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Introduction

Interacting particle systems (IPS) are mathematical models of complex phenomena involving a
large number of interrelated components. There are numerous examples within all areas of nat-
ural and social sciences, such as traffic flow on motorways or communication networks, opinion
dynamics, spread of epidemics or fires, genetic evolution, reaction diffusion systems, crystal sur-
face growth, financial markets, etc. The central question is to understand and predict emergent
behaviour on macroscopic scales, as a result of the microscoping dynamics and interactions of in-
dividual components. Qualitative changes in this behaviour depending on the system parameters
are known as collective phenomena or phase transitions and are of particular interest.

In IPS the components are modeled as particles confined to a lattice or some discrete geome-
try. But applications are not limited to systems endowed with such a geometry, since continuous
degrees of freedom can often be discretized without changing the main features. So depending on
the specific case, the particles can represent cars on a motorway, molecules in ionic channels, or
prices of asset orders in financial markets, to name just a few examples. In principle such systems
often evolve according to well-known laws, but in many cases microscopic details of motion are
not fully accessible. Due to the large system size these influences on the dynamics can be approx-
imated as effective random noise with a certain postulated distribution. The actual origin of the
noise, which may be related to chaotic motion or thermal interactions, is usually ignored. On this
level the statistical description in terms of a random process where particles move and interact
according to local stochastic rules is an appropriate mathematical model. It is neither possible nor
required to keep track of every single particle. One is rather interested in predicting measurable
quantities which correspond to expected values of certain observables, such as the growth rate
of the crystalline surface or the flux of cars on the motorway. Although describing the system
only on a mesoscopic level as explained above, stochastic particle systems are usually referred
to as microscopic models and we stick to this convention. On a macroscopic scale, a continuum
description of systems with a large number of particles is given by coarse-grained density fields,
evolving in time according to a partial differential equation. The form of this equation depends on
the particular application, and its mathematical connection to microscopic particle models is one
of the fundamental questions in complexity science.

The focus of these notes is not on detailed models of real world phenomena, but on simple
paradigmatic IPS that capture the main features of real complex systems. Several such models
have been introduced in the seminal paper [1]. They allow for a detailed mathematical analysis
leading to a deeper understanding of the fundamental principles of emergence and collective phe-
nomena. The notes provide an introduction into the well developed mathematical theory for the
description of the dynamics of IPS, involving graphical representations and an analytic descrip-
tion using semigroups and generators. Since the external conditions for real systems are often
constant or slowly varying with respect to the system dynamics, observations are typically avail-
able in a time stationary situation. This is described by the invariant measures of the stochastic
particle systems which are thus of major interest in their analysis, and are introduced at the end
of Section 1 which covers the basic theory. Later sections provide a more detailed discussion of
several examples of basic IPS, probabilistic techniques used for their analysis such as coupling,
duality and relative entropy methods are introduced along. The second main aspect of the notes,
also covered in Sections 2 to 4, is to get acquainted with different types of collective phenomena
in complex systems. We will discuss their intimate relationship with symmetries and conserva-
tion laws of the dynamics, and make connections to the classical theory of phase transitions in
statistical mechanics.
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Figure 1: Left: Traffic data gathered from inductance loops showing car speeds on the M25 London orbital
motorway averaged over 1 minute intervals (taken from [2]). Right: segregation pattern of a neutral genetic
marker in E. coli growth from a mixed population of circular shape (taken from [3]).

Necessary prerequisites for the reader are basic knowledge in undergraduate mathematics,
in particular probability theory and stochastic processes. For the latter, discrete time Markov
chains are sufficient since the concept of continuous time processes will be introduced in Section
1. Acquaintance with measure theoric concepts and basic functional analysis is helpful but not
necessary.

Before we get immersed into mathematics let us quickly discuss two real world examples of
recent studies, to illustrate the motivation and the origin of the processes which we will work
with. The left of Figure 1 shows colour-coded data for the car speed on the M25 London orbital
motorway as a function of space and time. The striped patterns of low speed correspond to stop-
and-go waves during rush hour. Often there is no obvious external cause such as an accident or
road closure, so this pattern has to be interpreted as an intrinsic collective phenomenon emerging
from the interactions of cars on a busy road. A minimal mathematical description of this situation
in terms of IPS would be to take a one-dimensional lattice Λ = Z (or a subset thereof), and at
each site x ∈ Λ denote the presence or absence of a car with an occupation number η(x) = 1 or
0, respectively. So the state space of our mathematical model is given by the set {0, 1}Λ denoting
all possible configurations η =

(
η(x)

)
x∈Λ

. In terms of dynamics, we only want to model normal
traffic on a single lane road without car crashes or overtaking. So cars are allowed to proceed one
lattice site to the right, say, with a given rate1, provided that the site in front is not occupied by
another car. The rate may depend on the surrounding configuration of cars (e.g. number of empty
sites ahead), and relatively simple choices depending only on three or four neighbouring sites can
already lead to interesting patterns and the emergence of stop-and-go waves. There are numerous
such approaches in the literature known as cellular automata models for traffic flow, see e.g. [4]
and references therein. The defining features of this process in terms of IPS are that no particles
are created or destroyed (conservation of the number of particles) and that there is at most one
particle per site (exclusion rule). Processes with both or only the first property will be discussed
in detail in Sections 2 and 3, respectively.
The right of Figure 1 shows segregation patterns of a microbial species (E. coli) when grown in

