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Abstract
In this note, we will analyze some of the mathematical aspects behind
the (PageRank) algorithm used by Google to sort the results of the queries:
a tasty cocktail of Linear Algebra, Graph Theory and Probability that
makes life easier.

1 Introduction

Newspapers all around the world are considering these days the news about
Google’s plan to go public. It is not only the volume of the transaction', but
also the special meaning of being the first trade of this kind since the dot-com
“irrational exuberance” in the 90s.

But there is something else that explains the significance of this piece of
news, and mainly related to the particular characteristics of the firm. A few
decades ago, there was a complete revolution in Technology and Communi-
cations —and also (no doubt about it?) a cultural, sociological. .. revolution,
namely the generalizacion of use and access to the Internet. Google’s appear-
ance has represented a revolution comparable to the former, as it became a tool
which brought some order into this universe of information —mot manageable
before.

The design of a web search engine is a problem of mathematical engineer-
ing. Notice the adjective. First, a deep knowledge of the context is needed, in
order to translate it into models, into Mathematics. But after this process of
abstraction, of mathematization, and once the relevant conclusions have been
drawn, it is essential to carry out a thorough, detailed and efficient design of
the computational aspects inherent in this problem.

1Shares for a value of 2700 million dollars will be sold. Driven by the memory of past
excesses and scandals of the financial bubble linked to high-tech firms in the past years, the
offer will be articulated as an on-line auction, allowing many investors to have similar oppor-
tunities to buy shares. The ultimate purpose is to avoid important speculative deals...but
one never can tell.
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2 The Google engine

The origin of Google search en-
gine is well known. It was de-
signed in 1998 by Sergei Brin
and Lawrence Page, two Com-
puter Science doctorate students
at Stanford (Brin had a degree in
Mathematics, and Page, in Com-
puter Science). See them in the
pictures?. Two young men, now
in their thirties, who have be-
come multimillionaires. The odd
name of the engine is a variation
from the term googol, the one who Figure 1: Brin (a la izquierda) y Page
somebody® invented to refer to

the overwhelming number 10'°°. One of those numbers mathematicians are
comfortable with but perhaps bigger than the number of particles in the whole
Universe.

Although not so huge, the scale of the question we are concerned about is
also immense. In 1997, when Brin and Page were to start working in Google’s
design, there were about 100 million web pages. Altavista, the most popular
search engine in those days, attended 20 million of daily queries. Today, these
figures have been multiplied: Google receives some hundred million of daily
queries and indexes several billions of web pages.

Therefore, the design of a search engine must efficiently solve some computa-
tional aspects, namely, the way to store that enormous amount of information,
how is it updated, how to manage the queries, the way to search in the data-
bases, etc.

But, although interesting, we are not going to treat these questions here.
The point of interest can be formulated in a simple manner: Let us suppose
that, after a certain query, we have determined that, say, one hundred web
pages enclose information that might be relevant, in some sense, for the user.
Now,

in which order should they be displayed?

The objective, as explicitly posed? by Brin and Page (see [6]), is that, in a

2We swear we have nothing to do with that sort of Christmas balls decorating the pictures.
They have been taken, just as they were, from Google’s own web page.

3t is said that a nephew of the mathematician Edward Kasner. Kasner cheered up and
also defined the googolplex, its value being 108°°2°!, Wow!

4This was not the only objective. They also pretended the search engine to be “resistant” to
any kind of manipulation, for instance, to commercial-oriented attempts to place certain pages
at the top positions on the list. Curiously enough, nowadays a new “sport”, Google bombing,
has become very popular: it is about trying to place a web page in the top positions, although
usually with recreational purposes. The reader might try with queries such as “miserable
failure”. The result might surprise him...and even delight him!
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sufficiently big number of times, al least one of, say, the first ten displayed
pages contain useful information for the user.

We now ask the reader (most probably a google-maniac) to decide, from
his own experience, whether Google fulfills this objective or not. We are sure
the common response will be affirmative. ..and even amazingly affirmative! It
seems to be Magic®. .. but it is just Mathematics.

And Mathematics requiring no more than tools of a first year graduate
course, as we will see soon.

To tackle our task, we need an ordering criterion. Notice that (now we
have already shifted to mathematical mode) if we label each web page with sym-
bols Py, ..., P,, all we want is to assign each P; a number z;, its significance.
These numbers might be, for example, between 0 and 1.

Let us suppose then that, after a webcrawling, we have collected a complete
list of web pages, and that we have assigned each of them a significance, no
matter how. We can use this ordering each time we answer a query: the selected
pages will be displayed ordered as prescribed by the list.

The explanation of how to build that list is still missing. Let us go for it.

NoTE. To complete the description, although we will not go into the details,
we should say that there are a pair of elements used by Google, in combination
with the general criterion we will explain here, when answering specific queries:

e On the one hand, as it is reasonable, Google does not give the same “score”
to one term that is within the title of the page, either in boldface, in a small
font, etc.

e For combined searches, it will be quite different if, within the document,
the terms appear “close” or “distant” from each other.

3 The model

In the first step, we will describe, in an adequate way, the relevant elements for
the question we are interested in, the significance assignment. Let us suppose
that we have collected all the information about the web: sites, contents, links
between pages, etc. In this first step of our process of modeling, we are only
going to take into account the information referred to the web pages, labeled
with Pi,..., P,, and the links between them.

In these terms, the web can be modeled by a (directed) graph G. Each web
page P; is a vertex of the graph, and there will be an edge between vertices
P; and P; whenever there is a link from page F; to page P;. It is a gigantic,
overwhelming graph, whose real structure will deserve some consideration below
(see section 8).

