the late Re-
naissance early classical period was the Bernoulli’s, among whom the following
members are prominent:

Jakob Bernoulli (1654–1705; also known as James or Jacques) after whom Bernoulli
numbers are named, Nicolaus Bernoulli (1662–1716), Johann Bernoulli (1667–1748;
also known as Jean), Nicolaus I Bernoulli (1687–1759), Nicolaus II Bernoulli (1695–
1726), Daniel Bernoulli (1700–1782), developer of Bernoulli’s principle and the St.
Petersburg paradox, Johann II Bernoulli (1710–1790; also known as Jean), Johann
III Bernoulli (1744–1807; also known as Jean), Jakob II Bernoulli (1759–1789; also
known as Jacques).

The climax of the classical period

Euler (1707–1783).
Euler, born in Basel, Switzerland, received private lessons from Johann Bernoulli,

and completed his dissertation in 1726. Blind in one eye for most of his adult life,
Euler was the jewel of the crown of Catherine the Great, residing in St. Petersburg
(1733-1741 and 1766-1783), and was director of mathematics at the Berlin academy
from its inception (1744-1766) and head of the Berlin Academy from 1759. In 1771
Euler lost his sight in his other eye, and wrote half his papers by memory!

Euler secured his reputation by finding beautiful formulas relating to classical

mathematics. Euler proved that 22
5

+ 1 is not prime (by producing its prime
factors), contrary to a conjecture of Fermat, and also found 62 amicable pairs.

Euler treated complex numbers as computable entities, and was the first to
publish explicitly De Moivre’s formula

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

This important formula, which essentially makes much of plane trigonometry an
exercise, has its roots in Cotes (1722). Taking nθ = 2kπ for k ∈ N, one sees that

ρn = e
2kπi
n = cos

2π

n
+ i sin

2π

n

is an n-root of 1. In particular, one obtains the (complex) “primitive” cube roots

ρ3 = −1±i
√
3

2 of 1.
De Moivre’s formula is best understood in terms of the unit complex circle; one

can define the primitive n-root ρn of 1 by subdividing the unit circle into n equal
arcs. He solved Fermat’s Last Theorem (1753) for n = 3 by means of expanding
the number system to Z[ρ3], where ρ3 is a primitive cube root of 1. His method is
by infinite descent reminiscent of the number-theoretic proof of Pythagorean triples
given above; the first step is to factor cn − bn over Z[ρn].

Let us review the basics of Euler’s proof. We may assume a, b, and c are relatively
prime. Let ρ be a primitive p-root of 1. We work in the extension ring Z[ρ]. Thus

(1.1) a3 = c3 − b3 = (c− b)(c− ρb)(c− ρ2b).

We define the norm of a number

N(u+ ρv) = |u+ ρv|2 = (u+ ρv)(u+ ρv) = u2 − uv + v2 ∈ N+.
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Since the absolute value is multiplicative, so is the norm. It follows that a number
whose norm is prime in Z must be prime in Z[ρ]. Furthermore, N(u + ρv) = 1 iff
u+ρv is invertible in Z. In particular, N(1−ρ) = 3, so 1−ρ is prime. Then the gcd
of the c− ρib is at most 1− ρ, so comparing factorizations, we see that each factor
on the right side must be a cube times some power of 1 − ρ times some invertible
element of Z[ρ]. Thus

(1.2,) c− b = d1u1(1− ρ)k1

(1.3,) c− ρb = d2u2(1− ρ)k2

(1.4.) c− ρ2b = d3u3(1− ρ)k3

One can get an equation generalizing Equation (1.1), of smaller norm, as follows:
(1.3)-(1.2) yields

(1.5) (1− ρ)b = b− ρb = d2u2(1− ρ)k2 − d1u1(1− ρ)k1 ,

whereas (1.4)-(1.2) yields

(1.6) −ρ2(1− ρ)b = b− ρ2b = d3u3(1− ρ)k3 − d1u1(1− ρ)k1 .

Multiplying (1.5) by −ρ2 matches the left hand sides of (1.5) and (1.6), so the
right sides match, i.e.,

−ρ2(d2u2(1− ρ)k2 − d1u1(1− ρ)k1) = b− ρ2b = d3u3(1− ρ)k3 − d1u1(1− ρ)k1 ,

so

(1.7) −ρd1u1(1− ρ)k1 = (1+ ρ2)d1u1(1− ρ)k1 = ρ2d2u2(1− ρ)k2 + d3u3(1− ρ)k3 ,

which is an equation “like” (1.1) but involving elements of smaller norm (as well as
the units ±ρj and powers of the prime 1− ρ. Thus we have a handle for induction.
One concludes by infinite descent that there is no such equation. (Details can be
found in the book of Hardy and Wright on number theory.)

(Some hidden requirements: Z[ρ3] is a unique factorization domain, with pre-
cisely six invertible elements – the roots of unity, which are ±ρi for 0 ≤ i ≤ 2.)

At the same time Euler proposed a new conjecture: a4 + b4 + c4 = d4 has no
natural solutions. However, in 1988 Noam Elkies found the following example:

26824404 + 153656394 + 187967604 = 206156734.
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The Zeta function.
Define the Zeta function ζ(z) =

∑
n≥1

1
nz . This is often called the Riemann Zeta

function because of Riemann’s famous 1859 paper to be discussed below, but in
fact Euler studied it for integral values of z in two celebrated papers in 1734 (for z
positive) and 1749 (for z negative). We focus on the 1734 paper, since its results
are easier to describe. Euler observed

ζ(s) =
∏

p prime

(1 + p−s + p−2s + . . . ) =
∏

p prime

1

1− p−s

as p runs over the prime numbers, thereby making the first of many important
connections between the Zeta function and number theory. (This instantly reproves
Euclid’s theorem about there being infinitely many prime numbers, since an easy
argument shows that in the series for ζ(1), the sum of the 2m+1 term through the
2m+1 term is greater than

2m
1

2m+1
=

1

2
,

implying that the series does not converge; it also gives an indication of the distri-
bution of prime numbers.) Euler also proved that

ζ(2) = 1 +
1

4
+

1

9
+ · · · = π2

6
,

and in both papers he tied the Zeta function in to the Bernoulli numbers.

Topological problems and invariants.
A topologist is sometimes defined as a person who does not know the difference

between the coffee cup and the doughnut. (Both have a single hole, and there
is a continuous transformation from one to the other.) Often in proving the im-
possibility of doing something, one wants to calculate a number which contains
key information about the problem, and showing that the existence of a solution
would give rise to a different number. For example, can one cover the “mutilated
checkerboard” (opposite corners cut out) with dominoes? No, because there are
more black squares than white.

The Konigsburg bridge problem. This question was whether a certain collec-
tion of bridges could be traversed in such a way as to cross each bridge exactly
once, without breaking the route. Its solution is another very simple application
of invariants. In a connected graph, at most two vertices have odd degree. (Proof:
Any vertex inside the path has one edge entering and one leaving, so only the two
ends of the path can add an odd degree to the vertex.)

Euler’s formula. Considering topological problems such as this led Euler to a
profound discovery. In any connected planar map made up of polygons,

v − e+ f = 1,

where v, e, f stand respectively for total number of vertices (kodkodim), edges
(kshatot), and faces (peiot) of the polygons. For example, for the n-gon we have
e = v = n and f = 1. Counting also the “unbounded” face makes v − e + f = 2.)
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This can be proved easily by triangularization. Namely, one sees easily that trian-
gularizing does not change the number, and so we may assume all our polygons are
triangles. Now the result is obvious for a single triangle, where 3− 3 + 1 = 1, and
any new triangle adds one of the following possibilities:

(1) two vertices, three edges, and one face, thereby adding 2− 3 + 1 = 0.
(2) one vertex, two edges, and one face, thereby adding 1− 2 + 1 = 0.
(3) zero vertices, one edge, and one face, thereby adding 0− 1 + 1 = 0.

One way of interpreting this fact is that v − e+ f is an invariant of the sphere,
and indeed any surface has its own Euler invariant.

For example, the torus has Euler invariant 0. This is seen easily by subdividing
it into four quadrilaterals, involving 4 vertices and 8 edges; thus we get 4−8+4 = 0.

One application of Euler’s formula is a quick topological proof that there are
only five Platonic solids. Suppose p is the number of vertices of each polygon in
a given Platonic solid (which is also the number of edges of each polygon), and q
dually is the number of polygons touching a given vertex. Note that p, q ≥ 3. Also,
counting edges and vertices yields

2e = fp = vq,

or

e =
fp

2
; v =

fp

q
.

Hence, substituting in Euler’s formula and dividing through by fp gives

1

q
− 1

2
+

1

p
=

2

fp
,

implying 1
q +

1
p > 1

2 . This is impossible when both p, q ≥ 4, so either p = 3 or q = 3.

If p = 3 then q ≥ 6 is impossible, so we conclude that either p = 3 with 3 ≤ q ≤ 5
or q ≤ 3 with 3 ≤ p ≤ 5. Thus, we have at most five integral solutions for (p, q),
and each one provides a solution for f and a Platonic solid, noting that

f =
2

1− p
2 + p

q

=
4q

1q − p(q − 2)
:

(3, 3), (f = 4); (4, 3), (f = 6); (3, 4), (f = 8); (5, 3), (f = 12) (3, 5), (f = 20).

