
THE DEFINITE INTEGRAL

The integral

a

b

f x d x is defined as lim
n®¥

 -

k = 0

n- 1

f ck xk - xk + 1

 , where

a = x0 < x1 < ... < xn- 1 < xn = b is a partition of a, b , xk < ck < xk + 1 , and the limit is

taken as n ® ¥ and the lengths of the subintervals determined by the partition
go to 0. If 0 £ f x for all x in a, b , then the integral represents the area
of the region bounded by the curve y = f x , the x -axis, and the lines

x = a and x = b . The sum -

k = 0

n- 1

f ck xk - xk + 1

 represents the total

area of the n rectangles with base

xk, xk + 1

 and height f ck , k = 0 ... n - 1 .

There are commands in MuPAD that allow us to draw the approximating rectangles and
calculate the corresponding sums for partitions in which the xk 's are evenly spaced and

the ck 's are either the left hand endpoints, the right endpoints, or the midpoints of the

intervals

xk, xk + 1

 determined by the partition.

As an example, we will let f x = sinx , a = 0 , and b = 2 .
reset():
A:=plot::easy(sin(x),x=0..2,Colors=[RGB::Red]):
B:=plot::easy([2,x],x=0..sin(2),Colors=[RGB::Red]):
T1:=plot::Text2d("Region R",[1.2,0.4]):
T2:=plot::Text2d("y = sin(x)",[0.4,0.8]):
plot(A,B,T1,T2);

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

Region R

y = sin(x)

First we compute the exact value of the area of the region and it's numerical
approximation.

J:=int(sin(x),x=0..2);float(J);
1 - cos2
1.416146837

We will initially approximate the area of the region using 5 rectangles; the partition
points will be equally spaced, and the ck 's will be the midpoints of the subintervals; thus the

partition points are 0, 0.4, 0.8, 1.2, 1.6 and 2, and the ck 's are 0.2, 0.6, 1.0, 1.4 and 1.8.

C:=plot::Integral(plot::Function2d(sin(x),x=0..2),5,
IntMethod=RiemannMiddle,

Color=RGB::Green,ShowInfo=[9,IntMethod,Integral,Error]):
plot(C,A);

RiemannMiddle: 1.425632060
Integral: 1.416146837
Error: 0.009485223

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

We now increase the number of rectangles.

C:=plot::Integral(plot::Function2d(sin(x),x=0..2),10,
IntMethod=RiemannMiddle,
Color=RGB::Green,ShowInfo=[9,IntMethod,Integral,Error]):
plot(C,A,Footer="10 Rectangles");

RiemannMiddle: 1.418509838
Integral: 1.416146837
Error: 0.002363001

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

10 Rectangles
C:=plot::Integral(plot::Function2d(sin(x),x=0..2),20,
IntMethod=RiemannMiddle,Color=RGB::Green,
ShowInfo = [9,IntMethod = "Value of the middle Riemann sum",
 Integral = "The exact numerical value",
 Error = "Difference",Nodes]):
plot(C,A,Footer="20 Rectangles");

Value of the middle Riemann sum: 1.416737070
The exact numerical value: 1.416146837
Difference: 0.000590233
Nodes: 20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

20 Rectangles
C:=plot::Integral(plot::Function2d(sin(x),x=0..2),50,
IntMethod=RiemannMiddle,Color=RGB::Green,
ShowInfo = [9,IntMethod = "Middle Riemann sum",
 Integral = "The exact numerical value",
 Error = "Difference",Nodes]):
plot(C,A,Footer="50 Rectangles");

Middle Riemann sum: 1.416241251
The exact numerical value: 1.416146837
Difference: 0.000094414
Nodes: 50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

50 Rectangles

THE FUNDAMENTAL THEOREM
OF CALCULUS

The definite integral of the function f (x) on the interval [a, b] is definite as

a

b

f x d x = lim

k = 1

n

f ck xk - xk - 1

where a = x0 < x1 < x2 < ... < xn- 1 < xn = b is a partition of [a, b] ,

 xk - 1 < ck < xk for k = 1...n, and the limit is taken as n ® ¥ and the lengths

of the subintervals [xk - 1 , xk] determined by the partition go to 0.

 The easiest and best way to evaluate the definite integral is by using the Fundamental
 Theorem of Calculus, which says that

a

b

f x d x = F (b) - F (a)

where F is any antiderivative of f (i.e., F '(x) = f (x)).