1The concept of ’rate’ and exact mathematical formulations of the dynamics will be introduced in Section 1.
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rich growth medium from a mixed initial population of circular shape. Each individuum appears
either red or green as a result of a neutral genetic marker that only affects the colour. A possible
IPS model of this system has a state space {0, R,G}Λ, where the lattice is now two dimensional,
say Λ = Z2 for simplicity, and 0 represents an empty site,R the presence of a red andG of a green
individuum. The dynamics can be modeled by letting each individuum split into two (R → 2R
or G → 2G) with a given rate, and then place the offspring on an empty neighbouring site. If
there is no empty neighbouring site the reproduction rate is zero (or equivalently the offspring is
immediately killed). Therefore we have two equivalent species competing for the same resource
(empty sites), and spatial segregation is a result of the fact that once the red particles died out in
a certain region due to fluctuations, all the offspring is descending from green ancestors. Note
that in contrast to the first example, the number of particles in this model is not conserved. The
simplest such process to model extinction or survival of a single species is called contact process,
and is discussed in detail in Section 4.
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1 Basic theory

1.1 Markov processes

The state spaceX of a stochastic process is the set of all configurations which we typically denote
by η or ζ. For interacting particle systems the state space is of the form X = SΛ where the local
state space S ⊆ Z is a finite subset of the integers, such as S = {0, 1} or S = {0, 1, 2} to indicate
e.g. the local occupation number η(x) ∈ S for all x ∈ Λ. Λ is any countable set such as a regular
lattice or the vertex set of a graph. We often do not explicitly specify the edge set or connectivity
strucutre of Λ but, unless stated otherwise, we always assume it to be strongly connected to avoid
degeneracies, i.e. any pair of points in Λ is connected (along a possibly directed path).

The particular structure of the state space is not essential to define a Markov process in gen-
eral, what is essential for that is that X is a compact metric space. Spaces of the above form
have that property w.r.t. the product topology1. The metric structure of X allows us to properly
define regular sample paths and continuous functions, and set up a measurable structure, whereas
compactness becomes important only later in connection with stationary distributions.

A continuous time stochastic process (ηt : t ≥ 0) is then a family of random variables ηt
taking values in X . This can be characterized by a probability measure P on the canonical path
space

D[0,∞) =
{
η. : [0,∞)→ X càdlàg

}
. (1.3)

By convention, this is the set of right continuous functions with left limits (càdlàg). The elements
ofD[0,∞) are the sample paths t 7→ ηt ∈ X , written shortly as η. or η. For an IPS withX = SΛ,
ηt(x) denotes the occupation of site x at time t.

Note that as soon as |S| > 1 and Λ is infinite the state space X = SΛ is uncountable. But
even if X itself is countable (e.g. for finite lattices), the path space is always uncountable due to
the continuous time t ∈ R. Therefore we have to think about measurable structures on D[0,∞)
and the state space X in the following. The technical details of this are not really essential for
the understanding but we include them here for completeness. The metric on X provides us with
a generic topology of open sets generating the Borel σ-algebra, which we take as the measurable
structure on X . Now, let F be the smallest σ-algebra on D[0,∞) such that all the mappings
η. 7→ ηs for s ≥ 0 are measurable w.r.t. F . That means that every path can be evaluated or
observed at arbitrary times s, i.e.

{ηs ∈ A} =
{
η.
∣∣ηs ∈ A} ∈ F (1.4)

1Why is X = SΛ a compact metric space?
The discrete topology σx on the local state space S is simply given by the power set, i.e. all subsets are ’open’. The
choice of the metric does not influence this and is therefore irrelevant for that question. The product topology σ on X
is then given by the smallest topology such that all the canonical projections η(x) : X → S (occupation at a site x for
a given configuration η) are continuous (pre-images of open sets are open). That means that σ is generated by sets

η(x)−1(U) = {η : η(x) ∈ U} , U ⊆ {0, 1} , (1.1)

which are called open cylinders. Finite intersections of these sets

{η : η(x1) ∈ U1, . . . , η(xn) ∈ Un} , n ∈ N, Ui ⊆ {0, 1} (1.2)

are called cylinder sets and any open set on X is a (finite or infinite) union of cylinder sets. Clearly {0, 1} is compact
since σx is finite, and by Tychonoff’s theorem any product of compact topological spaces is compact (w.r.t. the product
topology). This holds for any countable lattice or vertex set Λ.
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for all measurable subsets A ∈ X . This is certainly a reasonable minimal requirement for F . If
Ft is the smallest σ-algebra on D[0,∞) relative to which all the mappings η. 7→ ηs for s ≤ t
are measurable, then (Ft : t ≥ 0) provides a natural filtration for the process. The filtered space(
D[0,∞),F , (Ft : t ≥ 0)

)
serves as a generic choice for the probability space of a stochastic

process.