Lagrange (1736-1813).
Joseph-Louis Lagrange was the mathematical conduit into the 19th century, and,

although born in Turin, Italy, was a protege of Euler, in the sense that he was in
frequent contact with Euler, improved some of Euler’s results, and Euler promoted
Lagrange’s career at several key stages. (On the other hand, he refused Euler’s offer
of a professorship at Berlin until Euler retired, perhaps feeling that there was not
room for him as long as Euler was there. In 1766 Lagrange became the mathematics
director of the Berlin academy.) Lagrange’s first major research (1760’s) was in the
theory of variations and probability. While at Berlin, he made major contributions
in astronomy and the three-body problem, and won many prizes from the French
Academy of Sciences.
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Lagrange developed Lagrange interpolation to fit polynomials to a given set of
data, and also (1770) noted that if we adjoin the roots of a polynomial f of de-
gree n to Q, the transformations (now called automorphisms) permute the roots,
and thus can be identified with a subgroup of permutations of Sn, whose order
divides n! (Lagrange’s Theorem). In case this subgroup is cyclic of degree n, La-
grange found a method (called Lagrange resolvents) of solving the polynomial by
extracting radicals. Lagrange also built on a theorem of Fermat, proving that every
natural number is a sum of four squares.

In 1787 Lagrange accepted a position as a permanent member of the French
Academy of Sciences, and in 1788 published his tract on analytic mechanics. La-
grange was fairly apolitical, and so survived the French revolution; in fact a special
exception was made for him when all foreign scientists were fired under the Reign
of Terror. At the end of his life he was honored by Napoleon.

Waring’s problem. In the margin of a book about Lagrange’s four-square theo-
rem, Waring (1770) claimed without proof that every integer is a sum of 9 cubes, 19
fourth powers, etc. The assertion that for any k, there is a number g(k) such that
any number is a sum of g(k) k-powers, became known as Waring’s problem, and
was proved much later by Hilbert (1909), with an elegant solution later by Hardy
and Littlewood.

Note that for k > 2 any number 3k−m can be written most efficiently as powers
of 2 plus the remaining powers of 1. For example. for k = 2, we have 7 = 4+1+1+1,
a sum of four squares. For k = 3,

25 = 8 + 8 + 1 + 1 + 1 + 1 + 1 + 1 + 1,

a sum of nine cubes. Likewise, for k = 4,

79 = 24 + 24 + 24 + 24 + 15,

a sum of nineteen fourth powers. For k = 5,

223 = 6 · 25 + 31,

a sum of 37 fifth powers.
Thus g(3) ≥ 9, g(4) ≥ 19, and g(5) ≥ 37.
The precise determination g(3) = 9 was found by Wieferich in 1909. Liouville

showed g(4) ≤ 53, but g(4) = 19 was only proved in 1986 by Balasubramanian et
al. Chen (1964) proved that g(5) = 37.

Legendre (1752-1833).
In contrast to Lagrange, his mentor, Legendre was a wealthy Parisian, received

his doctorate in 1770. He taught at the École Militaire in Paris 1775-1780, and at
the École Normale from 1795. In 1782, he won a prize from the Berlin Academy for
his treatise on projectiles. in resistant media 1770. From 1775 to 1780 he taught
at the École Militaire in Paris, and from 1795 at the École Normale, and was
associated with the Bureau des longitudes. Elected associe of the Acade’mie des
Sciences in 1785. In 1789 he was elected a Fellow of the Royal Society. In 1831 he
was made an officer of the Le’gion d’Honneur. His name is inscribed on the Eiffel
Tower.
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Legendre’s work on roots of polynomials inspired Galois theory; his work on
elliptic functions was continued by Abel. Legendre (1806) developed the least
squares method in linear regression and curve fitting.

In 1830 he proved Fermat’s last theorem for n = 5, independently of Dirichlet in
1828.

In number theory, he invented the Legendre symbol and conjectured the qua-
dratic reciprocity law. His 1798 conjecture of the Prime number theorem was
rigorously proved by Hadamard and de la Valle’e-Poussin in 1896.

Legendre invented the Legendre transformation, from the Lagrangian to the
Hamiltonian formulation of classical mechanics. He also found Legendre polynomi-
als to solve Legendre’s differential equation. Legendre (1794) wrote E’le’ments de
ge’ome’trie, which was the major text on Euclidean geometry.

Mathematics at the beginning of the nineteenth century

The first half of the 19th century saw the final resolution of the problems of
antiquity, the precise formulation of the real numbers and complex numbers, and
also the flowering of calculus. There is one mathematician whom we should single
out.

Gauss (1777-1855). Carl F. Gauss, was the greatest mathematician of the 19th
century, often ranked together with Archimedes and Newton as the leading three
mathematicians ever. In his dissertation at Gottingen (1795-1798) which became
the book Disquisitiones Arithmeticae, Gauss constructed the regular 17-gon (1796),
thereby solving a two-thousand year old problem. shows that the regular n-gons
can be constructed for the values n = 2up1 . . . pt, where p1, . . . , pt are Fermat primes
(discussed earlier). (This led to Gauss’ work (1801) on cyclotomic polynomials, i.e.,
the minimal polynomials of complex roots of 1.

Gauss proved the surprising quadratic reciprocity law (1796), anticipated by
Euler and Legendre: A number a is a quadratic residue modulo p if a ≡ b2 (mod p)
for some b not divisible by p. Define the Legendre symbol

(
a
p

)
to be 0 if p divides a, 1

if a is a quadratic residue mod p, and −1 otherwise. Since a2 = (−a)2, we see that
the set of (nonzero) quadratic residues modulo a prime number p is a subgroup of
the Euler group of p of index 2, and thus has exactly 1

2p(p − 1) elements; hence,

the map [a] 7→
(
a
p

)
yields a group homomorphism to {±1, ·} whose kernel is the set

of quadratic residues. In particular,(
ab

p

)
=

(
a

p

)(
b

p

)
,

so to determine
(
a
p

)
one can factor a into prime numbers.

Suppose p, q are odd primes. Gauss proved that(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 ,

and
(
2
q

)
= (−1)

q2−1
8 .

Also in 1796 he proved that any number is a sum of three triangular numbers.
Using the Zeta function, Gauss (around 1800) showed that the density of prime

numbers up to n is about 1
logn.



HISTORY AND PHILOSOPHY OF MATH - DRAFT 31

Gauss also constructed complex numbers rigorously, thereby enabling him to give
a proof of the fundamental theorem of algebra (1799), although with a topological
gap only filled in 1920. (This theorem has a history of flawed proofs. An earlier
proof of d’Alembert in 1746 contained a serious gap.)

An example of Gauss’ complex number system: The Gaussian integers Z[i] =
{a+ bi : a, b ∈ Z}.

Fact: Suppose p ∈ Z is prime. Then either p is prime in Z[i] or else p =
N(a + bi) = a2 + b2 for suitable a, b ∈ Z, where N denotes the complex norm.
Proof: If p is not prime then some a + bi properly divides p, for a, b ̸= 0. Then
N(a+ bi) properly divides N(p) = p2 in Z. This implies N(a+ bi) = p, as desired.
(Thus,a prime p in Z is prime in Z[i] iff p has the form 4n+ 3.)

This yields Fermat’s theorem that an odd prime number p in Z is a sum of two
square integers iff p has the form 4n+ 1.

Note: Although the complex plane, is sometimes called the Gaussian plane, the
use of ordered pairs to denote the complex plane was first published by William
Rowan Hamilton in the Theory of Algebraic Couples (1835). Thus the notion of
complex numbers was fully developed by the mid-19th century.

One topic which Gauss did not contribute to directly was FLT, although he was
responsible for encouraging Sophie Germain in this direction.

Gauss also proposed non-Euclidean geometry (unpublished), studied convergence
of series (1812), and discovered Gaussian curvature (1828) in differential geometry,
and found the method of least squares for fitting lines to data (together with Le-
gendre).

Non-Euclidean geometry. Another ancient question to fall was the indepen-
dence of Euclid’s fifth postulate from Euclid’s other axioms of plane geometry.
Gauss, Bolyai (1831-2), and Lobachevski(1826-9) produced non-Euclidean geome-
tries. However, Riemann (1854) revolutionized the subject by redefining straight
lines in terms of geodesics, which are defined locally (in terms of differentials).
Thus, space could intrinsically be curved, which gives rise to easy models of hyper-
bolic geometry (which is non-Euclidean), and gave the mathematical foundation
for Einstein’s theory of relativity.

Impossibility of solving equations, and group theory.
The 19th century witnessed the solution to the classical question of solving any

equation of degree n in terms of radicals. Earlier mathematicians had thought that
the Cardano-Ferrari method could be generalized, and indeed Tschirnhaus (1683)
proposed a reduction to a radical equation by changing variables via polynomial
substitutions of smaller degree. However, his method was seen by Leibniz to require
solving a “resolvent” equation of degree 6, for n = 5, so is useless. Nevertheless
Tschirnhaus transformations are an important tool in the theory of polynomials.
As noted eariler, Lagrange (1770) recognized the roots of a polynomial generate a
number system that can be studied in terms of permutations of the roots. Ruffini
(1799) published two volumes establishing the nonsolvability of equations of degree
5, but his work of 500 pages was complicated and had mistakes, and was not
generally accepted.

Niels Henrik Abel (5 August 1802 6 April 1829) gave a much more streamlined
proof in 1824, solving this ancient question. (Ironically, he had written a paper in
1821 presuming to provide a positive solution.) He wrote about this to Gauss, who
thought it was the work of a crank, and he never got to meet Gauss.
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But Galois (1832), at the age of 19, realized in full the deep connection between
field extensions and groups (of automorphisms), and proved that the solvability
of a polynomial is equivalent to an intrinsic problem of the corresponding group,
called solvability. The alternating groups An are simple for n ≥ 5 and thus not
solvable. This explains the nonsolvability of polynomials of degree ≥ 5 in general
(and in fact gives a verifiable criterion for the solvability of each particular polyno-
mial). Unfortunately, Galois’s manuscript which he submitted to the Academy was
rejected because of sloppy exposition, and many mathematicians did not grasp the
proof. Galois himself became embroiled in a political-romantic feud which ended in
his being killed in a dual in 1832. We thank Liouville for going over the manuscript
and publishing it with details in 1843. This revolutionized algebra, and gave a
completely new point of view for looking at finite groups.