When dealing with graphs, we like to use drawings in the paper, in which
vertices are points of the plane, while edges are merely arrows joining these

5Not to talk about the incredible capacity of the search engine to “correct” the query terms
and suggest, yes!, the word one had indeed in mind. This leads us to envisage supernatural
phenomena. . . well, let us give it up.
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points. But, for our purposes, it is helpful to consider an alternative interpre-
tation —matrices. Let us build, then, an n x n matrix M, whose rows and
columns are labeled with symbols Py, ..., P,, and with zero-one entries. The
matrix entry m;; will be one whenever there is a link between page P; and
page P;; and zero otherwise:

P - P RN P,
N
P1 —_—
P, — ( My j ) —— number of P; page ingoing links
Pno— \_/

|

number of P; page outgoing links

The matriz M is, except for a transposition, the adjacency matrix of the
graph. Notice that it is not necessarily symmetric, because we are dealing with
a directed graph. Observe also that, as suggested in the picture, the sum of the
entries for P;’s column is the number of P;’s outgoing links, while we get the
number of ingoing links summing in rows.

We will assume that the significance of a certain page P; “is related to” the
pages linking to it. This sounds reasonable: if there are a lot of pages pointing
to Pj, its information must have been considered as “advisable” by a lot of
web-makers.

The above “related to” is still rather vague. A first attempt, perhaps a bit
naive, amounts to suppose that the significance x; of each P; is proportional to
the number of links entering P;. Let us note that, whenever we have the matrix
M at our disposal, the computation of each x; is quite simple —just sum the
entries of each row P;.

But this model does not adequately grasp a situation deserving attention,
namely when a certain page is cited from few, but very relevant pages. Say,
for example, from www.microsoft.com, www.amazon.com, etc. The previous
algorithm would assign it a low significance, and this is not what we want.
So we need to enhance our model in such a way that a strong significance is
assigned both

e to highly cited pages;
e and to those that, although not cited so many times, have links from very
“significant pages”.

Following this line of argument, the second attempt asumes that the sig-
nificance x; of each page P; is proportional to the sum of the significance of
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the pages linking to Pj. Notice that we have changed, from our first attempt,
“number of pages linking to P;” to “sum of the significance of the pages linking
to P;”. This slight variation completely alters the features of the problem.

Suppose, for instance, that page P; is cited in pages Ps, Pos and Pssg, that
P; is only cited in pages P, and Pss, etc., and that, say, there are links to page
P, from Py, P>, P3, P>5 and P,,_;. Following the previous assignment, z; should
be proportional to 3, x5 to 2, etc., while z,, should be proportional to 5.

But now, our assignment x1,...,x, must verify that
vy = K (x2+ 225 + T256)
vy = K (x1+T256),
T, = K(z1+z2+ 23+ 205 +701),

where K is a certain proportionality constant. In this way, we face an enor-
mous system of linear equations, whose solutions are all the admissible assign-
ments x1,...,Ty.

Let us write this system of equations in a better way, using matrices:

Pl P2 P25 P256 Pn—l
Ll 1 ! !
a1 01 0 01 0 01 0 -+ 00 a1
2 1 00 00 0 010 0 0 2
=K
Tn 111 010 - 000 - 10 Tn

And now, one of those “symbol shows” mathematicians are so fond of. Let
us call the significance vector x. The n x n matrix of the system is exactly
the matrix M associated to the graph. So we can state that the significance
assignment is a solution of

Mx = Ax.

We have already used the symbol A\ for the constant of proportionality. This is
so because, as anyone who has been exposed to a Linear Algebra first course will
recognize, the question has become a problem of eigenvalues and eigenvec-
tors: our yearned significance vector x is no more than an eigenvector of the
matrix M. You might recall that this matrix keeps all the information about
the web structure —vertices and adjacency relations.

The reader will certainly find curious the fact that one of the basic elements
of any Linear Algebra course allows us to describe a so “applied” question. . .but
perhaps it is not enough to arouse his enthusiasm yet. All right, an eigenvalue.
But which one? There are so many. .. And also: how could we compute it?, the
matrix is inconceivable huge: remember, thousand of million rows (or columns).

Be patient.

For the time being, it sounds reasonable to demand the entries of our vector
(the significance of the web pages) to be non-negative (or, al least, with the
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same sign). This will be written as x > 0 —we ask the reader to excuse this
abuse of notation.

But also, since we pretend the method to be useful, we need this hypothetical
non-negative vector to be unique —and if there were more than one, which of
them should be chosen?

4 The random surfer

As an interlude, we are going to approach the question from a different point
of view. Let us imagine a user surfing the web. At some moment, he will reach
some page, say P;. But, probably bored with the contents of Py, he will jump to
another page, following P;’s outgoing links (suppose there are N; possibilities).
But, to which one?

Our brave navigator is a random surfer —and needless to say, also blond
and suntanned. So, in order to decide his destination, he is going to use chance,
and in the most simple possible way: with a regular (and virtual, we presume)
dice, having so many faces as the number of outgoing links from P;. In tech-
nical terms, the choice of destination follows a (discrete) uniform probability
distribution in [1, Nq].

Our model is no longer deterministic, but probabilistic: we do not know
where he will be a moment of time later, but we do know what are his chances
of being in each admissible destination. And it is a dynamic model as well,
because the same argument may be applied to the second movement, and to
the third one, etc. Our surfer is following what is known as a random walk in
the graph.