Definition 1.1 A (homogeneous) Markov process onX is a collection (Pζ : ζ ∈ X) of probability
measures on D[0,∞) with the following properties:

(a) Pζ
(
η. ∈ D[0,∞) : η0 = ζ

)
= 1 for all ζ ∈ X ,

i.e. Pζ is normalized on all paths with initial condition η0 = ζ.

(b) Pζ(ηt+. ∈ A|Ft) = Pηt(A) for all ζ ∈ X , A ∈ F and t > 0 . (Markov property)

(c) The mapping ζ 7→ Pζ(A) is measurable for every A ∈ F .

Note that the Markov property as formulated in (b) implies that the process is (time-)homogeneous,
since the law Pηt does not have an explicit time dependence. Markov processes can be generalized
to be inhomogeneous (see e.g. [15]), but we will concentrate only on homogeneous processes. The
condition in (c) allows to consider processes with general initial distributions µ ∈M1(X) via

Pµ :=
∫
X

Pζµ(dζ) . (1.5)

When we do not want to specify the initial condition for the process we will often only write P.

1.2 Continuous time Markov chains and graphical representations

Throughout this section let X be a countable set. Markov processes on X are called Markov
chains. They can be understood without a path space description on a more basic level, by studying
the time evolution of distributions pt(η) := P(ηt = ζ) (see e.g. [14] or [15]). The dynamics of
Markov chains can be characterized by transition rates c(ζ, ζ ′) ≥ 0, which have to be specified
for all ζ, ζ ′ ∈ X . For a given process (Pζ : ζ ∈ X) the rates are defined via

Pζ(ηt = ζ ′) = c(ζ, ζ ′) t+ o(t) as t↘ 0 for ζ 6= ζ ′ , (1.6)

and represent probabilities per unit time. We do not go into the details here of why the linearization
in (1.6) for small times t is valid. It can be shown under the assumption of uniform continuity of
t 7→ Pζ(ηt = ζ ′) as t↘ 0, which is also called strong continuity (see e.g. [13], Section 19). This
is discussed in more detail for general Markov processes in Section 1.4. We will see in the next
subsection how a given set of rates determines the path measures of a process. Now we would like
to get an intuitive understanding of the time evolution and the role of the transition rates. For a
process with η0 = ζ, we denote by

Wζ := inf{t ≥ 0 : ηt 6= ζ} (1.7)

the holding time in state ζ. The value of this time is related to the total exit rate out of state ζ,

cζ :=
∑
ζ′ 6=ζ

c(ζ, ζ ′) . (1.8)
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We assume in the following that cζ <∞ for all ζ ∈ X (which is only a restriction ifX is infinite).
As shown below, this ensures that the process has a well defined waiting time in each state cζ
which is essential to construct the dynamics locally in time. To have well defined global dynamics
for all t ≥ 0 we also have to exclude that the chain explodes1, which is ensured by a uniform
bound

c̄ = sup
ζinX

cζ < 0 . (1.9)

If cζ = 0, ζ is an absorbing state and Wζ =∞ a.s. .

Proposition 1.1 If cζ ∈ (0,∞), Wζ ∼ Exp(cζ) and Pζ(ηWζ
= ζ ′) = c(ζ, ζ ′)/cζ .

Proof. Wζ has the ’loss of memory’ property

Pζ(Wζ > s+ t|Wζ > s) = Pζ(Wζ > s+ t|ηs = ζ) = Pζ(Wζ > t) , (1.10)

the distribution of the holding timeWζ does not depend on how much time the process has already
spent in state ζ. Thus

Pζ(Wζ > s+ t, Wζ > s) = Pζ(Wζ > s+ t) = Pζ(Wζ > s) Pζ(Wζ > t) . (1.11)

This is the functional equation for an exponential and implies that

Pζ(Wζ > t) = eλt (with initial condition Pζ(Wζ > 0) = 1) . (1.12)

The exponent is given by

λ =
d

dt
Pζ(Wζ > t)

∣∣
t=0

= lim
t↘0

Pζ(Wζ > t)− 1
t

= −cζ , (1.13)

since with (1.6) and (1.8)

Pζ(Wζ > 0) = 1− Pζ(ηt 6= ζ) + o(t) = 1− cζt+ o(t) . (1.14)

Now, conditioned on a jump occuring in the time interval [t, t+ h) we have

Pζ(ηt+h = ζ ′|t ≤Wζ < t+ h) = Pζ(ηh = ζ ′|Wζ < h) =
Pζ(ηh = ζ ′)
Pζ(Wζ < h)

→ c(ζ, ζ ′)
cζ

(1.15)

as h ↘ 0, using the Markov property and L’Hopital’s rule with (1.6) and (1.13). With right-
continuity of paths, this implies the second statement. 2

We summarize some important properties of exponential random variables, the proof of which
can be found in any standard textbook. LetW1,W2, . . . be a sequence of independent exponentials
Wi ∼ Exp(λi). Then E(Wi) = 1/λi and

min{W1, . . . ,Wn} ∼ Exp
( n∑
i=1

λi

)
. (1.16)

1Explosion means that the Markov chain exhibits infinitely many jumps in finite time. For more details see e.g.
[14], Section 2.7.
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Figure 2: Sample path (càdlàg) of a Poisson process with holding times W0, W1, . . ..