Indeed, the theory of field extensions already available at 1800 easily disposes
of the other classical problems (squaring the circle, doubling the cube, trisecting
the angle), which all have negative solutions for the same reason, namely that the
degree of a constructible number must be a power of 2. (Specifically one must

check the three numbers 3
√
2, arccos π

9 , and π). Gauss’ work (1801) on cyclotomic
polynomials shows that the regular n-gons can be constructed precisely for the
values n = 2up1 . . . pt, where p1, . . . , pt are Fermat primes (discussed earlier), but
the classification of Fermat primes remains open to this day. Strictly speaking, the
impossibility of the squaring of the circle had to wait until 1882, when Lindemann
proved the transcendence of π.

Cauchy (1789-1857). Perhaps second only to Gauss in the first half of the 19th
century is the mathematician Augustin-Louis Cauchy. His family were refugees
from Paris (to Arcueil) in the French revolution. In 1814 he gave a rigorous memoir
on integration. Finally the real numbers were understood. The prime example of
this new level of sophistication is Bolzano’s theorem (1817) that every polynomial
with a positive value and a negative value also has a root. (In particular every
polynomial of odd degree over the reals has a root.) Only with Cauchy (1821) were
the real numbers understood well enough to describe the limit process in calculus on
a truly rigorous footing (Cauchy sequences). Cauchy also introduced the calculus
of complex variables (1829).

Fermat’s Last Theorem revisited. In the first half of the 19th century FLT
was considered the epitomical problem in mathematics for several reasons: The
simplicity of its statement, the great mathematicians drawn to it, and the great
mathematical concepts which emerged from it. Two major prizes were dedicated
to it: The French Academy (which finally awarded the prize to Kummer for showing
how difficult it would be to solve FLT!) and the Wolfskehl prize (in gratitude to
the problem which prevented a suicide). As we stated earlier, Fermat had written
a proof for n = 4, and Euler for n = 3, as we observed before.

It is then easy to reduce the problem to n prime ≥ 5. Euler’s proof also gives a
hint as to how to attack the general conjecture.

Ingredients: Unique factorization in Z[ρ] to carry out the factorization argu-
ments; use of norm to enable the induction; a finite number of invertible elements
in order to be able to handle the different cases.

Its history is rather colorful.

(1) (letter 1800? to Gauss) Sophie Germain proved that if n and 2n + 1 are
prime then any solution to the equation an + bn = cn satisfies n|abc.
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(2) 1825 Legendre and Dirichlet solved n = 5, based on Germain’s work
(3) 1840’s Gabriel Lamé n = 7.
(4) 1 March 1847. Lamé and Cauchy announced they were about to solve FLT,

and submitted sealed envelopes.
(5) 24 May 1847 Liouville read a letter of Kummer which showed that Z[ρn]

is not a unique factorization domain for n = 37, so all methods used until
then must fail! (Kummer had already determined in 1844 that there are
primes for which the factorization in the domain of cyclotomic integers is
non-unique. He thought that p = 23 is the first such prime, but had an
error in his computation.) Worse more, the number of irregular primes is
infinite. In this sense, the Fermat-Euler-Lamé-Cauchy approach to FLT
was refuted.

On the other hand, Kummer’s work led to the theory of ideals. Over
the next hundred years, many individual prime exponents in FLT were
eliminated, but no unified program was conceived to attack all primes, for
100 years.

(6) 1956 Taniyama-Shimura conjecture: Every elliptic curve arises from a mod-
ular form.

(7) 1983 Using differential geometry (examining the surface xn + yn = 1 and
its rational solutions), Faltings proved that FLT has only a finite number
of solutions.

(8) 1984 Frey claimed the elliptic curve. y2 = x3 − (an − bn)x2 − anbn could
not arise from a modular form, and thus would be a counterexample to the
Taniyama-Shimura conjecture.

(9) 1986 Ribet (with Mazur’s help) verified Frey’s claim.
(10) 1988 Miyaoka claimed he proved FLT by making Falting’s method explicit.
(11) May, 1993 After 7 years intensive work, Wiles announced proof of Taniyama-

Shimura conjecture (and thus FLT), by modifying the Kolyavagin-Flach
method. Paper submitted to Inventiones, where it is subdivided into chap-
ters and sent to separate referees.

(12) 23 Aug. 1993 Katz finds an error in the proof of his chapter.
(13) 25 Oct. 1994 Patched up proof with result on Hecke algebras joint with

Taylor.

Other early nineteenth century mathematicians.
Laplace developed sophisticated tools (1799-1825) to advance celestial mechan-

ics.
But Germany was also coming to the forefront. Prominent German mathemati-

cian mathematicians at this time include:

Ernst Kummer, who revolutionized number theory, as to be explained below.
Dirichlet (13 February 1805 – 5 May 1859), who worked in number theory, Fourier

series, and was perhaps the first with a modern notion of a function. Dirichlet
proved, among other theorems, that every arithmetic series a+ bn : n ∈ Z with a, b
relatively prime contains infinitely many prime numbers.

Friedrich Wilhelm Bessel (22 July 1784 – 17 March 1846), who studied the Bessel
functions (discovered by Daniel Bernoulli).

Later nineteenth century developments

We see that by 1850 many of the old issues in geometry, polynomial equations,
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constructibility, and number theory, had been settled, and celestial mechanics had
reached a plateau.

Dedekind (1831-1916) gave an alternate description of the real numbers in terms
of “Dedekind cuts,” which he introduced in an 1858 lecture. Thus, by the mid-
nineteenth century, both the real numbers and complex numbers had reached their
modern form.

Hamilton extended the complex numbers in 1843 to get a 4-dimensional version
of the complex numbers called the quaternions, which however are not commutative.

New directions of research were indicated.

Riemann (1826-1866). One of the mathematicians most influential in issuing in
the modern era of mathematics was Georg Friedrich Bernhard Riemann, a student
of Gauss in the latter’s old age. We already discussed Riemann’s 1854 paper re-
defining geometry. Riemann also used his ideas to put integration on a much more
solid footing.

In 1859, building on earlier work of Euler, Gauss, and Tshebyshev, Riemann
exploited Euler’s formula concerning the Zeta function, to get a good estimate
for the number of primes between 1 and n (approximately

∑n
m=2

1
log(m) ). Also

Riemann considered the zeta function as a complex function in ζ; noting that
the first 10 zeroes that he computed have real part 1

2 , Riemann conjectured that

every complex zero must have real part 1
2 . This conjecture was recognized to

have far-reaching consequences in number theory (see Hilbert’s 8th problem), and
subsequently the Zeta function was attached to Riemann’s name.

Topology. Jules Henri Poincaré (29 April 1854 – 17 July 1912) was a master
of almost all fields of mathenmatics, especially tolopolgy and posed the Poincar
conjecture that every simply connected, closed 3-manifold is homeomorphic to the
3-sphere. This conjecture rivaled the Riemann hypothesis in fame, and was proved
by Perelman in 2002.

Vector spaces and their transformations.

Cayley (1869) developed geometry in n dimensions, by means of vector spaces
and their transformations (which are matrices). Matrices quickly took on a life
of their own, for example the Hamilton-Cayley Theorem and Frobenius’ Theorem,
and took new significance in 1869-1871 during the Franco-Prussian war, when the
young Felix Klein (1849-1925) and Sophus Lie (1842-1899) discussed how groups
of transformations are the key to geometry. This led to Klein’s famous Erlangen
program (1872), where he defined all geometries in terms of suitable groups of
transformations, thereby redefining geometry in terms of actions of groups on sets.
Lie meanwhile had travelled to Italy with a suitcase full of notes, and was promptly
arrested by the French as a suspected spy in the Franco-Prussian War. In jail he
had time to go over his notes, and after release he created the theory of Lie groups,
published in 1893.

Cantor (1845-1918) and Infinite sets.

After R and C were understood, researchers were led to turn back to the most
basic structure, N. A major development in the foundations of mathematics was
Peano’s postulates (1889), providing a rigorous basis for mathematical induction,
now one of the most common forms of proof.

Perhaps the most striking development was the work of Georg Cantor in the
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theory of transfinite numbers, as expounded in his book (1895-97). The 1:1 equiv-
alences of sets are called cardinals.

Dedekind was the first mathematician who identified the infinite sets as those
sets which can be in 1:1 correspondence with a subset. This is seen popularly in
Hilbert’s hotel, which demonstrates equality of two different (infinite) ordinals.

The cardinality of N is denoted ℵ0, a set with this cardinality is called “count-
able.” If S is a set of cardinality ℵ, the cardinality of the set of subsets of S is
denoted as 2ℵ. Cantor proved (with his famous diagonalization trick) that if ℵ is a
cardinal, then 2ℵ > ℵ, so we have an infinite number of infinite cardinals. In fact
there are “too many” infinite cardinals to form a set. On the other hand, Cantor
also discovered uncountable nowhere dense subsets in the interval [0, 1]. (At each
step, remove the middle third of each segment that remains. What remains are real
numbers whose expansion in base 3 are comprised only of the digits 0 and 2, which
is clearly in 1:1 correspondence with the binary expansions of numbers between 0
and 1, which thus are uncountable.) In this way, Cantor divorced set theory from
topology. This leaves open the question, due to Cantor: Is there any cardinal be-
tween ℵ0 (the cardinality of the natural numbers) and 2ℵ0? (the cardinality of the
reals)? This question is known as the Continuum hypothesis.

Cantor’s work certainly impressed Dedekind, and later Hilbert, the first of whose
celebrated problems was the Continuum hypothesis. Nevertheless, Cantor had pow-
erful adversaries from the outset, such as Kronecker, and was not appreciated suit-
ably by the general mathematical community; he died in a mental hospital.