We show, in the drawing, a possible situa-
tion: there are three edges leaving from P; to
the vertices P, Py and Pg. So our navigator
draws his destination, assigning probability 1/3
to each vertex. If the result is page Ps, then he
is to draw again, but now with probability 1/4
for each possible destination from P».

A very suggestive setting, although it is not
clear how to formalize it: how could we, for
instance, compute the probability of being at
page Pi7 after five movements if the surfer leaves
from P;. More than that, we still have no suspi-
cion about how all this is related to our assign-
ment problem.

Little by little. Recall that M is the matrix of the graph and that its entries
are zeros and ones. Let N; be the number of P;’s outgoing links (that is, the
sum of the entries in the column labeled P; in the matrix M). Let us now build
another matrix M’ from the original M replacing each entry m,; by
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The entries of the new matrix M’ will be non-negative numbers (between 0
and 1), in such a way that the sum of the entries for each column is 1. The
next drawing shows the result of the transformation for a certain column:

page P; page Pj

The so built matrix M’ is called a stochastic (or Markovian) matrix .

Let us say that the surfer is in page (vertex) Py at the beginning. In order
to put such a deterministic situation in a probabilistic setting, we say that he
is in page Py with probability 100%. We represent this initial condition with a
vector having all its entries 0, but the one in position k, that has a 1. Recall
that the surfer draws among the Ny destinations, assigning probability 1/Ny to
each of them.

But when we multiply the matrix M’ by this initial vector, we get

! !
myg - 0 mig
/ o /
M - 1 = My
! !

The result is still a vector with entries (numbers between 0 and 1, as the m/;s
are either 0, or 1/N}) summing to 1, because there are exactly N non zero
entries. But more than that: the vector we get exactly describes the probability
of being, one moment later, in each page of the web, assuming he began at P.

What makes this model specially useful is that, in order to know the proba-
bilities of being in each page of the web after two moments of time, it is enough
to repeat the process. That is, to multiply (M’)? by the initial vector. And the
same for the third movement, the fourth, etc.

Following the usual terminology, we consider a certain number of states, in
our case being just the vertices of the graph G. The matrix M’ is (appropriately)
called the transition matrix of the system: each entry m;j describes the
probability of going from state (vertex) P; to state (vertex) P;. And the entries
of the successive powers of the matrix, the probabilities of going from each P;
to each P; after several moments of time.

This solves our first question: how to calculate the transition probabilities
between vertices as time goes by. But we have not discovered the relation
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with Google’s ordering problem yet. We leave this for the moment (see subsec-
tion 9.1). But, for the impatient and well versed reader, let us advance that
the non-negative vector we have been chasing for a long while turns out to be
precisely the stationary state of this Markov chain.

NOTE. It might happen that some pages had no outgoing links at all (being
only zeros in the corresponding columns). It would not be a stochastic matrix.
Google’s solution: replace the zeros of each “bad” column by 1/n. In this way,
whenever the surfer reaches one of the pages from which there was no exit before,
now he is allowed to quit them and go to any page of the web with the same
probability. More on this, in section 8.

5 Qualifying for the playoffs

So many re-interpretations, so many re-formulations. .. we may forget the main
question: Google’s ordering algorithm. Let us go back to it. It must be said
that the ideas behind Google’s procedure can be traced back to the algorithms
developed by Kendall and Wei in the fifties (oops, last century fifties!), see [11]
and [16].

Now we will pose one more question, quite similar to the one we have dealt
with, but with an entertainment taste. It will be illustrated with a simple
example.

Let us consider a sport competition, such as the Professional Basketball
League. The 30 teams of the NBA competition are divided (following geo-
graphical criteria) into two conferences, each one made up of three divisions:

e Fastern Conference:

— Atlantic Division, Central Division and Southeast Division.

e Western Conference®:

— Southwest Division, Northwest Division and Pacific Division.

Each team play the same number of games, 82, but not the same number of
games against each other; it is customary they play more games against the
teams from their own conference.

So we may ask the following question: once the regular season is finished,
what 16 teams should classify for the playoffs? The standard system computes
the number of wins to determine the final positions. But it is reasonable’ to
wonder about whether this is a “fair” system or not. After all, it might happen
that a certain team could have obtained a lot of wins just because it was included
in a very “weak” conference. What should be worthier: the number of wins, or
their “quality”? And we face again Google’s dichotomy!

SWhere “our” Pau Gasol and Raiil Lépez play.
"See [10].
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In a certain competition there are, say, n teams, Ei,...,E,. We register
the regular season results in a matrix A, its entries a;; being the number of
victories obtained by each team:

# wins of E; over I;
;5 =
7 # matches of F;

As a normalization measure, we divide by the number of matches played by
each team.

Our target is to assign each team FE; a number x;, analogously called its
significance, in such a way that the array x1,...,x, means the final placings.

The first model, in which z; is proportional to the number of wins, does not
take into account the quality of the victories.

The second model amounts to decide that the significance x; is proportional
to the number of wins, weighted with the significance of the other teams:

n
€Ty = K E Ak Tk -
k=1

And this leads us, again, to
Ax = Xx.

And once more, we want to find a non-negative eigenvector A (and a unique
one, if possible).