EXAMPLE
 Let f x = x cosp x , 0 < x < 2 p .
We will use partitions in which the xk 's are equally spaced and each ck is the

midpoint of [xk - 1 , xk]

First we illustrate the approximating rectangles using a partition with 20 points,
followed by computing the limit of the Riemann sum.

reset();
f:=x->x*cos(PI*x);
x ® x cosp x
A:=plot::easy(f(x),x=0..2*PI,Colors=[RGB::Red]):
C:=plot::Integral(plot::Function2d(f(x),x=0..2*PI),20,
IntMethod=RiemannMiddle,Color=RGB::Green,
ShowInfo=[9,IntMethod,Integral,Error,Nodes]):
plot(C,A,Footer="20 rectangles with midpoints");

plot(C,A,Footer="20 rectangles with midpoints");

RiemannMiddle: 1.582743043
Integral: 1.516185353
Error: 0.066557689
Nodes: 20

1 2 3 4 5 6

-4

-2

0

2

4

6

x

y

20 rectangles with midpoints

MuPAD thinks that the exact value of the integral is

J:=int(f(x),x=0..2*PI);float(J);

2 sin2 p2 - 2 sinp22

p2

1.516185353

To use the Fundamental Theorem of Calculus, we first
use MuPAD to find an antiderivative F (x) for f (x). The command is

int(f(x),x);
cosp x + p x sinp x

p2

(NOTE THAT MuPAD DOES NOT INCLUDE THE " + C".)

F:=x-> (cos(PI*x) + PI*x*sin(PI*x))/(PI^2);
x ® cosp x + p x sinp x

p2

By the Fundamental Theorem the exact value of the integral is equal to F (2 p) - F (0) .
J;float(J);

2 sin2 p2 - 2 sinp22

p2

1.516185353

JFTC:=F(2*PI)-F(0);float(JFTC);
cos2 p2 + 2 p2 sin2 p2

p2
 - 1

p2

1.516185353

The two results look different from the answer obtained above, but the two are actually
equal. To see this we can attempt to use MuPAD to show that the expressions are
identical as follows.

simplify(J-JFTC);
0

GEOMETRIC APPLICATIONS
OF INTEGRATION

 The definite integral can be used to solve a variety of problems from geometry;
examples are finding areas between curves, lengths of curves, volumes and surface
area of three dimensional solids, and centroids of plane regions.

area of three dimensional solids, and centroids of plane regions.

AREA BETWEEN CURVES
 If f (x) > g (x) for all x in [a , b] then the area A of the region enclosed by the curves y = f (x), y = g (x), and the lines x
= a a nd x = b is given by

A =

a

b f x - gx d x .

In practice, a large part of the problem in using this formula involves determining exactly where f (x) > g (x) and where g (x)
> f (x). We illustrate with an example:

 EXAMPLE
 Find the total area of all regions enclosed by the curves
 f(x) = x + sin(2x) and g(x) = x3 .
 The first thing to do is to plot the graphs:
reset();
f:=x->x+sin(2*x); g:=x->x^3;
x ® x + sin2 x
x ® x3

A:=plot::easy(f(x),x=-5..5,Colors=[RGB::Red]):
Tfcurve:=plot::Text2d("f",[3,1.5]):
B:=plot::easy(g(x),x=-5..5,Colors=[RGB::Green]):
Tgcurve:=plot::Text2d("g",[1.1,3.8]):
plot(A,B,Tfcurve,Tgcurve,ViewingBoxYRange=-4..4);

-5 -4 -3 -2 -1 1 2 3 4 5

-4

-3

-2

-1

1

2

3

4

x

y

f

g

Note that the curves intersect at the origin, since f(0) = g (0) = 0. Next, we try find
the X-coordinates of the other two points of intersection of the curves.
solve(f(x)=g(x),x);
solvex + sin2 x - x3 = 0, x

Apparently there is no "nice" formula for the solutions, but we can still use
"fsolve" to find decimal representations for them.
numeric::fsolve(f(x)=g(x),x=(-2)..(-0.5));
reset():f:=x->x+sin(2*x): g:=x->x^3:x = - 1.229835717
numeric::fsolve(f(x)=g(x),x=(.5)..(2));
reset():f:=x->x+sin(2*x): g:=x->x^3:x = 1.229835717
X[1]:=-1.229835717;X[2]:=-X[1];
- 1.229835717
1.229835717

Now we determine the interval or intervals where f(x) > g(x), and the interval or intervals where g(x) > f(x).
From the graph, one can see that g (x) > f(x) for x in [X 1 , 0] and that f (x) > g (x) for x in [0 , X 2].