The sum of iid exponentials with λi = λ is Γ-distributed, i.e.

n∑
i=1

Wi ∼ Γ(n, λ) with PDF
λnwn−1

(n− 1)!
e−λw . (1.17)

Example. The Poisson process (Nt : t ≥ 0) with rate λ > 0 (short PP (λ)) is a Markov chain
with X = N = {0, 1, . . .}, N0 = 0 and c(n,m) = λ δn+1,m.

With iidrv’s Wi ∼ Exp(λ) we can write Nt = max{n :
∑n

i=1Wi ≤ t}. This implies

P(Nt = n) = P
( n∑
i=1

Wi ≤ t <
n+1∑
i=1

Wi

)
=
∫ t

0
P
( n∑
i=1

Wi = s
)

P(Wn+1 > t−s) ds =

=
∫ t

0

λnsn−1

(n− 1)!
e−λs e−λ(t−s) ds =

(λt)n

n!
e−λt , (1.18)

so Nt ∼ Poi(λt) has a Poisson distribution. Alternatively a Poisson process can be characterized
by the following.

Proposition 1.2 (Nt : t ≥ 0) ∼ PP (λ) if and only if it has stationary, independent increments,
i.e.

Nt+s −Ns ∼ Nt −N0 and Nt+s −Ns independent of (Nu : u ≤ s) , (1.19)

and for each t, Nt ∼ Poi(λt).

Proof. By the loss of memory property and (1.18) increments have the distribution

Nt+s −Ns ∼ Poi(λt) for all s ≥ 0 , (1.20)

and are independent of Ns which is enough together with the Markov property.
The other direction follows by deriving the jump rates from the properties in (1.19) using (1.6). 2

Remember that for independent Poisson variables Y1, Y2, . . . with Yi ∼ Poi(λi) we have
E(Yi) = V ar(Yi) = λi and

n∑
i=1

Yi ∼ Poi
( n∑
i=1

λi

)
. (1.21)
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With Prop. 1.2 this immediately implies that adding a finite number of independent Poisson pro-
cesses (N i

t : t ≥ 0) ∼ PP (λi), i = 1, . . . , n results in a Poisson process, i.e.

Mt =
n∑
i=1

N i
t ⇒ (Mt : t ≥ 0) ∼ PP

( n∑
i=1

λi

)
. (1.22)

Example. A continuous-time simple random walk (ηt : t ≥ 0) on X = Z with jump rates p to the
right and q to the left is given by

ηt = Rt − Lt where (Rt : t ≥ 0) ∼ PP (p), (Lt : t ≥ 0) ∼ PP (q) . (1.23)

The process can be constructed by the following graphical representation:

X=Z

time

0 21−1−2−3−4 3 4

In each column the arrows→∼ PP (p) and←∼ PP (q) are independent Poisson processes. To-
gether with the initial condition, the trajectory of the process shown in red is then uniquely deter-
mined. An analogous construction is possible for a general Markov chain, which is a continuous
time random walk on X with jump rates c(ζ, ζ ′). In this way we can also construct interacting
random walks and more general IPS, as is shown in the next section.
Note that the restriction cζ >∞ for all ζ ∈ X excludes e.g. random walks onX = Z which move
non-locally and jump to any site with rate c(ζ, ζ ′) = 1. In the graphical construction for such a
process there would not be a well defined first jump event and the path could not be constructed.
However, as long as the rates are summable, such as

c(ζ, ζ ′) = (ζ − ζ ′)−2 for all ζ, ζ ′ ∈ Z , (1.24)

we have cζ <∞, and the basic properties of adding Poisson processes or taking minima of expo-
nential random variables extend to infinitely many. So the process is well defined and the path can
be constructed in the graphical representation.
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1.3 Three basic IPS

For the IPS introduced in this section the state space is of the form X = {0, 1}Λ, particle config-
urations η = (η(x) : x ∈ Λ). η(x) = 1 means that there is a particle at site x and if η(x) = 0 site
x is empty. The lattice Λ can be any countable set, typical examples we have in mind are regular
lattices Λ = Zd, subsets of those, or the vertex set of a given graph.

As noted before, if Λ is infiniteX is uncountable, so we are not dealing with Markov chains in
this section. But for the processes we consider the particles move/interact only locally and one at a
time, so a description with jump rates still makes sense. More specifically, for a given η ∈ X there
are only countably many η′ for which c(η, η′) > 0. Define the configurations ηx and ηxy ∈ X for
x 6= y ∈ Λ by

ηx(z) =
{

η(z) , z 6= x
1− η(x) , z = x

and ηxy(z) =


η(z) , z 6= x, y
η(y) , z = x
η(x) , z = y

, (1.25)

so that ηx corresponds to creation/annihilation of a particle at site x and ηxy to motion of a particle
between x and y. Then following standard notation we write for the corresponding jump rates

c(x, η) = c(η, ηx) and c(x, y, η) = c(η, ηxy) . (1.26)

All other jump rates including e.g. multi-particle interactions or simultaneous motion are zero.