5.1 For serious calculations: the computer

Let us consider a competition among six teams, FEy,..., Fg, divided into two
conferences. Each team plays 21 games at all: 6 against each team from its own
conference, 3 against the others. The following table includes the information
about the results of the competition:

E1 E2 E3 E4 E5 Eﬁ

Ey [ = [3/21]0/21 [[o/21 ] 1/21 [ 2/21 | — 6/21
B, [ 3/21 | — [2/21|[2/21|2/21 | 1/21 | — 10/21
Bs | 6/21 | 4/21 | — |[2/21 | 1/21 | 1/21 | — 14/21
By |3/21 ] 1/21 [1/21 || — [2/21]2/21| —9/21
Es | 2/21 [ 1721 | 2/21 |[4/21 | — [2/21 | —11/21
Ee | 1/21 | 2/21 [ 2/21 |[4/21 [ 4/21 | — | —13/21

To the right, we have registered the number of wins of each team. This count
suggests the following ordering:

E3—>E6—>E5—>E2—>E4—>E1.

But notice, for example, that the leader team E3 has collected a lot of victories
against F1, the worst team.

What happens with the second point of view? Some computation must be
done. Even in such a simple example as this one, we need to use the computer.
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So we ask a mathematical software, say® Maple, to perform the calculations.
The following commands will sound familiar to the experienced reader; and not
so hard to understand to the beginner. First, we load a required package:

> restart:with(linalg):

Warning, the protected names norm and trace have been redefined and unprotected

And after this brief (and perhaps deep!) answer...Maple in action!:

> A:=matrix(6,6,[0,3/21,0,0,1/21,2/21,3/21,0,2/21,2/21,2/21,1/21,6/21,
4/21,0,2/21,1/21,1/21,3/21,1/21,1/21,0,2/21,2/21,2/21,1/21,2/21,4/21,0,
2/21,1/21,2/21,2/21,4/21,4/21,01);

M 1 1 2 7
1 0 2 2 2 1
7 2 20 2 2
2 4 0 2 1 1
P R TR TR TR T}
1 1 1 2 2
7w 0o ow
2 1 2 4 2
o 21 21 2 0o
1 2 2 4 4
[ 31 21 21 21 a1

> autovects:=[evalf (eigenvectors(A))];

autovects := [[0.012, 1., {[—0.062, —0.916, —2.131, 0.873, 0.731, 1.]}],
[0.475, 1., {[0.509, 0.746, 0.928, 0.690, 0.840, 1.]}],

[<0.111 +0.117 1, 1., {[—0.151 — 0.901 1,0.123 + 0.451 I, —0.727 + 0.728 I,
—0.435 — 0.1281, 0.192 + 0.377 I, 1.]}],

[—0.126, 1., {[0.008, —0.685, 1.434, —1.071, 0.032, 1.]}],
[—0.139, 1., {[1.785, —3.880, 3.478, —5.392, 4.415, 1.]}],

[<0.111 — 0.117 1, 1., {[—0.151 + 0.901 1,0.123 — 0.451 I, —0.727 — 0.728 I,
—0.435+0.128 1, 0.192 — 0.377 I, 1.]}]]

Once we become familiar with the way Maple displays the results (each line
containing the eigenvalue first, its multiplicity and finally the associated eigen-
vectors), we find that there are six different eigenvalues: two complex numbers
(one the conjugate of the other) and four real numbers. Their moduli are

> autovals:=[evalf (eigenvalues(A))]: modulos:=[seq(abs(autovals[j]l),j=1..6)];

modulos = [0.012, 0.475, 0.161, 0.126, 0.139,0.161]

We now discover that A = 0.475 is the biggest (in modulus) eigenvalue, its
associated eigenvector being

x = (0.509, 0.746, 0.928, 0.690, 0.840,1).

And that this is the only eigenvector having real non-negative entries.

8No commercial intention in this: Matlab, Mathematica, Derive or even Excel could do
the task.
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So we have the answer we were looking for: the components of the vector
suggest the following ordering:

Fe¢ — E3 — FEs — Ey — Ey — E .

And now FEj is the best team!

Let us summarize. In this particular matrix with non-negative entries (that
might be regarded as an small-scale version of the Internet matrix), we are in
the best possible situation: there is a unique non-negative eigenvector, the one
we need to solve the ordering question we posed.

Did this happen by chance? Or was it just a trick, an artfully choice of
matrix to persuade the unwary reader that things work as they should?

The reader, far from being unwary, but curious, is now urgently demanding
a categorical response. And he knows, no doubt about it, that it is time to
welcome a new actor in this performance.

6 Mathematics enters the stage

It is time for Mathematics, the Science that deals
with virtual, abstract objects and, through them, al-
lows us to understand concrete realities. So let us put
on mathematical mode, and let us distil the common
essence of all the questions we have been dealing with.

Doing so, we will discover that the only point
shared by all our matrices (being stochastic or not)
is that all their entries are non-negative. Not quite
a lot of information, it seems. Neither symmetric ma-
trices, nor positive definite, nor. ..

Nevertheless, as shown by Perron? at the beginning
of the XX century, enough to obtain pleasant results:

Figure 2: Perron

Theorem 1 (Perron, 1907) Let A be an square
matriz with positive entries, A > 0. Then,

a) there exists a (simple) eigenvalue A > 0 such that Av = Av, where the
corresponding eigenvector is v > 0;

b) this eigenvalue is bigger (in modulus) than the other eigenvalues;
¢) any other positive eigenvector of A is a multiple of v.

