Math 214-001- Final Exam Winter 2015

Time: 120 mins.

1. Answer all questions in the spaces provided.
2. Remember to show all work and justify.
3. Except for two notecards of size at most 3×5 inch, no outside assistance is allowed (no calculators).

Name: \qquad Section: \qquad

Question	Points	Score
1	12	
2	12	
3	8	
4	8	
5	18	
6	14	
7	24	
Total:	96	

1. Consider the matrix $A=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(a) (4 points) Is A an orthogonal matrix? Explain.
(b) (4 points) One of the eigenvalues of A is $\lambda=1$. What is the geometric multiplicity of λ ?.
(c) (4 points) Does A have other eigenvalues? Explain.
2. Let $A=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$ be a 6×6 matrix.
(a) (4 points) Compute the reduced row echelon form of A.
(b) (4 points) Give a basis to $\operatorname{Im} A$.
(c) (4 points) Give a basis to $\operatorname{ker} A$.

$$
\begin{aligned}
& \text { 3. (8 points) Let } A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 / 5 & 25 \\
0 & 4 / 5 & 25
\end{array}\right] \text {. Find the } Q R \text { decomposition of } A \text {. } \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{lll}
1 \\
3 / 5 \\
4 / 5
\end{array}\right] /\left[\begin{array}{lll}
25 \\
25
\end{array}\right]}
\end{aligned}
$$

4. For which a, b
(a) (2 points) the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 1 / \sqrt{2} & a & b\end{array}\right]$ is orthogonal.
(b) (2 points) the matrix $B=\left[\begin{array}{ll}2 & 3 \\ a & 2\end{array}\right]$ has real eigenvalues.
(c) (2 points) the matrix $C=\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & a & 3 \\ b & 3 & 3\end{array}\right]$ has an orthonormal eigenbasis.
(d) (2 points) the matrix $D=\left[\begin{array}{lll}b & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & b\end{array}\right]$ is invertible.
5. Let $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$.
(a) (3 points) Find the eigenvalues of A.
(b) (3 points) Find an eigenbasis for A.
(c) (3 points) Diagonalize A. That is, find matrices S, D such that $S^{-1} A S=D$ is diagonal.
（d）（3 points）Find A^{n} ．You are allowed to write your final answer as a product of at most 3 matrices．
（e）（6 points）Sketch all the points $(x, y) \in \mathbb{R}^{2}$ satisfying $3 x^{2}+2 x y+3 y^{2}=1$ ．〔」ノノフ』 く8

6. The matrix $B=\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ can be orthogonally diagonalized in the following way

$$
B=\left[\begin{array}{cccc}
-1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 & 0 \\
-1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
-1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 & 0 \\
-1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 1 & 0
\end{array}\right]^{-1}
$$

(there is no need to verify this fact).
(a) (6 points) Find the singular value decomposition $A=U \Sigma V^{T}$ for the matrix $A=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$.

The image of the unit circle under the map $T(\vec{x})=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right] \vec{x}$ is an ellipse denoted be \mathcal{E}.
(b) (4 points) What are the semi-minor and semi-major of \mathcal{E} ?
(c) (4 points) What is the area of \mathcal{E} ? (Hint: the area of the unit circle is π).
7. Determine whether the following statements are true or false, and give justification or a counterexample.
(a) (4 points) The matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is diagonalizable.
(b) (4 points) Let A be a real 6×6 matrix with eigenvalue $1+i$ of algebraic multiplicity 3 . Then $\operatorname{trace}(A)=6$.

(c) (4 points) For any 8×8-matrix A, $\operatorname{det}(-A)=\operatorname{det}(A)$.
(d) (4 points) Let v_{1} and v_{2} be vectors in \mathbb{R}^{3}. The determinant of the 3×3 matrix with columns v_{1}, v_{2}, and $2 v_{1}+3 v_{2}$ is 0 .
(e) (4 points) A 5×5 real matrix has a real eigenvalue.
(f) (4 points) The matrices $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right]$ are similar.