Definition 1.2 Let p(x, y) ≥ 0, x, y ∈ Λ, be transition rates of an irreducible continuous-time
random walk on Λ. The exclusion process (EP) on X is then characterized by the jump rates

c(x, y, η) = p(x, y)η(x)(1− η(y)) , x, y ∈ Λ (1.27)

where particles only jump to empty sites (exclusion interaction). If Λ is a regular lattice and
p(x, y) > 0 only if x and y are nearest neighbours, the process is called simple EP (SEP). If
in addition p(x, y) = p(y, x) for all x, y ∈ Λ it is called symmetric SEP (SSEP) and otherwise
asymmetric SEP (ASEP).

Note that the presence of a direct connection (or directed edge) (x, y) is characterized by p(x, y) >
0, and irreducibility of p(x, y) is equivalent to Λ being strongly connected. Particles only move
and are not created or annihilated, therefore the number of particles in the system is conserved in
time. In general such IPS are called lattice gases. The ASEP in one dimension d = 1 is one of
the most basic and most studied models in IPS and nonequilibrium statistical mechanics (see e.g.
[30] and references therein), and a common quick way of defining it is

10
p−→ 01 , 01

q−→ 10 (1.28)

where particles jump to the right (left) with rate p (q). Variants and extensions of exclusion pro-
cesses are used to model all kinds of transport phenomena, including for instance traffic flow (see
e.g. [30, 31] and references therein).
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X=Z

time

0 21−1−2−3−4 3 4

The graphical construction is analogous to the single particle process given above, with the addi-
tional constraint of the exclusion interaction. We will discuss exclusion processes in more detail
in Section 2. Exclusion is of course not the only possible interaction between random walkers,
and we will discuss a different example with a simpler zero-range interaction in Section 3.

Definition 1.3 The contact process (CP) on X is characterized by the jump rates

c(x, η) =
{

1 , η(x) = 1
λ
∑

y∼x η(y) , η(x) = 0 , x ∈ Λ . (1.29)

Particles can be interpreted as infected sites which recover with rate 1 and are infected indepen-
dently with rate λ > 0 by particles on connected sites y ∼ x.

In contrast to the EP the CP does not have a conserved quantity like the number of particles, but it
does have an absorbing state η ≡ 0, since there is no spontaneous infection. A compact notation
for the CP is

1 1−→ 0 , 0→ 1 with rate λ
∑
y∼x

η(x) . (1.30)

The graphical construction below contains now a third independent Poisson process × ∼ PP (1)
on each line marking the recovery events. The infection events are marked by the independent
PP (λ) Poisson processes→ and←.
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X=Z

time

0 21−1−2−3−4 3 4

The CP and related models have applications in population dynamics and the spread of infecteous
diseases/viruses etc. (see e.g. [32] and references therein).

Definition 1.4 Let p(x, y) ≥ 0, x, y ∈ Λ be irreducible transition rates on Λ as for the EP. The
linear voter model (VM) on X is characterized by the jump rates

c(x, η) =
∑
y∈Λ

p(x, y)
(
η(x)

(
1− η(y)

)
+
(
1− η(x)

)
η(y)

)
, x ∈ Λ . (1.31)

0 and 1 can be interpreted as two different opinions, and a site x adopts the opinion of site y with
rate p(x, y) independently for all connected sites with different opinion.

Note that the voter model is symmetric under flipping occupation numbers, i.e.

c(x, η) = c(x, ζ) if ζ(x) = 1− η(x) for all x ∈ Λ . (1.32)

Consequently it has two absorbing states η ≡ 0, 1, which correspond to fixation of one of the
opinions. For the general (non-linear) voter model the jump rates c(x, η) can be any function
that exhibits the symmetry (1.32), no spontaneous change of opinion and monotonicity, i.e. for
η(x) = 0 we have

c(x, η) = 0 if
∑
y∼x

η(y) = 0 ,

c(x, η) ≥ c(x, ζ) if η(y) ≥ ζ(y) for all y ∼ x , (1.33)

with corresponding symmetric rules for η(x) = 1. This model and its generalizations have appli-
cations in opinion dynamics and formation of cultural beliefs (see e.g. [33] and references therein).
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1.4 Semigroups and generators

Let X be a compact metric space and denote by

C(X) = {f : X → R continuous} (1.34)

the set of real-valued continuous functions. This as a Banach space with sup-norm ‖f‖∞ =
supη∈X

∣∣f(η)
∣∣, since by compactness of X , ‖f‖∞ < ∞ for all f ∈ C(X). Functions f can be

regarded as observables, and we are interested in their time evolution rather than the evolution of
the full distribution. This is not only mathematically easier to formulate, but also more relevant
in most applications. The full detail on the state of the process is typically not directly accessible,
but is approximated by a set of measurable quantities in the spirit of C(X) (but admittedly often
much smaller than C(X)). And moreover, by specifying E

(
f(ηt)

)
for all f ∈ C(X) we have

completely characterized the distribution of the process at time t, since C(X) is dual to the set
M1(X) of all probability measures on X .1

Definition 1.5 For a given process (ηt : t ≥ 0) on X , for each t ≥ 0 we define the operator

S(t) : C(X)→ C(X) by
(
S(t)f

)
(ζ) := Eζf(ηt) . (1.35)

In general f ∈ C(X) does not imply S(t)f ∈ C(X), but all the processes we consider have this
property and are called Feller processes.