Stop! A pause for meditation: now we have a theorem. Is it not amazing? If you
are able to check that the hypotheses are fulfilled (and no vagueness is allowed:
they must be satisfied, exactly satisfied; no excuses, no exceptions), then the

9The German mathematician Oskar Perron (1880-1975), a conspicuous example of math-
ematical longevity, was interested in several fields such as Analysis, Differential Equations,
Algebra, Geometry, Number Theory, etc., in which he published several text-books that even-
tually became classics.
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conclusion is unappealable. In our case, no matter how the matrix is, whenever
all its entries are positive, there will be a simple eigenvalue such that...an an
unique eigenvector with. .. Wow!

If the reader kindly forgives this almost mystic trance, we will proceed. Let
us analyze Perron’s result. It points towards the direction we are interested in,
but it is not enough, because the matrices we deal with might have zeros. So
we need something else.

The following act of this performance was written
by Frobenius'?, several years later, when he dealt with
the general case of non-negative matrices. Frobenius
observed that if we only have that A > 0, then, al-
though there is still a dominant (of maximum mod-
ulus) eigenvalue A > 0 associated to an eigenvector
v > 0, there might be other eigenvalues of the same
“size”. Here goes his theorem:

Theorem 2 (Frobenius, 1908-1912) Let A be a
square matriz with non-negative entries, A > 0. If
A is irreducible, then

(a) there exists a (simple) eigenvalue A > 0 such that
Av=)M\v, where the corresponding eigenvector is v >0.
Besides, A > || for any other eigenvalue p of A.

Figure 3: Frobenius

(b) Any eigenvector > 0 is a multiple of v.

(c) If there are k eigenvalues of mazimum modulus, then they are the solutions
of the equation x* — \¥ = 0.

NoTE. What does it mean the n x n matrix A to be irreducible? There are
several ways to understand it:

1. There is no permutation (of rows and columns) transforming A into a
matrix of the following type:

A | A
0 Ay ’

where A7 and Agy are square matrices.

2. All the entries of the matrix (I + A)"~', where I stands for the n x n
identity matrix, are positive.

3. If A is the adjancency matrix of a graph, then the graph is strongly con-
nected (see section 8).

10Ferdinand Georg Frobenius (1849-1917) was one of the outstanding members of the Berlin
School, along with distinguished mathematicians as Kronecker, Kummer or Weierstrass (his
thesis supervisor), the leading mathematicians during the end of XIX century and the begin-
ning of XX century. Strict prussian school: rigour, tradition, a “pure” mathematician, with
no concession to Applied Mathematics. Changeable History would make many of his ideas on
finite groups representations become the basis of Quantum Mechanics. He is well known for
this contributions to Group Theory. His works on non-negative matrices belong to the last
stage of his live.
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Notice first that Frobenius’ theorem is indeed a generalization of Perron’s
result, because if A > 0, then A is > 0 and irreducible.

Second, if A is irreducible (whether this is the case or not for the web
matrix will be analyzed below), then the question is completely solved: there
exists a unique non-negative eigenvector, associated to the positive eigenvalue
of maximum modulus (and this will be very useful, as we will see in a moment).

These results, to which we will refer, from now on, as Perron-Frobenius
Theorem, are widely used in other contexts (see section 9). Some people even
talk about “Perron-Frobenius Theory”, this theorem being one of its central
results.

The proof is quite complicated, and here we will just sketch an argument
with some of the fundamental ideas.

A “proof” of Perron-Frobenius Theorem (illustrated in the 3 x 3 case)

Let us start with a non-negative vector x > 0. As A > 0, the vector Ax is also
non-negative.

In geometric terms, the matrix A maps the
positive octant into itself. Let us consider now the
mapping « given by

{x>0,|Ix| =1}

Ax
() = Tax]

Notice that a(x) is always a unit length vector. The function o maps the
set {x € R?® : x > 0,||x| = 1}, that is, the piece of the unit sphere we draw
next to these lines, into itself.

Now, applying Brouwer Fixed Point Theorem, there exists a certain X such
that «(x) = %. Therefore,

- Ax
*®) = &z

=% = A%=|A%|X.

Summing up, X is an eigenvector of A with non-negative entries associated to
an eigenvalue > 0.

For all other details, such as proving that this eigenvector is (essentially)
unique and the other parts of the theorem, we refer the reader to [1], [4], [13]
and [14].

7 And what about the computational aspects?

The captious reader will be raising a serious objection: Perron-Frobenius’ theo-
rem guarantees the existence of the needed eigenvector for our ordering problem,
but says nothing about how to compute it. Notice that the proof we sketched
is not a constructive one. Thus, we still should not rule out the possibility that
these results are not so satisfactory. Recall that Google’s matrix is overwhelm-
ing. The calculation of our eigenvector could be a cumbersome task!
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Let us suppose we are in an ideal situation, in those conditions that guarantee
the existence of an positive eigenvalue Ay strictly bigger (in modulus) than the
other eigenvalues. Let vy be its (positive) eigenvector.

NOTE. A matrix A > 0 is said to be primitive if it has a dominant eigenvalue
(bigger, in modulus, than the other eigenvalues). This happens, for instance,
when, for a certain positive integer k, all the entries of the matrix A* are positive.

We could, of course, compute all the eigenvalues and keep the one of interest.
But even using efficient methods, the task would be excessive.

But the own structure of the problem helps us again and make the compu-
tation easy. A coincidence that comes in handy. It all becomes from the fact
that the eigenvector is associated to the dominant eigenvalue.