We end our account of the 19th century with the history of a problem whose
solution took 100 years.

The Four-color problem.

This problem has had a checkered history, often considered a puzzle for amateurs
rather than mainstream mathematics. After inspiring some topological foundations
relating to what we mean by “country” and “border,” the problem quickly reduces
to a combinatorial question based on Euler’s formula, which produces a fast and
elegant solution for the 5-color problem (which Haywood found in 1890). Thus by
1900 the whole thrust of the problem was to reduce the bound from 5 to 4.

Indeed, some of its main contributors were not mathematicians, as reflected by
terminology: The minimal counterexample was called a minimal criminal. This
skepticism reached its extreme in Minkowski, who said it was not proved because
only “third-rate mathematicians” had attempted its solution. But he retracted,
and later said “Heaven is angered by my arrogance.” G. Birkhoff and Oyestein Ore
gave the problem respectability in this century.

The proof by Appel and Haken has raised new doubts as to the value of the prob-
lem in mathematical development. Indeed, rather than introducing fundamental
new ideas, its solution does not produces new mainstream mathematics, but rather
involves a series of seemingly ad hoc reductions to a thousand or so cases, which
were disposed of by the computer. As such it is a triumph for computer science, but
its impact on mathematics has been much less significant than Hilbert’s problems.

Note that the four-color problem or five-color problem on the plane is equivalent
to the same question on the sphere, since we could easily add one “unbounded”
country surrounding everything on the map.

Each country can be drawn as a polygon, whose edges correspond precisely to
the borders with the other countries. Two important properties: Each edge signifies
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the border of precisely two countries. Also, the degree of a vertex is the number
of edges emanating from it, which is also the number of countries reaching that
vertex.

We make a series of reductions, using induction on the number of countries;
assume we have a minimal “criminal.”

(1) Each vertex has degree at most 3. (Otherwise, at each boundary create a
tiny new polygonal country. If one succeeds in coloring this new map, one
could color the original map by erasing the tiny new countries.)

(2) The key to the mathematics is Euler’s formula v − e + f = 2. If a vertex
has degree 2, then we disregard it, and view the two edges emanating from
it as a “bent edge”. Each “bent edge” still borders precisely two countries.
(Since we have removed 1 each from v and from e, Euler’s formula still
remains valid.) Thus we may assume that each vertex has degree 3. This
means 3v = 2e in Euler’s formula, so multiplying Euler’s formula by 3 yields

−e+ 3f = 6.

(3) If nC denotes the number of countries bordering C, then
∑

nC = 2e, since
we could count the bordering countries as twice the number of borders.
Noting that the number of countries is f , we have

∑
C 6 = 6f, and thus

−
∑
C

nC +
∑
C

6 = −2e+ 6f = 12,

or
∑

C(6 − nC) = 12. This key formula shows that 6 − nC is positive for
some C, i.e., some country has 5 or fewer neighbors.

(4) One is done if there is a country C having 4 or fewer neighbors. For 4
neighbors, one erases two opposing borders, colors the map by induction,
redraws the borders, and then, noting we have only used 3 colors for C’s
neighbors, we color C with the remaining color. For up to 3 neighbors one
just erases one border and uses the same argument. Thus every country
has nC ≥ 5.

(5) The same argument already proves the 5-color theorem. Namely, suppose
the country C has five neighbors C1, C2, C3, C4, C5; one may assume that
C2 and C4 do not touch. Make one country from C,C2, C4. Color the map
by induction; now we have used one color for C2 and C4, and at most 1 for
each of the other 3 countries, leaving a spare color for C.

(6) (Digression) Our basic starting point for the proof fails for the torus, for
which we only can show that some country has 6 or fewer neighbors. There
is an example of such a map where every country has 6 neighbors. For
surfaces of genus 1, such as the torus, one can still apply this method to
prove a 6-color theorem.

(7) Likewise, the same argument as in (4) enables one to assume there is no
cycle of 3 countries.

To prove the 4-color theorem, one seems to need an elaborate method of re-
drawing maps to change configurations to better configurations. (This is called
“discharging.”) Maps which cannot be so altered are called “unavoidable config-
urations,” and these often require checking by the computer. Even worse, the
computer seems to be needed to perform the discharging procedure.
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Hilbert

David Hilbert (1862-1943) was a colorful figure. After finishing his thesis (under
Hurwitz and Lindemann)(and defending it together with questions in mathemat-
ical physics and philosophy) Hilbert moved to Leipzig to study with the master
geometer, Felix Klein.

Hilbert’s first great breakthrough was in invariant theory. Recall that the deter-
minant and trace of an n×n matrix A remain unchanged under a change of indices,
and more generally, if fA = λn +

∑n
i=1 αiλ

i is the characteristic polynomial, then
each αi remains unchanged. (Note that a1 = − tr(A) and αn = (−1)n det(A).)
Since a change of indices corresponds to an action of a permutation, we could de-
fine an action of the permutation group Sn on the algebra of matrices, and define
the Sn-invariants to be those scalar quantities which are independent of the action
of Sn.

Newton’s formulas imply that any Sn-invariant of a matrix A belongs to the
algebra generated by α1, . . . , αn. More generally, we say that an algebra over a
field is affine if it finitely generated as an algebra. One could define G-invariants of
an algebra for any subgroup G of Sn, and ask whether the algebra of invariants of
an affine integral domain is affine. This had been the major question in invariant
theory at the end of the nineteenth century, and many papers had been written for
individual groups, by constructing the generators.

In 1888 Hilbert proved his famous “Basis theorem,” that any ideal of a ring of
polynomials in finitely many indeterminates is finitely generated, which yields a pos-
itive answer to this question. Hilbert’s proof was remarkable in that it was totally
nonconstructive, and did not give a clue as to how to find the explicit generators.
As such, it created a scandal, (Gordon’s famous reaction: This is not mathematics
- it is theology!) But Klein backed him, and a new concept of algebra began to
emerge. Soon thereafter, Hilbert proved his famous Nullstellensatz, and when Klein
became director of Gottingen, Klein brought Hilbert along in 1895. Hilbert turned
to number theory, and wrote his famous tract which included Hilbert’s extension
of Gauss reciprocity and many important algebraic results. Then he turned to ge-
ometry and cleaned up Euclidean geometry in his book Foundations of Geometry
(1899), describing the axiomatic system with such great precision as to permit the
understanding of nonEuclidean geometries. Thus, Hilbert’s work before 1900 led
him to question the nature of the axiomatic framework of mathematics.

Hilbert was to produce more great work after 1900 (Solution of Waring’s problem
in 1908, Hilbert spaces, Hilbert Nullstellensatz, and so forth), and as his influence
in Gottingen increased, Hilbert helped make it the mathematical center of the
world. He worked for its mathematical welfare, overcoming discriminations of all
sort. (He brought in Grommer, a very religious Jew, and Emmy Noether, the first
female professor in Gottingen. (Hilbert’s famous comment to silence those who
were shocked that a woman should enter the halls of the Senate - The Senate is
not a bathhouse.) But even Hilbert could not protect his beloved Gottingen from
the Nazi onslaught. When the Nazi minister of education asked Hilbert in 1933
how Gottingen was faring now that Gottingen had been cleansed of Jews, Hilbert
replied, ”Gottingen is now cleansed of mathematics.” By now Hilbert was over 70,
and stayed in Germany until he died, but he kept his moral integrity intact.

Hilbert’s problems (Paris meeting, 1900). Classical mathematics (including
calculus) had largely run its course by the end of the nineteenth century. The
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problems of antiquity had been solved modulo a question about Fermat primes,
the different non-Euclidean geometries were in place, and calculus (even of several
variables) was on a firm footing. Accordingly it was natural to request Hilbert,
acknowledged at age 38 to be the greatest living mathematician at that time, to list
problems for the upcoming century. If his objective was to stimulate research into
the twentieth century, Hilbert was immensely successful - most of his problems were
answered at least in part (details given in square brackets in the list), and indeed
paved the way for much of the research of the twentieth century. Skipping the
four-color problem, Hilbert started his address by acknowledging the still unsolved
Fermat’s Last Theorem, but did not discuss it further because it was so well known.
Hilbert proceeded with the following list:

(1) Continuum hypothesis [Cantor’s problem, solved by Paul Cohen].
(2) The consistency independence, and effectiveness of the axioms of set theory.

[Answered by Gödel with his compactness and incompleteness theorems]
(3) Can any two tetrahedra of the same base and same height be subdivided

into congruent tetrahedra, or combined with congruent tetrahedra to form
two polyhedra which can be subdivided into congruent tetrahedra? [Solved
by Dehn]

(4) What geometries can be defined using the sole axiom that the shortest
distance between two points is a straight line?

(5) Is every locally Euclidean group of transformations a Lie group?
(6) Axiomatic development of the laws of physics.
(7) Transcendence of various numbers, for example eiπx when x is irrational

algebraic. Or geometrically, in an isosceles triangle if the ratio of angles is
irrational algebraic, then is the ratio of the sides transcendental? [Gel’fond-
Schneider Theorem : If a, b are algebraic and b is irrational, then ab is not
algebraic.]

(8) Riemann conjecture: Do all the complex zeroes of the Zeta function have
real part 1

2? How does this affect the distribution of prime numbers?
[Deligne proved it for varieties over a finite field, but this remains the most
significant open problem on the list.] Is ζ(3) transcendental?

(9) Can quadratic reciprocity laws be generalized to prime powers?
(10) Is there an algorithm to solve diophantine equations? [No, answered by ??]
(11) Is there a method of solving quadratic equations in several indeterminates

(rational solutions)? [Yes, answered by E. Artin]
(12) Can one generalize Kronecker’s Theorem that any abelian number field can

be obtained by adjoining roots of 1? [Inspired by Jugendtraum (letter from
Kronecker to Dedekind in 1880.) This relates to elliptic curves.]