Proposition 1.3 Let (ηt : t ≥ 0) be a Feller process on X . Then the family
(
S(t) : t ≥ 0

)
is a

Markov semigroup, i.e.

(a) S(0) = Id, (identity at t = 0)

(b) t 7→ S(t)f is right-continuous for all f ∈ C(X), (right-continuity)

(c) S(t+ s)f = S(t)S(s)f for all f ∈ C(X), s, t ≥ 0, (semigroup/Markov property)

(d) S(t) 1 = 1 for all t ≥ 0, (conservation of probability)

(e) S(t)f ≥ 0 for all non-negative f ∈ C(X) . (positivity)

Proof. (a) S(0)f(ζ) = Eζ
(
f(η0)

)
= f(ζ) since η0 = ζ which is equivalent to (a) of Def. 1.1.

(b) for fixed η ∈ X right-continuity of t 7→ S(t)f(η) (a mapping from [0,∞) to R) follows
directly from right-continuity of ηt and continuity of f . Right-continuity of t 7→ S(t)f (a mapping
from [0,∞) to C(X)) w.r.t. the sup-norm on C(X) requires to show uniformity in η, which is
more involved (see e.g. [12], Chapter IX, Section 1).
(c) follows from the Markov property of ηt (Def. 1.1(c))

S(t+ s)f(ζ) = Eζf(ηt+s) = Eζ
(
Eζ
(
f(ηt+s

∣∣Ft)) = Eζ
(
Eηt
(
f(η̃s

))
=

= Eη
(
(S(s)f)(ηt)

)
= S(t)S(s)f(ζ) , (1.36)

where η̃ = ηt+. denotes the path of the process started at time t.
(d) S(t) 1 = Eη(1) = Eη

(
1ηt(X)

)
= 1 since ηt ∈ X for all t ≥ 0 (conservation of probability).

1The fact that probability measures on X can by characterised by expected values of functions on the dual C(X) is
a direct consequence of the Riesz representation theorem (see e.g. [16], Theorem 2.14).
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(e) is immediate by definition. 2

Remarks. Note that (b) implies in particular S(t)f → f as t → 0 for all f ∈ C(X), which is
usually called strong continuity of the semigroup (see e.g. [13], Section 19). Furthermore, S(t) is
also contractive, i.e. for all f ∈ C(X)∥∥S(t)f

∥∥
∞ ≤

∥∥S(t)|f |
∥∥
∞ ≤ ‖f‖∞

∥∥S(t)1
∥∥
∞ = ‖f‖∞ , (1.37)

which follows directly from conservation of probability (d). Strong continuity and contractivity
imply that t 7→ S(t)f is actually uniformly continuous for all t > 0. Using also the semigroup
property (c) we have for all t > ε > 0 and f ∈ C(X)∥∥S(t)f − S(t− ε)f

∥∥
∞ =

∥∥S(t− ε)
(
S(ε)f − f

)∥∥
∞ ≤

∥∥S(ε)f − f
∥∥
∞ , (1.38)

which vanishes for ε→ 0 and implies left-continuity in addition to right-continuity (b).

Theorem 1.4 Suppose (S(t) : t ≥ 0) is a Markov semigroup onC(X). Then there exists a unique
(Feller) Markov process (ηt : t ≥ 0) on X such that

Eζf(ηt) = S(t)f(ζ) for all f ∈ C(X), ζ ∈ X and t ≥ 0 . (1.39)

Proof. see [9] Theorem I.1.5 and references therein

The semigroup (S(t) : t ≥ 0) describes the time evolution of expected values of observables f on
X for a given Markov process. It provides a full representation of the process which is dual to the
path measures (Pζ : ζ ∈ X).
For a general initial distribution µ ∈M1(X) the path measure (1.5) is Pµ =

∫
X Pζµ(dζ). Thus

Eµf(ηt) =
∫
X

(
S(t)f

)
(ζ)µ(dζ) =

∫
X
S(t)f dµ for all f ∈ C(X) . (1.40)

Definition 1.6 For a process (S(t) : t ≥ 0) with initial distribution µ we denote by µS(t) ∈
M1(X) the distribution at time t, which is uniquely determined by∫

X
f d[µS(t)] :=

∫
X
S(t)f dµ for all f ∈ C(X) . (1.41)

The notation µS(t) is a convention from functional analysis, where we write

〈S(t)f, µ〉 :=
∫
X
S(t)f dµ = 〈f, S(t)∗µ〉 = 〈f, µS(t)〉 . (1.42)

The distribution µ is in fact evolved by the adjoint operator S(t)∗, which can also be denoted by
S(t)∗µ = µS(t). The fact that µS(t) is uniquely specified by (1.41) is again a consequence of the
Riesz representation theorem (see e.g. [16], Theorem 2.14).
Since (S(t) : t ≥ 0) has the semigroup structure given in Prop. 1.3(c), in analogy with the proof
of Prop. 1.1 we expect that it has the form of an exponential generated by the linearization S′(0),
i.e.