Suppose, to simplify the argument, that A is diagonalizable. We have a
basis of R with the eigenvectors {vi,...,v,}, the corresponding eigenvalues
being decreasing size ordered:

AL > [ Ao > A3 = > A
We start, say, with a certain vy > 0, that may be written as
vo=c1Vi+cave+ -+ vy,

where the numbers cq,...,¢, are the vy coordinates in our basis. In what
follows, it is not going to be necessary to compute them explicitly, and in fact
we will not do it. It is enough to know that such numbers do exist. Now, we
multiply vector vy by matrix A, to obtain

Avg =ciMvi+c2dava + -+ AV,

because the vectors vq,...,v, are eigenvectors of A. We only calculate the
product in the left —for our argument, it is enough to know that the right side
is in that way. Excuse the reader being so insistent.

With good cheer, we repeat the operation:

A2v0 = cl)\fvl + @A%Vg 4+ cn)\ivn .
And several more times, say k times:
AFvy = cl)\]fvl + CQ)\ISVQ 4+t cn)\van .

Let us suppose that ¢; # 0. Then,

1 Ao\ A\
VAICVO:CIV1+CQ ()\—?) Vot Fcp ()\—T> Vi -
1

But |A\;/A1| < 1 for each j =2,...,n (recall that A\; was the dominant eigen-
value), so
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Therefore, when repeatedly multiplying the initial vector by the matrix A, we
determine, more precisely each time, the direction of interest, namely the one
given by vi. This numerical method is known as the power method, and
its rate of convergence depends on the ratio between the first and the second
eigenvalue (see in [8] an estimate for Google’s matrix).

With this observation, our problem is finally solved, at least if we are in
the best possible conditions (a non-negative irreducible matrix). The answer
does exist, it is unique and we have an efficient method'! to compute it at our
disposal. But. ..

8 But, are we in an ideal situation?

To make things work properly, we need the matrix M associated to the web-
graph G to be irreducible. In other words, we need G to be a strongly connected
graph.

NOTE. Let us consider a directed graph G (a set of vertices and a set of directed
edges). The graph is said to be strongly connected if, given any two vertices u
and v, we are able to find a sequence of edges joining one to the other.

The same conclusion, but “erasing” the directions of the edges, lead us to the
concept of weakly connected graph. Needless to say, an strongly connected graph
is also a weakly connected graph —not necessarily in the other direction.

As the reader might suspect, it is not the case. A research developed in
1999 (see [7]) came to the conclusion that, among the 203 million pages under
study, 90% of them laid in a gigantic (weakly connected) component, this in
turn having a quite complex internal structure, as can be seen in the following
picture, taken from [7]:

Tendri
A Ml fien
Hcedes

SCC
56 Millicn nedes

ouT

IN

-
4 Miiitcn nevies

-
A+ Mo newdes

O

“——— Disconnected components

11 According to Google’s web page, a few hours are needed.
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A quite peculiar structure, resembling a biological organism, a kind of colossal
amoeba. Along with the central part (SCC, Strongly Connected Component),
we find two more pieces'?: the IN part is made up of web pages having links to
those of SCC, and the OUT part is formed by pages pointed from the pages of
SCC. Furthermore, there are a sort of tendrils (sometimes turning into tubes),
comprising the pages not pointing to SCC’s pages, nor accesible from them.

Notice, in any case, that the configuration of the web is something dynamic,
evolving with time. And it is not clear whether this structure has been essen-
tially preserved or not's.

What should we do then? Or better: what does Google do? A standard
trick: try to get the best possible situation in a reasonable way. For instance,
adding a whole series of transition probabilities to all the vertices. That is,
considering the matrix

b1
M'=cM'+(1—-¢)|  |(1,...,1),
Pn

where pq,...,py is a certain probability distribution (p; > 0, Ej pj =1) and ¢
is a parameter between 0 and 1 (for Google, about 0.85).

As an example, we could choose a uniform distribution, p; = 1/n for each
j=1,...,n (and the matrix would have positive entries). But there are other
reasonable choices, and this degree of freedom gives us the possibility of making
“personalized” searches.

In terms of the random surfer, we are giving him the option (with probability
1—c) to get “bored” of following the links and to jump to any web page (obeying
a certain probability distribution).

9 Non-negative matrices in other contexts

The results on non-negative matrices we have seen in previous pages have a wide
range of applications. The following two observations (see [13]) may explain
their ubiquity:

12Researchers put forward some explanations: The IN set might be made up of newly
created pages, with no time to get linked by the central kernel pages. OUT pages might be
corporate web pages, including only internal links.

13 A lot of interesting questions come up about the structure of the web graph. For instance,
the average number of links per page, the mean distance between two pages, or the probability
P(k) of a random selected page to have exactly k (say, ingoing) links. Should the graph be
random (in the precise sense settled by Erdos and Rényi), then we would expect to have a
binomial distribution (or a Poisson distribution in the limit). And we would predict that most
pages will have a similar number of links. However, empirical studies suggest that the decay
of the probability distribution is not exponential, but follows a power law, k~2, where 3 is two
something (see, for instance, [2]). This would imply, for example, that most pages have very
few links, while a minority (even though very significant) have a lot of them. More than that,
if we consider the web as an evolving system, to which new pages are added in succession,
the outcome is that the trend gets reinforced: “the riches get richer”. A usual conclusion in
competitive systems (as in real life, we dare say!). We refer here to [3].
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e In most “real” systems (from Physics, Economy, Biology, Technology,
etc.), the measured interactions are positive, or at least non-negative. And
matrices with non-negative entries are the appropriate way to encode these
measurements.

e Many models involve linear iterative processes: starting from an initial
state xg, the generic one is of the form x; = AFxy. The convergence of
the method depends upon the size of A’s eigenvalues, much better, upon
the ratii between their sizes —particularly, between the biggest and all
the others. And here is where Perron-Frobenius’ theorem has something
to say, as long as the matrix A is non-negative.