(13) Are there polynomials of degree 7 which are impossible to solve by means of
continuous functions in two parameters? (Specifically x7+ax3+ bx2+ cx+
1 = 0.) [Degree 5 and 6 functions can be reduced by means of Tschirnhaus
transformations; answer given by ]

(14) If R = F [a1, . . . , an] is an affine domain with field of fractions K, and if k
is a subfield of K then is R ∩ k affine? In particular what if k is the fixed
subfield of K under a group of automorphisms? [Returning to his triumph
in invariant theory from his youth, Hilbert formulated this wide-reaching
generalization. There are counterexamples of Nagata (1959).]

(15) Put Schubert’s enumerative calculus (of geometric configuations) on a rig-
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orous footing. [Schubert made some amazing claims which have never been
verified or disproved. For example in 1879 Schubert claimed that there are
666,841,048 quadric surfaces tangent to 9 given quadric surfaces in space.]

(16) Topology of algebraic curves and surfaces
(17) Can every positive definite form be expressed as the quotient of two qua-

dratic forms? [Answered in the affirmative by E. Artin (1926) using the
Artin-Shreier theory of real closed fields.]

(18) In n-dimensional Euclidean space is there only a finite number of different
groups of motions with a compact fundamental region? [ Bieberbach (1910)
proved this, giving rise to theory of tiling. Heesch found tiling by a polygon
which is not a fundamental domain.]

(19) Are the solutions to regular problems (i.e. Lagrangians) in the calculus of
variations always analytic?

(20) What are the boundary values of elliptic partial differential equations?
(21) The existence of linear differential equations having prescribed monodromic

group.[Deligne (1970) solved it.]
(22) Uniformization of analytic relations by means of automorphic forms. [An-

swered in the affirmative by Poincaré and Koebe (1913).]
(23) Extensions of the calculus of variations [This problem is the one most de-

veloped in his article, but less explored in the literature.]

Hilbert’s third problem. This problem of Hilbert was solved by Dehn (1900)
almost as soon as Hilbert posed it, although [Bo] claims that the first readable
proof was written by Kagan (1903).

The 2-dimensional case may well have been known by the ancients, who certainly
knew how to cut a triangle into pieces which reassemble to a rectangle of the same
base and half the height, thereby yielding the area of the triangle as 1

2bh. We
say two polygons are equidecomposable if they can be subdivided (through a finite
number of cuts) into a finite number of congruent polygons; here is a proof in stages
that any two polygons having the same area are equidecomposable:

(1) Any two rectangles having the same area are equidecomposable. (Proof:
Superimpose them and then run a diagonal from the top left to bottom
right. One thereby obtains a common shape (pentagon) plus two triangles in
each rectangle. We need to show that they are congruent pairwise. Indeed,
the two pairs of triangles are similar. Thus it suffices to prove that the areas
of the corresponding similar triangles are equal. Since the sum of the areas
is the same, it suffices to prove that the area S1 of the upper left triangle
T1 equals the area S2 of the lower right triangle T2, or equivalently, letting
S3 be the area of the large lower left triangle, we need S1

S3
= S2

S3
. If the

two rectangles have respective bases bi and heights hi, i = 1, 2, then the
triangle T1 has height h2 − h1 and the triangle T2 has base b2 − b1. Given
b1h1 = b2h2 it follows that

b2 − b1
b2

= 1− b1
b2

= 1− h2

h1
=

h1 − h2

h1
,

so
S1

S3
=

(
b2 − b1

b2

)2

=

(
h1 − h2

h1

)2

=
S2

S3
,
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and thus T1 and T2 are congruent (and likewise for the other pair of tri-
angles). Thus triangle can be slid down, and the other moved to fill the
gap.

(2) Any triangle is equidecomposable to a rectangle. Run a parallel halfway up
the base, and slice the upper triangle along the height. This will enable you
to put them together in a rectangle.

(3) Any two polygons of the same area are equidecomposable. Indeed, slice
one into triangles, and rearrange it into rectangles; then each rectangle is
equidecomposable to a rectangle with a given base, say 1, by (1), so we can
put them together to one big rectangle; we conclude with (1) again.

We have proved that any polygon can be cut and reassembled to a rectangle
with base 1 and some height h; then define the area to be h. This definition of area
is fast, intuitive, and does not depend on any limit process. Thus, it would be nice
to have an analogue in three dimensions, which would enable us to define volume
formally by cutting up a solid into pieces that can be reassembled to a rectangular
solid whose base is a square of legnth 1; the volume would be defined to be the
height of the solid.

Hilbert suspected that there is no such decomposition in higher dimensions,
based on the evidence that in the preceding 2000 years nobody had produced a
direct computation of the volume of tetrahedra; all proofs use limits.

Bricard had proposed a theorem in 1896 which would have yielded the solution
to Hilbert’s third problem. However there was an unfilled gap, so the problem was
posed.

Dehn’s negative solution to Hilbert’s third problem involves the two most basic
platonic solids – he proved that the cube and the regular tetrahedron (triangular
pyramid) of the same volume are not equidecomposable. His proof relies on the
clever use of an invariant associated to any finite collection of polyhedra. Recall
that the dihedral angle at the edge forming the intersection of two planes is the
angle formed by the two normal vectors taken in the planes. This is clearly the
same at any point of the edge. The dihedral angles of the cube are all π

2 . As we
shall see, the dihedral angle θ of the edge of a regular tetrahedron is not a rational
multiple of π. This provides the basis for an invariant under equidecomposability.

Here is Dehn’s candidate. Given a Q-linear function f : R → R such that f(π) =
0, we define the Dehn function g (based on f) on a polyhedron A with sides ℓ1 . . . ℓp
and corresponding dihedral angles θ1, . . . , θp to be

∑
ℓif(θi). It is not hard to see

that if a polyhedron A is cut into two polyhedra A1 and A2, then the Dehn function
on A is the sum of the Dehn functions on A1 and A2. This is seen by examining
the two possibilities for a cut.

CASE I. The cut is made through an edge (not at a vertex). The contribution
at the edge ℓi (cut say into edges ℓi1 and ℓi2) was originally ℓif(θi) and after the
cut is the sum of ℓi1f(θi) and ℓi2f(θi), which is (ℓi1+ ℓi1)f(θi), the same as before.
On the other hand, any new face in A1 has an opposite face at A2, so in computing
the change in the Dehn function one has merely added terms

ℓf(θ) + ℓf(π − θ) = ℓf(π) = 0.

This proves that g(A) = g(A1) + g(A2).
CASE II. The cut is made through a vertex. Now the original dihedral θi is

divided into θi1 and θi2, whose contributions ℓif(θi1) and ℓif(θi2) sum to ℓif(θi),
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the original contribution from that edge. The contributions from new edges cancel
as before, so again we get g(A) = g(A1) + g(A2).

For example, since the cube has Dehn number 0 but is the disjoint union of two
congruent right tetrahedra (whose angles are all π

2 and π
4 ), we see the Dehn number

of the right tetrahedron is 0.
An easy induction shows that the Dehn function is additive, in the sense that

if there is a decomposition A =
∑

Ai then g(A) =
∑

g(Ai). Consequently if A,B
are equidecomposable polyhedra then g(A) = g(B). We are more interested in the
contrapositive:

Dehn’s Theorem. Suppose A,B have different values under a Dehn function.
Then A,B are not equidecomposable.

Corollary. Any Platonic solid P whose dihedral angle θ is not a rational multiple
of π, is not equidecomposable with the cube.

Proof. Pick a Q-linear function f sending π → 0, θ → 1. Then g(P ) = eℓ ̸= 0,
where e is the number of edges and ℓ is the length of each edge. But if P were
equidecomposable with the cube, then one would have g(P ) = 0.

Thus, we need to determine the dihedral angle of the regular tetrahedron. Recall
that the regular tetrahedron is formed by equilateral triangles, each having edge

of length 1. Then each median in the base has length
√
3
2 , so the base has area

B =
√
3
4 . The altitude from the top meets the three medians 2

3 of the way across,

so is part of a right angle triangle whose base is
√
3
6 and whose hypotenuse is

√
3
2 ,

so the dihedral angle θ of each edge of the regular tetrahedron has cosine

√
3

6
/

√
3

2
=

1

3
.

It remains to prove the following number-theoretic observation:

Lemma. For θ = arccos 1
3 as above, θ

π is not rational.

Proof. Otherwise, say θ
π = p

q for p, q integers, q > 0. Then

cos qθ = cos(pπ) = ±1 sin qθ = sin(pπ) = 0.

But on the contrary, we claim by that there are integers aq and bq congruent
respectively to (−1)q−1 and (−1)q (modulo 3) such that cos(qθ) =

aq

3q and sin(qθ) =
bq

√
2

3q . This would show that cos qθ cannot be ±1.
The proof of the claim is by induction on q. Indeed,

cos(θ) =
1

3
, sin θ =

√
1− 1

9
=

2
√
2

3
.

Thus, for q = 1, a1 = 1 and b1 = 2 ≡ −1 (mod 3).
One can perform the general inductive step rather easily, using the formulas for

cosines and sines of sums of angles, which can be derived at once from De Moivre’s
formula. Note that

cos((q+1)θ)+i sin((q+1)θ) = ei(q+1) = eiqei = (cos(qθ)+i sin(qθ))(cos(θ)+i sin(θ))
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= (cos(qθ) cos(θ)− sin(qθ) sin(θ)) + i(cos(qθ) sin(θ) + cos(θ) sin(qθ)).