”S(t) = exp(tS′(0)) = Id+ S′(0) t+ o(t)” with S(0) = Id , (1.43)

which is made precise in the following.
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Definition 1.7 The generator L : DL → C(X) for the process (S(t) : t ≥ 0) is given by

Lf := lim
t↘0

S(t)f − f
t

for f ∈ DL , (1.44)

where the domain DL ⊆ C(X) is the set of functions for which the limit exists.

The limit in (1.44) is to be understood w.r.t. the sup-norm ‖.‖∞ on C(X). In generalDL ( C(X)
is a proper subset for processes on infinite lattices, and we will see later that this is in fact the case
even for the simplest examples SEP and CP we introduced above.

Proposition 1.5 L as defined above is a Markov generator, i.e.

(a) 1 ∈ DL and L1 = 0 , (conservation of probability)

(b) for f ∈ DL, λ ≥ 0: minζ∈X f(ζ) ≥ minζ∈X(f − λLf)(ζ) , (positivity)

(c) DL is dense in C(X) and the rangeR(Id− λL) = C(X) for sufficiently small λ > 0.

Proof. (a) is immediate from the definition (1.44) and S(t) 1 = 1, the rest is rather technical and
can be found in [9] Section I.2 and in references therein.

Theorem 1.6 (Hille-Yosida) There is a one-to-one correspondence between Markov generators
and semigroups on C(X), given by (1.44) and

S(t)f := lim
n→∞

(
Id− t

n
L
)−n

f for f ∈ C(X), t ≥ 0 . (1.45)

Furthermore, for f ∈ DL also S(t)f ∈ DL for all t ≥ 0 and

d

dt
S(t)f = S(t)Lf = LS(t)f , (1.46)

called the forward and backward equation, respectively.

Proof. See [9], Theorem I.2.9. and references therein.

Remarks. Properties (a) and (b) in Prop. 1.5 are related to conservation of probability S(t) 1 = 1
and positivity of the semigroup (see Prop. 1.3). By taking closures a linear operator is uniquely
determined by its values on a dense set. So property (c) in Prop. 1.5 ensures that the semigroup
S(t) is uniquely defined via (1.45) for all f ∈ C(X), and that Id − t

n is actually invertible for n
large enough, as is required in the definition. The fact that DL is dense in C(X) is basically the
statement that t 7→ S(t) is indeed differentiable at t = 0, confirming the intuition (1.43). This can
be proved as a consequence of strong continuity of the semigroup.
Given that S(t)f is the unique solution to the backward equation

d

dt
u(t) = Lu(t) with initial condition u(0) = f , (1.47)

one often writes S(t) = etL in analogy to scalar exponentials as indicated in (1.43).
It can be shown that the R-valued process f(ηt)− S(t)f(η0) is a martingale. As an alternative to
the Hille-Yosida approach, the process (Pζ : ζ ∈ X) can be characterized as a unique solution to
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the martingale problem for a given Markov generator L (see [9], Sections I.5 and I.6).

Connection to Markov chains.
The forward and backward equation, as well as the role of the generator and semigroup are in
complete (dual) analogy to the theory of continuous-time Markov chains, where the Q-matrix
generates the time evolution of the distribution at time t (see e.g. [14] Section 2.1). The approach
we introduced above is more general and can of course describe the time evolution of Markov
chains with countable X . With jump rates c(η, η′) the generator can be computed directly using
(1.6) for small t↘ 0,

S(t)f(η) = Eη
(
f(ηt)

)
=
∑
η′∈X

Pη(ηt = η′) f(η′) =

=
∑
η′ 6=η

c(η, η′) f(η′) t+ f(η)
(

1−
∑
η′ 6=η

c(η, η′)t
)

+ o(t) . (1.48)

With the definition (1.44) this yields

Lf(η) = lim
t↘0

S(t)f − f
t

=
∑
η′∈X

c(η, η′)
(
f(η′)− f(η)

)
. (1.49)

Example. For the simple random walk with state space X = Z we have

c(η, η + 1) = p and c(η, η − 1) = q , (1.50)

while all other transition rates vanish. The generator is given by

Lf(η) = p
(
f(η + 1)− f(η)

)
+ q
(
f(η − 1)− f(η)

)
, (1.51)

and in the symmetric case p = q it is proportional to the discrete Laplacian.

In general, since the state space X for Markov chains is not necessarily compact, we have to
restrict ourselves to bounded continuous functions f . A more detailed discussion of conditions
on f for (1.49) to be a convergent sum for Markov chains can be found in Section 1.6. For IPS
with (possibly uncountable) X = {0, 1}Λ we can formally write down similar expressions for the
generator. For a lattice gas (e.g. SEP) we have

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηxy)− f(η)

)
(1.52)

and for pure reaction systems like the CP or the VM

Lf(η) =
∑
x∈Λ

c(x, η)
(
f(ηx)− f(η)

)
. (1.53)

For infinite lattices Λ convergence of the sums is an issue and we have to find a proper domain DL
of functions f for which they are finite.