Finally, we set up the integrals and evaluate them:
A1:=int(g(x)-f(x),x=X[1]..0);

A1:=int(g(x)-f(x),x=X[1]..0);
1.072518608

A2:=int(f(x)-g(x),x=0..X[2]);
1.072518608

CalculatedArea:=A1+A2;
2.145037216

VOLUMES OF SOLIDS OF REVOLUTION

 A solid generated by revolving a curve y = f (x) about the X-axis is called a
solid of revolution. Examples of such solids are cylinders, cones and spheres. The
 command plot::XRotate(f(x),x=a..b); plots the surface generated by
revolving y = f (x) , a < x < b about the X-axis.
 As an example, let f (x) = x2 , 0 < x < 1.
reset();
f:=x->x^2;
x ® x2

P1:=plot::XRotate(f(x),x=0..1):
plot(P1);

Click on the figure, and use the toolbar to rotate the solid, and change the appearance
of the coordinate system.
You can also rotate the solid by moving the cursor while holding down the left mouse button.
You may plot several graphs on the same coordinate system.
For example, let's intersect the above graph with the X-Y plane.
P2:=plot::Function3d(0,x=0..1.5,y=-1.5..1.5): plot(P2);

plot(P1,P2);

plot(P1,P2);

The formula for the volume V of the solid resulting from rotating y = f (x) , a < x < b , about the X-axis is

V = p

a

b

f x2 d x

Thus, in the above example
V = p

5
 ,

and therefore
V:=PI*int(f(x)^2,x=0..1);float(V);
p
5

0.6283185307

Partial fractions
Example 1

23 + (x^4 + x^3)/(x^3 - 3*x + 2);
partfrac(23 + (x^4 + x^3)/(x^3 - 3*x + 2));

x4 + x3

x3 - 3 x + 2
 + 23

x + 19
9 x - 1 + 2

3 x - 12
 + 8

9 x + 2 + 24

x^3/(x^2 + 3*I*x - 2);
partfrac(x^3/(x^2 + 3*I*x - 2))

x3

x2 + 3 x i - 2

x - 7 x + 6 i

x2 + 3 x i - 2
 - 3 i

f := x^2/(x^2 - y^2);
partfrac(f, x), partfrac(f, y)

x2

x2 - y2

y
2 x - y - y

2 x + y + 1, x
2 x + y + x

2 x - y
Example 2
The following example demonstrates the dependence of the partial fraction decomposition on the function factor:
partfrac(1/(x^2 - 2), x)

1
x2 - 2

Note that the denominator does not factor over the rational numbers:
factor(x^2 - 2)
x2 - 2

However, it factors over the extension containing . In the following calls, this extended coefficient field is implicitly assumed by factor and,
consequently, by partfrac:
factor(sqrt(2)*x^2 - 2*sqrt(2));
partfrac(x/(sqrt(2)*x^2 - 2*sqrt(2)), x);

2

x - 2

x + 2

2

 x
2 x2 - 2

An extension of the coefficient field may also be enforced using the option Adjoin:
partfrac(1/(x^2 - 2), x, Adjoin = [sqrt(2)])

2

4

x - 2

 - 2

4

x + 2

Example 3
Rational expressions of symbolic function calls may also be decomposed into partial fractions:
partfrac(1/(sin(x)^4 - sin(x)^2 + sin(x) - 1), sin(x))

1
3 sinx - 1 -

sinx2
3

 + 2 sinx
3

 + 2
3

sinx3 + sinx2 + 1

Example 4
The denominator can also be factored numerically over R_ or C_:
partfrac(1/(x^3 + 2), x, Domain = R_)

0.2099868416
x + 1.25992105
 - 0.2099868417 x - 0.529133684

x2 - 1.25992105 x + 1.587401052

partfrac(1/(x^3 + 2), x, Domain = C_)
0.2099868416
x + 1.25992105
 + - 0.1049934208 + 0.1818539393 i

x - 0.6299605249 + 1.091123636 i
 + - 0.1049934208 - 0.1818539393 i

x - 0.6299605249 - 1.091123636 i

Example 5
Use Full to factorize the denominator into linear factors symbolically:
partfrac(1/(x^3 + x - 2), x, Full)