Matching real and imaginary parts yields the familiar formulas

cos((q + 1)θ) = cos(qθ) cos(θ)− sin(qθ) sin(θ);

sin((q + 1)θ) = cos(qθ) sin(θ) + cos(θ) sin(qθ).

By induction, we may assume that cos qθ =
aq

3q and sin qθ =
bq

√
2

3q implying

cos(q + 1)θ =
aq − 4bq
3q+1

, sin(q + 1)θ =
(2aq + bq)

√
2

3q+1
.

Thus,
aq+1 = aq − 4bq ≡ aq − bq ≡ bq ≡ (−1)q (mod 3);

bq+1 = 2aq + bq ≡ aq ≡ (−1)q+1 (mod 3),

as desired. In particular, aq and bq are never 0.

Thus the dihedral angle θ = arccos 1
3 is linearly independent of π, and we con-

clude that the regular tetrahedron and cube are not equidecomposable.
In fact, Sydler (1965) proved that two polyhedra A,B of the same area are

equidecomposable iff for every Dehn function f we have g(A) = g(B). [Bo] uses a
simpler proof of Jessen (1968), but which still is quite difficult.

Hilbert’s second problem - Foundations of set theory. Already by Hilbert’s
time the more refined techniques of mathematics were beginning to lead to a dis-
turbing number of paradoxes. For example, surely there should be some largest
level of infinity, but Cantor’s work shows this is impossible in the mathematical
framework. Thus Hilbert’s second problem could be viewed as a plea to the mathe-
matical community to establish foundations for mathematical before the impending
earthquake. (Little did he know that this work would bring on the earthquake.)

Peano gave postulates for N which serve as the basis for mathematical induc-
tion, but in the early 20th century this was put in the framework of more general
axiomatic system for set theory (Hilbert-Bernays- Zermelo-Fraenkel- von Neumann-
Gödel). =, ∈, { : } are primitives. Reversing our initial intuition, we say a
set is a member of some class. Thus the universe U = {x : x = x} is not a set, but
all members of U are sets. We permit the usual operations on classes ( ,∩,∪, ∅),
and the axiom of subsets. One can stipluate that if S is a set then so is its power set
P(S), which is the set of subsets of S, also denoted 2S . One can define an ordered
pair (x, y) as the set {x, {x, y}}, and thus define a relation as a set of ordered pairs,
and a function as a relation f which is single-valued (i.e. if (x, y), (x, z) ∈ f then
y = z.

Since 2ℵ > ℵ, we have an infinite number of infinite cardinals. In fact this yields
Cantor’s paradox: There are “too many” infinite cardinals to form a set (since 2 to
its power would be greater.)

An easier way to state this difficulty is via Russell’s paradox (1901), which he
discovered while considering Cantor’s paradox: Call a set extraordinary if it is a
member of itself; otherwise it is ordinary. Is the set of ordinary sets ordinary or
extraordinary? (This paradox shows that you cannot name a set as a collection of
certain elements, using self-referencing.)
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Bertrand Russell (Bertrand Arthur William Russell, 3rd Earl Russell, 18 May
1872 2 February 1970) went on to write Principia Mathematica (three volumes
– 1910, 1912, 1913) with Whitehead, but always felt something was missing; his
paradox indicated that self-referential sentences could throw in a monkey-wrench.
Frege ignored this and wrote tomes about foundations of mathematics, using self-
references. This led Russell to write his famous letter to Frege, saying how much
he appreciated the latter’s book, but that he had one little question to ask:

In a small town, a barber shaves all those and only those who do not shave
themselves. Russell’s question: Who shaves the barber?

One way to avoid intrinsic contradictions is to restrict one’s definition of sets.
The ZF axioms lead us to define the finite ordinal numbers. We start with the finite
ordinals:

0 = ∅, 1 = {∅} = {0}, 2 = {{∅}, ∅} = {1} ∪ 1, . . . ,

. . . , n+1 = {n} ∪ n, . . .

To proceed further we need

Axiom of infinity. There is a nonempty set S containing 0 satisfying x∪{x} ∈ S
whenever x ∈ S.

Zermelo-Frankel axioms.
In order to avoid Russell’s paradox, Zermelo (1908) and later A. Fraenkel (1922-

23) laid forth the set-theoretic axioms on which most mathematical proofs are
based. Here are the ZF axioms.

(1) Set existence (There is a set)
(2) Extensionality (Two sets with the same elements are equal)
(3) Foundation = Regularity axiom
(4) Pairing (For any two sets there is a set of two elements, whose members are

precisely the two original sets.)
(5) Union of sets is a set
(6) Comprehension Scheme (Any subclass of elements of a set satisfying a given

formula defines a subset.)
(7) Replacement Scheme: Any class of elements defined by a function consti-

tutes a set.
(8) Power set (defined above).
(9) Axiom of infinity .

The key to bypassing Russell’s paradox is the following:

Regularity axiom. ( Skolem (1923) and von Neumann (1925)).
For any S ̸= ∅ there is x ∈ S such that x ∩ S = ∅.

Proposition. S /∈ S for all sets S.

Proof. Consider the singleton {S}.

Corollary. For any sets S, T one has either S /∈ T or T /∈ S.

Proof. Consider the doubleton {S, T}.

It follows at once that ∪n is a subset of this set, which is called ω. This is the
first infinite ordinal, and we can keep on going. In general, a set S is an ordinal if
∈ is transitive (i.e., the member of a member is a member).
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There are two types of ordinals: Given an ordinal ω we define the successor
ordinal ω+ = {ω} ∪ ω. (All finite ordinals, defined above, are successor ordinals.)
Also, we define ordinal to be a limit ordinal if it is the set of ordinals less than itself.

It is clear that the ordinals are well-ordered, insofar as each ordinal is a member
of each subsequent ordinal, and not vice versa.

The collection of ordinals is not a set. (If it were, then it would be an ordinal,
but it would then be greater than its successor, which is impossible.)

Transfinite induction means that a property is proved for an ordinal ω if it can
be proved for 0, and given the property on a given set of ordinals it is also true for
their successor and union (i.e., the limit ordinal formed from them). Indeed, this
is immediate from the definition of ω.

Gödel.
When Russell posed his famous paradoxes, although it shook up mathematicians,

they seemed to be metamathematical and perhaps could be glossed over by strict
language which forbad self-referencing. But the man who almost singlehandedly
remade logic, over a space of 10 years, was Kurt Gödel (1906–1978), born in Brno,
Austria-Hungary (which became Czechoslovakia).

Gödel’s completeness theorem (1929). Any consistent infinite system of axioms
has a model of not greater cardinality, i.e., some system that satisfies all the given
axioms without a contradiction.

Consequently, if a statement p cannot be proved from S, there is a model satis-
fying both S and the negation of p, i.e., in which p is false.

Nonetheless. In 1930 Gödel proved his two incompleteness theorems.
The first is that for any set of axioms concerning arithmetic, there always will

be a sentence about the natural numbers that can be neither proved nor disproved.
The idea is very simple. Since the set of symbols used in formulating sentences is
finite, one can enumerate them (say, alphabetically). Some of these sentences can
be proved, and others cannot.

Gödel’s incompleteness theorem goes back to the Greeks’ knowledge that lan-
guage necessarily contains internal contradictions. (“This statement is false.”) One
needs to modify it to ”This statement is unprovable.” Gödel succeeded in formu-
lating such a paradox in arithmetic.

In particular, one can enumerate the sentences in one free variable x which are
provable or disprovable as f1(x), f2(x), · · · , to each of which we assign a proof
number. For any such sentence f we assign the sequence (a1, a2, a3, . . . ) where
an = 1 if f1(n) is true and an = 0 if f1(n) is false.

Consider the sentence corresponding to the sequence (b1, b2, . . . ) where bn =
1 − an; i.e., bn = 0 if and only if an = 1. This sentence cannot appear on the list
as a provable or disprovable sentence, since otherwise it would be some fn, and the
n-position would be 1− bn, which is impossible.

Gödel’s second incompleteness theorem goes even further and asserts that one
cannot prove that any axiomatic system containing all sentences holding in the
arithmetic of natural numbers is consistent.

Although not Jewish, Gödel was attacked by Nazis for looking like a Jew and
sympathizing with them, and immigrated to the US in 1940. Already in the 1930’s
Gödel had repeatedly visited the Institute for Advanced Studies in Princeton, and
inspired the work to be described now.

Recursive functions and computability.
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These difficulties arise from self-referencing. This still left open the question
of treating concrete questions in arithmetic in a stricter framework which does not
permit self-referencing, a subject of intense investigation in Princeton in the 1930’s.
First one has to specify which sentences are admissible. These were proposed by
Church (1903-1995), but, building on work of Herbrand, Gödel preferred a different
definition, now known as recursive functions. (Defining f : N → N in terms of values
of a given finite number of functions h1, . . . , hm already defined on 1, . . . , n − 1).
These definitions were proved in 1935 by Church and his students Kleene (1909-
1994) and Rosser (in Princeton) to be equivalent, leading to Church’s Thesis that
all meaningful assertions in arithmetic could be formulated in these terms.

A set is recursively enumerable if it is the range of a recursive function. This
could be interpreted as the set of ”solutions” to a certain mathematical system,
so it is important to know whether or not a certain number m is contained in a
recursively enumerable set S. The problem is that although as soon as we display
m = f(n) we know m ∈ S, what happens if m /∈ S? We only find out after an
infinite number of steps. Thus we define S to be recursive if both S and N \ S
are recursively enumerable. For such a set S, for any natural number n, we can
determine after a finite number of steps whether or not n ∈ S.

Thus the provability of statements in arithmetic is seen to be similar to the
question of whether or not all recursively enumerable sets are recursive.

However, one still has the assertion, discovered by the Princeton group in 1934:

Theorem. There exists a recursively enumerable set which is not recursive.

