Math 214-001– Final Exam Winter 2015

Time: 120 mins.

- 1. Answer all questions in the spaces provided.
- 2. Remember to show all work and justify.
- 3. Except for two notecards of size at most 3x5 inch, no outside assistance is allowed (no calculators).

Name: _

Section: _____

Question	Points	Score
1	12	
2	12	
3	8	
4	8	
5	18	
6	14	
7	24	
Total:	96	

- 1. Consider the matrix $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - (a) (4 points) Is A an orthogonal matrix? Explain.

(b) (4 points) One of the eigenvalues of A is $\lambda = 1$. What is the geometric multiplicity of λ ?.

(c) (4 points) Does A have other eigenvalues? Explain.

(a) (4 points) Compute the reduced row echelon form of A.

(b) (4 points) Give a basis to Im A.

(c) (4 points) Give a basis to $\ker A$.

3. (8 points) Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3/5 & 25 \\ 0 & 4/5 & 25 \end{bmatrix}$. Find the QR decomposition of A. $\int \sqrt{N(h ? ICS}$ $\int \sqrt{N(h ? ICS})$ $\int \sqrt{N(h ? ICS}$ $\int \sqrt{N(h ? ICS})$ $\int \sqrt{N(h ? ICS}$ $\int \sqrt{N(h ? ICS})$ $\int \sqrt{N(h ? ICS})$ $\int \sqrt{N(h ?$

4. For which a, b

(a) (2 points) the matrix
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & a & b \end{bmatrix}$$
 is orthogonal.

(b) (2 points) the matrix
$$B = \begin{bmatrix} 2 & 3 \\ a & 2 \end{bmatrix}$$
 has real eigenvalues.

(c) (2 points) the matrix
$$C = \begin{bmatrix} 3 & 3 & 3 \\ 3 & a & 3 \\ b & 3 & 3 \end{bmatrix}$$
 has an orthonormal eigenbasis.

(d) (2 points) the matrix
$$D = \begin{bmatrix} b & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & b \end{bmatrix}$$
 is invertible.

5. Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. (a) (3 points) Find the eigenvalues of A.

(b) (3 points) Find an eigenbasis for A.

(c) (3 points) Diagonalize A. That is, find matrices S, D such that $S^{-1}AS = D$ is diagonal.

(d) (3 points) Find A^n . You are allowed to write your final answer as a product of at most 3 matrices.

(there is no need to verify this fact).

(a) (6 points) Find the singular value decomposition $A = U\Sigma V^T$ for the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$.

The image of the unit circle under the map $T(\vec{x}) = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \vec{x}$ is an ellipse denoted be \mathcal{E} . (b) (4 points) What are the semi-minor and semi-major of \mathcal{E} ?

(c) (4 points) What is the area of \mathcal{E} ? (Hint: the area of the unit circle is π).

MIND K8

7. Determine whether the following statements are true or false, and give justification or a counterexample. (a) (4 points) The matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is diagonalizable.

(b) (4 points) Let A be a real 6×6 matrix with eigenvalue 1 + i of algebraic multiplicity 3. Then trace(A) = 6.

(c) (4 points) For any 8×8 -matrix A, det(-A) = det(A).

(d) (4 points) Let v_1 and v_2 be vectors in \mathbb{R}^3 . The determinant of the 3×3 matrix with columns v_1 , v_2 , and $2v_1 + 3v_2$ is 0.

(e) (4 points) A 5×5 real matrix has a real eigenvalue.

(f) (4 points) The matrices
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$ are similar.