In the following subsections, we will explain, in some detail, Markov-chains
based models, and briefly review some other models and extensions.

9.1 Probabilistic evolution models

Let us recall that a matrix A is said to be stochastic (or markovian) if A > 0
and, for each column, the sum of the entries is 1. For these matrices, A = 1 is
always an eigenvalue.

NoOTE. The reason is that the A —I columns add up to 0. So when summing all
the A —1I rows we get the zero vector, and the rows are linearly dependant. This
means that A — I is singular. Thus, det(A —I) = 0. And this implies, finally,
that A = 1 is an eigenvalue.

Besides, it is not possible to have eigenvalues of modulus > 1, because A trans-
forms probability vectors (their entries summing to 1) into probability vectors.

The probabilistic model of Markov chains is widely used in quite diverse
contexts: Google’s method is a nice example, but it is also used as a model for
migrations, transmission of deseases, etc.

Let us consider another situation, perhaps not so familiar to the reader.
Suppose we have some money to invest and that we decide not to buy stocks
—some unpleasant experience might be the reason. So, in this truly conservative
mood, we look for a “secure” investment: we will lend money to the State. It
could be the Spanish State, or the Fed, but also Corte Inglés, Repsol, etc. There
are several ways to do it: Treasury Bonds, corporate obligations, etc., although
some of them are not at everybody’s disposal. We might obtain a lower mean
return, compared with the stock market, but we are sure we will not lose the
value of our investment in exchange. Even if we are not so averse to the stock
markets, we have heard around that “diversifying” is the golden rule for any
investor, and this seems to be a good choice.

But things are not that easy. “Security” is not the most popular word among
those that lent their money to the Argentine or Russian State, or more recently,
among those who put their money in what seemed to be solid'* firms such as
Enron, Parmalat or Swiss Air.

1Solid, but with liquid products (Enron and Parmalat). .. or gaseous! (Swiss Air).
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There are no “secure” investments, although some of them are safer than
others. So the markets try to determine, as precisely as possible, the solvency
of each firm (in a wide sense, States also apply). If a certain firm is very
reliable, in the sense that it will be able to pay back with very high probability
the investors money (along with the corresponding interests), it might offer low
returns. But if another firm is among those graded as “problematic” and it
pretends to get investors, then it must offer higher returns. Where to put their
money is left to the investors’ discretion, depending upon their characteristics
(being more or less risk averse —their speculative vein, in plain language).

This is a whole world, known as Credit Risk, in which the mathematical
models play a central role. Let us describe one of them, namely the ratings
(probabilistic evolution) model.

We have n ratings, say S1,...,5,. Following the jargon of the rating agencies
(Standard & Poor’s, Moody’s, etc.), these states are AAA, BBB+, CC, etc.,
with that familiar sound of school marks.

After a detailed analysis, the probability of going from state S; to estate .S;,
the number a;;, is determined. All this information is stored in a matrix A,
its entries being, once more, non-negative numbers. Moreover, it is a (row)
stochastic matrix. A special state D (default) is usually included —all its entries
are zeros, but the one in the diagonal; an absorbing state, in the Markov-chains
language. The following matrix A may be an example!'®:

AAA AA A BBB BB B ccc D
AAA | 90.58 836 0.84 0.09 0.13 0.00 0.00 0.00
AA 0.84 90.04 8.11 0.71 0.12  0.15 0.03 0.00
A 0.14 269 89.94 5.92 0.85  0.32 0.04  0.10
BBB | 0.03 0.32 594  87.41 4.92 1.04 0.13 0.21
BB 0.02 0.12  0.62 749 81.93 7.88 0.92 1.02
B 0.00 0.09 0.29 0.65 6.96 81.60 4.43 5.98
ccc | 017 0.00 0.36 1.09 2.35 10.37 64.06 21.60
D 0.00  0.00  0.00 0.00 0.00 0.00 0.00 100.0

For instance, there is a 90.58% probability that firms with the best rating remain
with the same grade the following year.

We look at today’s situation, the proportion of firms in each rating, and
we build the initial vector z(®) = (Z§0)7 ce zg))). According to this model, the
vector of percentages will be, after k years, z(*) = z(OA¥,

It might be interesting, for instance, to study the asymptotic behaviour of
the system —imagine we want to value long term investments, such as 20-30
year bonds. This means to estimate the percentage vector when k — oo, should
z(>) be called.

The most striking thing is that, if A = 1 is the unique dominant eigenvalue
(i.e., if the matrix is primitive), then, no matter what the initial proportions are,
the stationary state z(°) coincides with the eigenvector associated to A = 1. Let
us remember that this eigenvector is the one given by Perron-Frobenius Theory.

This have to be seen in order to be believed. So we go back to Maple again
to perform the calculations for the following (column) stochastic matrix:

151t is the Standard & Poor’s transition matrix for ratings over the 1981-96 period.
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04 01 0.1 0.2
04 06 03 0.1
0.15 02 04 0

0.06 0.1 02 0.7

We kindly request Maple to calculate its eigenvalues and eigenvectors:

A=

> eigenvectors(4);
[1.0000000, 1, {[—0.37822566, —0.78653745, —0.35673556, —0.56304047]}],
[0.4999999982, 1, {[—0.2962451280, 0.4443676920, 0.4443676932, —0.5924902550] }],
[0.2292893218, 1, {[.2060703913, —0.7035683205, .6432117000, —.1457137708]}],
[0.3707106784, 1, {[—1.587596362, 0.9299924275, 1.780204107, —1.122600167]}]

Now we are no surprised at all by the output: the eigenvector associated to A = 1
is the one and only to have same sign entries —observe Maple has displayed an
eigenvector with negative entries, but you may change all its signs.