Indeed, one can list the recursive functions as f1, f2, . . . , say first according to
the physical length of the sentence used to define them, and then alphabetically.
Now define the function f by f(n) = fn(n). Let S be the range, i.e., m ∈ S iff
m = fn(n) for some n. This set is recursively enumerable. We claim S cannot be
recursive. For otherwise there would be a recursive function g such that m /∈ S
iff m = g(t) for some t. Write g = fn. Then fn(n) ∈ S by definition of S, but
fn(n) = g(n) /∈ S, by definition of g, contradiction.

This proof does not contain self-referencing, since there is a perfectly reasonable
algorithm for listing the recursive functions and then defining f accordingly. The
same idea was discovered independently in 1936 by Turing (1912-1954), when he
was going through the presumably routine process of trying to define the essence
of an artificial calculating machine. (He defined the idealized “Turing machine,”
which consisted of a finite number of states and the ability to move a tape back and
forth and make or erase marks depending on the state. Intuitively, the provable
statements should be those which can be verified by a suitably programmed Turing
machine, but he demonstrated along the lines above that there always will be
true result that cannot be programmed. Today Turing machines are used in most
expositions on recursiveness.

Turing’s life was also greatly affected by the World War. He was leader of the
team that succeeded in decoding the German Enigma machine (1938). However,
his personal life did not match the norms encoded into British law, and he was
humiliated to the point that he finally poisoned himself.

Axiom of Choice.
Even before Gödel was showing that any system of axioms is incomplete, ques-

tions were being raised as to which set-theoretic axioms depend on others. A choice
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function is a function f which satisfies f(x) ∈ x for every member x of the domain
of f . One axiom which was shown to be independent of the others is the following:
For any set S there is a choice function with domain S, in other words a function
f : S → ∪Si sending Si to an element of Si, for each i ∈ I.

This might seem self-evident, but has some far-reaching consequences.

Theorem. Any set S is in 1:1 correspondence with an ordinal.

Proof. By transfinite induction one can build a 1:1 function from each ordinal into
S, so if one could proceed forever one would have a 1:1 function from all ordinals to
S, contrary to the fact the the collection of ordinals is not a set. Thus this process
must stop, which means for some ordinal our 1:1 function is onto.

For example, we say a set is well-ordered if every subset has a minimal element.
Any ordinal obviously is well-ordered, so the axiom of choice implies that every set
is well-ordered (with respect to an appropriate order).

Another application: a totally ordered set is also called a chain.

Theorem. For any set S, any subchain is contained in a maximal subchain of S.

Proof. Order the elements by means of the previous theorem; keep on adding one
element at a time (using a choice function) until one is done.

Immediate consequences:

(1) Banach maximality principle. If every chain in a collection of sets S is
bounded (under containment) by a member of S, then S contains a maximal
set.

(2) minimality principle. If every chain in a collection of sets S is bounded
below by a member of S, then S contains a minimal set.

(3) Kuratowski lemma. Every chain in a partially ordered set is contained in a
maximal chain.

(4) Zorn’s lemma. If every chain in a partially ordered set has an upper bound,
then the set has a maximal element.

(5) Tarski proved that |S|2 = |S| for all infinite sets S implies the axiom of
choice, but Sageev (1973) showed that 2|S| = |S| does not imply the axiom
of choice.

(1) implies (3) was discovered by Zermelo (1908). In fact, during the subsequent
20 years, it was seen that the Hausdorff maximality principle implies the axiom of
choice, so that we have the following additional equivalence:

(1) Axiom of choice
(2) Each set can be well ordered.
(3) Hausdorff maximality principle

Hilbert’s first problem - The continuum hypothesis. Paul Cohen (1958?)
proved this is independent of the other axioms of set theory, by building one model
where it holds and another in which it does not. His method, which involves con-
structing models whose ordinals have varying properties (and thus the continuum
hypothesis holds in one such model but not in another), is called forcing, and revo-
lutionized mathematical logic in the mid-twentieth century. Another burst in this
field was provided by nonstandard analysis, involving infinitesimal quantities which
finally justified Leibniz’ approach to calculus.
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Hilbert’s tenth problem. The failure of algorithms in many aspects of arith-
metic led Post in 1944 to suspect that there is no algorithm to solve Diophantine
equations. First of all, in view of Lagrange’s theorem that every natural number is a
sum of squares, every Diophantine equation over Z can be reduced to a Diophantine
equation over N, so it suffices to consider Diophantine equations over Z.

Crossing the barrier of the Iron Curtain, Martin Davis, Julia Robinson, and Yuri
Matiyasevich (1954) proved that every recursively enumerable set is Diophantine.

If there were an algorithmic method to solve Diophantine equations, then there
would be an algorithmic method to check whether or not an element is in a recur-
sively enumerable set, i.e., if the recursively enumerable set is recursive, which is
impossible. Hence Hilbert’s tenth problem has a counterexample!

Review of the independence of various assertions in set theory.

(1) Axiom of Infinity
(2) Axiom of Choice (equivalent to the well-ordering of the ordinals, and to

|S|2 = S)
(3) Continuum hypothesis
(4) Gödel’s incompleteness theorem (or equivalently, the existence of non-solvable

Diophantine equations)
(5) Turing machine (recursively enumerable versus recursive )

The age of paradoxes

The 19th century had witnessed the erection of some of the great edifices of
mathematics, groups and matrices. This development continued throughout the
20th century, with ever more sophisticated techniques pushing methods further
and further. However, by the beginning of the 20th century, some of the structure
had begun to crack at the foundations. We already noted the paradoxes of Cantor
and Russell and how they were bypassed. However, deeper paradoxes emerged in
the coming decades.

Geometric paradoxes. The axiom of choice is used so often in mathematics that
it is hard to imagine how we could live without it. Nevertheless, if we accept it we
have to live with at least one result which would make us uncomfortable: Things
began to unravel when Hausdorff (1912) partitioned the 2-sphere into two parts
each of which is congruent to the original sphere. This was refined to:

Banach-Tarski paradox. Any sphere can be cut with a finite number of cuts into
parts which can be reassembled to a sphere of twice the size.

The underlying idea of the paradox was an observation which can be traced back
to Galileo, that one can divide the set of natural numbers N into two sets each in
1:1 correspondence to N, namely the odd integers and the even integers. (In fact,
Galileo’s observation does not rely on the axiom of choice, and the true nature of
the paradoxes might lie in the fact that nature does not act pointwise.)

Since Klein had reformulated geometry in terms of actions of groups on sets, it
remained to make this partition compatible to group actions. Recall a group action
on a set S is defined formally as an operation G × S → S satisfying 1s = s and
(ab)s = a(bs) for a, b ∈ G, s ∈ S. Intuitively, the elements of the group act as 1:1
transformations on the set S.
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Suppose a group G acts on a set S. We say that a subset E of S is G-paradoxical
if there are disjoint subsets Ai,j of E and σij ∈ G such that

S = ∪iσi1(Ai1) = ∪iσi2(Ai2).

Lemma. Z is paradoxical under the set of 1:1 transformations from Z to itself.

Proof. (i) We partition 2Z into 4Z ∪ 4Z+2, and partition 2Z+1 into 4Z+1 ∪ 4Z+3.
Now there are transformations of Z sending 4Z to 2Z, or sending 4Z+2 to 2Z+1,
or sending 4Z + 1 to 2Z, or sending 4Z + 3 to 2Z + 1, so we have the paradoxical
action. �

A different sort of example: Any group G acts on itself by taking the group
operation on the left.

Incidentally, the fact that an arbitrary infinite set S is paradoxical under the
group of bijections means 2|S| = |S|.
Proposition. The circle S1 is countably paradoxical under the group of rotations.

Proof. Let σm denote the rotation by m radians. Say two points are equivalent
if one can be rotated to the other by some σm. Let A = {σm : m odd} and
B = {σm : m even}. Define a set S0 by choosing one element from each equivalence
class of S1. Then S1 = ∪σiS0 = AS0 ∪BS0, but

S1 = ∪σiS0 = ∪σiσ
−1
2i−1(σ2i−1S0) = ∪σiσ

−1
2i (σ2iS0).

Although this paradox relied heavily on the axiom of choice, one can also obtain
paradoxes without it. Let us isolate the principle behind the next set of paradoxical
actions. The free semigroup is the semigroup of formal words, where multipli-
cation is juxtaposition. We say a the free semigroup A on x, y acts disjointly on a
point s of S if for each v, w ∈ A we have

xvs ̸= yws

(Thus the free semigroup acts disjointly on itself.)

Proposition. Suppose a group G contains a free semigroup A acting disjointly on
a point s of set S. Then the action of G on As is paradoxical.

Proof. As = x−1xAs = y−1yAs.

Theorem(Sierpinski-Mazurkiewicz Paradox). The real plane R2 contains a
nonempty paradoxical subset (under isometries).

Proof. Take u = eiθ transcendental. The rotation z 7→ uz and the translations
z 7→ z + 1 generate a free semigroup acting disjointly on the origin. (To see
this, write x for the rotation z 7→ uz and y for the translation z 7→ z + 1. Let
m1, n1,m2, n2, . . . ,mt to denote that one applies x mt times, and then y nt−1

times, and then x mt−1 times, and then y nt−2 times, and so forth. (We do not ap-
ply y at the beginning since y(0) = 0.) Then 0 is sent to mt, and then to untmt, and
then to untmt+mt−1, and then to unt−1(untmt+mt−1) = unt−1+ntmt+unt−1mt−1,
and so forth. Thus m1, n1,m2, n2, . . . ,mt sends 0 to

un1+···+nt−1+ntmt + un1+···+nt−1mt−1 + · · ·+m1.