1
4 x - 1 +

- 1
8
+ 3 7

 i

56

x + 1
2
- 7

 i

2
 -

1
8
+ 3 7

 i

56

x + 1
2
+ 7

 i

2

Integration by parts and by change of variables
Typical applications for the rule of integration by parts

ux vx d x = ux vx -
ux vx d x

are integrals of the form

px cosx d x where px is polynomial. Thereby one has to use the rule in the way that the polynomial is

differentiated. Thus one has to choose ux = cosx.
intlib::byparts(hold(int)((x-1)*cos(x),x),cos(x)); // hold(object) prevents the evaluation of object.
intlib::byparts(hold(int)((x-1)*cos(x),x),x-1);
sinx x - 1 -

sinx d x

-

sinx x - x2

2

d x - cosx x - x2

2

In particular with the ansatz ux = 1 it is possible to compute a lot of the well-known standard integrals, like e.g.

arcsinx d x.

intlib::byparts(hold(int)(arcsin(x),x),1)
x arcsinx -

x

1 - x2
 d x

In order to determine the remaining integral one may use the method change of variable
f gx gx d x = Fgx + c

with gx = 1 - x2.

F:=intlib::changevar(hold(int)(x/sqrt(1-x^2),x), t=1-x^2)

F:=intlib::changevar(hold(int)(x/sqrt(1-x^2),x), t=1-x^2)
- 1

2 t

d t

Via backsubstition into the solved integral F one gets the requested result.

hold(int)(arcsin(x),x) = x*arcsin(x)-subs(eval(F),t=1-x^2)
arcsinx d x = x arcsinx + 1 - x2

Applying change of variable with the integrator is problematic, since it may occur that the integrator will never terminate. For that reason this rule
is used within the integrator only on certain secure places. On the other hand, this may also lead to the fact that some integrals cannot be solved
directly.

f:= sqrt(x)*sqrt(1+sqrt(x));
int(f,x)

x
 x

 + 1

x
 x

 + 1

d x

eval(intlib::changevar(hold(int)(f,x),t=sqrt(x))) | t=sqrt(x)

- 4 x
 + 132 42 x

 - 15 x
 + 12 + 7

105

Integration

Calculate the area between y=x and y=x^3*sin(2x)*cos(3x) in the interval [0,PI]

y1:=plot::Function2d(x, x = 0..PI):
y2:=plot::Function2d(x^3*sin(2*x)*cos(3*x), x = 0..PI):
h1 := plot::Hatch(y1, y2, FillColor = RGB::Black, FillPattern = DiagonalLines):
plot(y1,y2,h1);

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

-10

-8

-6

-4

-2

0

2

4

6

8

x

y

a1:=numeric::fsolve(x=x^3*sin(2*x)*cos(3*x),x=0)[1][2];
a2:=numeric::fsolve(x=x^3*sin(2*x)*cos(3*x),x=2.5)[1][2];
a3:=numeric::fsolve(x=x^3*sin(2*x)*cos(3*x),x=3.1)[1][2];
0.0
2.676321839
3.088396847

s1:=int(x-x^3*sin(2*x)*cos(3*x),x=a1..a2);
s2:=int(x^3*sin(2*x)*cos(3*x)-x,x=a2..a3);
s:=s1+s2;
9.407406281
1.500984532
10.90839081

Integrate

0

2

xx d x

numeric::int(x^x,x=0..3);
14.50853565

Integrate

Integrate

1

¥
0

1

x
y2
 d x d y

int(int(x/y^2,x=0..1),y=1..infinity);
1
2

Integrate

- 1

1
- 1

1

ex2+ x y+ y2
d x d y

int(int(exp(x*y+x^2+y^2),x=-1..1),y=-1..1);

- 1

1
p
 e

3 y2

4

erf

y i
2
 - i

 i - erf

y i
2
 + i

 i

2
 d y

numeric::int(int(exp(x*y+x^2+y^2),x=-1..1),y=-1..1)
9.375303465

Integrate

- 2

3
x2

x+ 6

x d y d x

int(int(x,y=x^2..x+6),x=-2..3);
125
12

Integrate

2

4
- y

- 1
y2

x2 y + x y2 d x d y

int(int(x^2*y+x*y^2,x=-y..-1/y^2),y=2..4);
- 506059

15360