For our purposes, it is better to write it with positive entries summing to 1:

v = (0.1814432986, 0.3773195881, 0.1711340205, 0.2701030929) .

Let us go now to the probabilistic evolution. We start from a certain vector vg
and let the matrix do the rest:

> v0:=matrix(4,1,[0.2,0.2,0.4,0.2]);

0.2
0.2
v0 = 0.4
0.2
> seq(evalm(A™n &* v0), n=1..20);
0.18 0.1790 0.18010 0.1808450 0.18119850
0.34 0.3700 0.37610 0.3772100 0.37735750
0.230 |’ | 0.1870 |’ | 0.175650 |’ | 0.1724950 |’ | 0.171566750 |’
| 0.250 0.2640 0.268150 0.2694500 0.269877250
[ 0.1813472750 [ 0.1814064925 [0.1814293771 | [ 0.1814380744 ]
0.3773516500 0.3773356025 0.3773264713 0.3773223566
0.1712779750 |’ | 0.1711836113 0.1711515388 |’ | 0.1711403163 |’
| 0.2700231000 | 0.2700742937 | 0.2700926128 0.2700992527

[ 0.1814430288 0.1814431987
0.3773197423 0.3773196455
0.1711363090 |’ | 0.1711348585 0.1711343288 |’ | 0.1711341344
L 0.2701016795 L 0.2701025713 0.2701029001 | 0.2701030214

} [ 0.1814425722 }
[ 0.1814432617 } [ 0.1814432852 } [ 0.1814432937 0.1814432970

0.3773199980

[ 0.1814413475
0.3773206638

0.3773196092 0.3773195957 0.3773195905 0.3773195887
0.1711340626 |’ | 0.1711340361 0.1711340263 |’ [ 0.1711340226
L 0.2701030663 L 0.2701030830 | 0.2701030891 0.2701030913

[ 0.1814432982 0.1814432987 0.1814432988
0.3773195881 0.3773195878 0.3773195877
0.1711340214 |’ | 0.1711340209 0.1711340207

L 0.2701030923 0.2701030926 0.2701030927




P. Fernandez Gallardo 20

Only 20 steps are displayed, because, as the reader might check, the conver-
gence to the vector v is very fast. The reader is free to do his own calculations,
starting from (almost) any initial vector and he will end with the same result.
No tricks, always the same result! Mathematical Magic.

9.2 Other models and extensions

As mentioned before, Perron-Frobenius Theory also plays a central role in many
other contexts (we refer the reader to [13]). Let us mention just a pair:

e Biological models: A well known population model, in some sense a gener-
alization of the one developed by Fibonacci, is encoded with the so called
Leslie matrices. Their entries are non-negative numbers, related to the
transition fractions between age classes and the survival rates. If A\; is
the dominant eigenvalue, then the system behaviour (extinction, endless
growth or oscillating behaviour) depends upon the precise value of Ay
(A1 >1, A< 1or A=1 being the three cases of interest).

e Economic models: In 1973, Leontief was awarded the Nobel Prize for
the development of his input-output model. A certain country economy is
divided into sectors, and the basic hypothesis is that the j-th sector’s input
of the i-th sector’s output is proportional to the j-th sector’s output. In
these conditions, the existence of solution for the system depends upon the
value of the dominant eigenvalue of the matrix that encodes the features
of the problem.

Finally, there are several extensions of Perron-Frobenius Theory the reader
might find interesting:

e Cones in R™: The key point of Perron-Frobenius’ theorem is that any nxn
matrix with non-negative entries preserve the “positive octant”. But of
course, there is a general version dealing with (proper convex) cones'S
(see, for example, [1,4]).

e Banach spaces: Those readers versed in Functional Analysis and Spectral
Theory will be aware of the generalization to Banach spaces known as the
Krein-Rutman theorem (see [12] and [5]). And those engaged in Partial
Differential Equations will enjoy proving, using Krein-Rutman Theorem,
that the first eigenfunction of the laplacian in the Dirichlet problem (in
an open, connected and bounded set @ C R™) is positive (see the details
in [9, Appendix to Chapter VIII]).

16A set C' C R™ is said to be a cone if ax C C for any x € C and for any number a > 0.
It will be a convez cone if Ax + py € C for all x,y € C and A\, u > 0. A cone is proper if (a)
C N (=C) = {0}, (b) int(C) # B y (c) span(C) = R™.
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Coda

The design of a web search engine is a formidable technological challenge. But
in the end, we discover that the key point is Mathematics: a wise application of
theorems and a detailed analysis of the algorithm convergence. A new confirma-
tion of the unreasonable effectiveness of Mathematics in the Natural Sciences,
as Eugene Wigner used to say —as in so many other fields, we might add.

We hope that these pages will encourage the readers to explore for themselves
the many problems he have briefly sketched here —and hopefully, they have been
a source of good entertainment.

And a very fond farewell to Perron-Frobenius’ theorem, which plays a so
distinguished role in so many questions. Let us do it with a a humourous (but
regretfully untranslatable'”!) coplilla manriquenia:

Un hermoso resultado

que ademas se nos revela

indiscreto;

y un tanto desvergonzado,
porque de Google desvela
...su secreto.

To know more
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