Since u is transcendental, these are all different, corresponding to polynomials in u
which have constant term m1, so the action on 0 is disjoint. �
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Corollary. For any Lebesgues measure on R(2) there is some unmeasurable set.

Note this paradox did not rely on the axiom of choice. This idea can be extended
to get the Banach-Tarski paradox. First note that the group of rotations SOn has
a free subgroup G generated by two matrices

ϕ1 =

 1
3 −2

√
2

3 0
2
√
2

3
1
3 0

0 0 1

 ; ϕ2 =

 1 0 0
0 1

3 − 2
√
2

3

0 2
√
2

3
1
3


Indeed, to check that no nontrivial word w in ϕ1, ϕ2 equals 1, after conjugating by
a suitable power of ϕ2 and ϕ1, one may assume the word ends in ϕ1. But then
w(1, 0, 0) = 1

3k
(a, b

√
2, c) for some k, with b not divisible by 3. �

(The first such construction was found by Hausdorff(1914). This example is due
to Swierczkowski.) In fact Tits (1972) proved a deep theorem that any subgroup
of GLn is either solvable or contains a free nonabelian subgroup.

Theorem(Hausdorff Paradox). There is a countable subset D ⊂ SO3 which
when removed from S2 yields a SO3-paradoxical set.

Proof. Each rotation in the free subgroup G (defined above) of SO3 has exactly
2 fixed points, and the free group is clearly countable since it is generated as a
semigroup by four elements. Taking D to be the set of all of these points, it is clear
that G acts freely on S2 \D, so S2 \D is SO3-paradoxical �

Thus the Banach-Tarski paradox will be achieved by reducing this countable
set D to the empty set. This is done by using some of the ideas in Hilbert’s 3rd
problem.

IfG acts on a set S and A,B ⊂ S we say B is G-equidecomposable to A if A,B can
be partitioned into the same finite number of G-congruent pieces, i.e. A = ∪n

i=1Ai,
B = ∪n

i=1Bi, and σiAi = Bi for 1 ≤ i ≤ n. Clearly G equidecomposability is
an equivalence relation (although more pieces may be required), and any set G-
equidecomposable to a G-paradoxical set is also G-paradoxical.

We need a classical result from set theory.

Theorem(Banach-Shroeder-Bernstein). If A is G-equidecomposable to a sub-
set of B and B is G-equidecomposable to a subset of A then A is G-equidecomposable
to B.

Proof. Two Hilbert Hotel arguments intertwined. Let f : A → B and g : B → A
be the 1:1 maps producing the G-equidecomposability, and C0 = A, D0 = B, and
inductively Ci = g(Di−1) and Di+1 = f(Ci). Let A∞ = ∩iCi and B∞ = ∩iDi.
Clearly f(A∞) = B∞, so f restricts to a 1:1 onto function f∞ : A∞ → B∞.

Moreover f restricts to a 1:1 onto function fi : C2i \C2i+1 → D2i+1 \D2i+2 and
g restricts to a 1:1 onto function gi : D2i \ D2i+1 → C2i+1 \ C2i+2 whose inverse

we call f̂i : C2i+1 \ C2i+2 → D2i \D2i+1. Let Ai = Ci \ Ci+1 and Bi = Di \Di+1

for each i. Thus fi : A2i → B2i+1 and f̂i : A2i+1 → B2i are 1:1 and onto. Piecing

together these maps shows that the fi, f̂i together f∞ yield a 1:1 onto function, and
shows that A is G-equidecomposable (by dividing into three portions: the union of

the fi, the union of the f̂i, and f∞) to B. �
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Theorem. If D is a countable subset of S2, then the sets S2 and S2 \ D are
SO3-equidecomposable.

Proof. Since D is countable, there is a line ℓ through the origin that misses D.
Furthermore there is a rotation ρ around ℓ of some angle θ degrees such that

ρm(D) ∩D = ∅, for all m ∈ Z,

and thus ρm(D) ∩ ρn(D) = ∅ for all m,n. Taking D̄ = ∪i∈Nρ
i(D), we have ρ(D̄) ∩

D̄ = ∅, and thus

S2 = D̄ ∪ (S2 \ D̄) ∼ ρ(D̄) ∪ (S2 \ D̄) = S2 \D.

�

Using the radial decomposition, we conclude that the unit ball B \ (0, 0, 0) is
SO3-paradoxical, so we need to prove B \ (0, 0, 0) is SO3-equidecomposable to B.
Take a rotation in space of infinite order of (0, 0, 1

2 ) missing the origin, and use the
same tricks as above.

Although the proof above of the Banach-Tarski paradox requires an uncountable
number of rotations, one can prove S2 is paradoxical iff G has a free subgroup of
rank 2 (i.e. G nonsolvable). Unknown if can preserve Baire property.

Another paradox which seemed to arise in analysis is that Banach’s definition
of dimension sometimes gives fractional dimensions. (However, in the later 20th
century Mandelbrot exploited this fact to introduce the theory of fractals.)

New directions in the 20th century

Aside from his prophetic excursion into foundations, Hilbert dealt largely with
natural extensions of the nineteenth century. However, certain developments in the
twentieth century have brought on a new direction.

Computational mathematics

Computation had been featured in mathematics since the Babylonians, but took
on a new turn with the invention of computational machines. We discussed Turing
machines above, and despite the early philosophical setbacks, there have been huge
strides in computer science.

Turing invented cryptography (1938) and broke the German Enigma Machine.
Turing machine gave the theoretical basis for computer science.

Complexity theory.
Michael Rabin: Probabilistic algorithm for testing primes , based on testing

converse of Fermat’s Little Theorem, namely test whether an−1 ≡ 1 (mod p) for
enough tests for a such that the probability of p being nonprime is as small as you
want.

Udi Shamir: One-way codes. Namely take two large primes p1, p2 (found by
Rabin’s test) and take n = p1p2. Take some number m. Given a number a compute
some function (mod n) of m and a, linear in a, and publicize the result. Then only
someone who knows the factorization of n can reverse this function. Given some
number
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Big question: How can one factor a number? (If we could do this in polynomial
time in log n then we could crack the Shamir code.

Best idea for factorizing: If one can find a ̸≡ ±1 such that a2 ≡ 1 (mod n) then
a2− 1 = (a+1)(a− 1) is divisible by n, whereas gcd(a+1, a− 1)) = 2, so no prime
dividing n divides both a+ 1 and a− 1, implying

n = gcd(a− 1, n) gcd(a+ 1, n)

is a factorization of n. Thus one needs to find such an a, and the object is to
compute a large enough number of squares. Thus far nobody has succeeded in
a polynomial time (in log n) algorithm to do this. In 2002, Agrawal, Kayal, and
Saxena of the Indian Institute of Technology found an algorithm in polynomial time
(in log n) to check whether a number is prime, but there is no such algorithm to
factor n. Peter Schor found a polynomial time algorithm to factor a number using
quantum computers, once they are created. Thus again mathematics precedes its
scientific application.

The golden age of algebra.

Many of Hilbert’s problems were related to algebra, and the first half of the twen-
tieth century saw the formal development of algebraic structures: Abstract groups
(Burnside’s book (1903)), and other algebraic structures (Brauer, Krull,Noether,
Artin, Levitzki, Hasse, Witt, all from Germany, and Wedderburn, Jacobson, and
Albert from the USA.) The center of algebra started in Germany, especially in
Hilbert’s beloved Gottingen, but the Nazi boot left its strong imprint on mathe-
matics in the first half of the 20th century. The most obvious effect was to move the
center of mathematics from Europe (particularly Germany) to the US. Of special
note is Emil Artin (1898-1962), the solver of two of Hilbert’s problems (elaborate).
His wife was Jewish, so he left Germany for Notre Dame, and then taught in Indi-
ana and Princeton, finally returning to Germany at the end of his life, well after the
war. One of the few algebraists remaining in Nazi Germany was Hasse (1898-1979),
who although personally gracious to Jews such as Albert, accepted the Nazi regime
and suffered in his career after the war.

The algebraization of analysis was achieved by Cartan and Jacobson in the de-
velopment of Lie algebras.

The algebraization of geometry was achieved by Noether, Zariski

The next step, in the middle of the twentieth century was the categorization of
topology and algebra by Cartan, Eilenberg, Grothendieck, Gabriel

Algebraic topology.

Some of the most important developments of the twentieth century were in al-
gebraic topology. Smale (1950’s) proved the remarkable theorem that there is a
continuous deformation of the sphere to invert itself.

Atiyah-Singer index theorem.

Bott periodicity

Algebraic K theory. Quillen, Suslin, Bass,

Physicists classify low-dimensional manifolds. Witten, Donaldson
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The Millennium Problems

Hilbert’s problems having had such spectacular success in the twentieth cen-
tury, the Clay Mathematics Institute posed a list of problems in 2000, offering a $
1,000,000 prize for the correct solution of any of them.

(1) P versus NP
(2) The Hodge conjecture
(3) The Poincar conjecture (proven)
(4) The Riemann hypothesis
(5) YangMills existence and mass gap
(6) NavierStokes existence and smoothness
(7) The Birch and Swinnerton-Dyer conjecture

The Poincar conjecture.
Of the seven millenium problems, only the Poincar conjecture has been solved,

by Grigori Perelman. Henri Poincar conjectured that any space that locally looks
like ordinary three-dimensional space and which is connected, finite in size, and
lacks any boundary (a closed 3-manifold, and has the additional property that
each loop in the space can be continuously tightened to a point, is necessarily a
three-dimensional sphere. (The analogous result was known in higher dimensions.
Smale (1960) proved that the only manifolds homologically equivalent to spheres
are spheres themselves..)

Following a program of Richard Hamilton, Grigori Perelman presented a proof
of the conjecture in three papers in 2002 and 2003, for which he received the Mil-
lennium Prize on 18 March, 2010.
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