Definition 1.8 For X = SΛ with S ⊆ N, f ∈ C(X) is a cylinder function if there exists a finite
subset ∆f ⊆ Λ such that

f(η) = f(ζ) for all η, ζ ∈ X with η(x) = ζ(x) for all x ∈ ∆f , (1.54)

i.e. f depends only on a finite set of coordinates of a configuration. We write C0(X) ⊆ C(X) for
the set of all cylinder functions.
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Examples. The indicator function 1η is in general not a cylinder function (only on finite lattices),
whereas the local particle number η(x) or the product η(x)η(x + y) are. These functions are
important observables, and their expectations correspond to local densities

ρ(t, x) = Eµ
(
ηt(x)

)
(1.55)

and two-point correlation functions

ρ(t, x, x+ y) = Eµ
(
ηt(x)ηt(x+ y)

)
. (1.56)

For f ∈ C0(X) the sum (1.53) contains only finitely many non-zero terms, so converges for any
given η. However, we need Lf to be finite w.r.t. the sup-norm of our Banach space

(
C(X), ‖.‖∞

)
.

To assure this, we also need to impose some regularity conditions on the jump rates. For simplicity
we will assume them to be of finite range as explained below. This is much more than is necessary,
but it is easy to work with and fulfilled by all the examples we consider. Basically the independence
of cylinder functions f and jump rates c on coordinates x outside a finite range ∆ ⊆ Λ can be
replaced by a weak dependence on coordinates x 6∈ ∆ decaying with increasing ∆ (see e.g. [9]
Sections I.3 and VIII.0 for a more general discussion).

Definition 1.9 The jump rates of an IPS on X = {0, 1}Λ are said to be of finite range R > 0 if
for all x ∈ Λ there exists a finite ∆ ⊆ Λ with |∆| ≤ R such that

c(x, ηz) = c(x, η) for all η ∈ X and z 6∈ ∆ . (1.57)

in case of a pure reaction system. For a lattice gas the same should hold for the rates c(x, y, η) for
all y ∈ Λ, with the additional requirement∣∣∣{y ∈ Λ : c(x, y, η) > 0

}∣∣∣ ≤ R for all η ∈ X and x ∈ Λ . (1.58)

Proposition 1.7 Under the condition of finite range jump rates, ‖Lf‖∞ <∞ for all f ∈ C0(X).
Furthermore, the operators L defined in (1.52) and (1.53) are uniquely defined by their values on
C0(X) and are Markov generators in the sense of Prop. 1.5.

Proof. Consider a pure reaction system with rates c(x, η) of finite range R. Then for each
x ∈ Λ, c(x, η) assumes only a finite number of values (at most 2R), and therefore c̄(x) =
supη∈X c(x, η) <∞. Then we have for f ∈ C0(X), depending on coordinates in ∆f ⊆ Λ,

‖Lf‖∞ ≤ 2‖f‖∞ sup
η∈X

∑
x∈∆f

c(x, η) ≤ 2‖f‖∞
∑
x∈∆f

sup
η∈X

c(x, η) ≤

≤ 2‖f‖∞
∑
x∈∆f

c̄(x) <∞ , (1.59)

since the last sum is finite with finite summands. A similar computation works for lattice gases.
The proof of the second statement is more involved, see e.g. [9], Theorem I.3.9. Among many
other points, this involves choosing a ’right’ metric such that C0(X) is dense in C(X), which is
not the case for the one induced by the sup-norm. 2

Generators are linear operators and Prop. 1.5 then implies that the sum of two or more generators
is again a Markov generator (modulo technicalities regarding domains, which can be substantial
in more general situations than ours, see e.g. [13]). In that way we can define more general
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processes, e.g. a sum of (1.52) and (1.53) could define a contact process with nearest-neighbour
particle motion. In general such mixed processes are called reaction-diffusion processes and are
extremely important in applications e.g. in chemistry or material science [33]. They will not be
covered in these notes where we concentrate on developing the mathematical theory for the most
basic models.

1.5 Stationary measures and reversibility

Definition 1.10 A measure µ ∈M1(X) is stationary or invariant if µS(t) = µ or, equivalently,∫
X
S(t)f dµ =

∫
X
f dµ or shorter µ

(
S(t)f

)
= µ(f) for all f ∈ C(X) . (1.60)

The set of all invariant measures of a process is denoted by I. A measure µ is called reversible if

µ
(
fS(t)g

)
= µ

(
gS(t)f

)
for all f, g ∈ C(X) . (1.61)

To simplify notation here and in the following we use the standard notation µ(f) =
∫
X f dµ for

integration. This is also the expected value w.r.t. the measure µ, but we use the symbol E only for
expectations on path space w.r.t. the measure P.
Taking g = 1 in (1.61) we see that every reversible measure is also stationary. Stationarity of µ
implies that

Pµ(η. ∈ A) = Pµ(ηt+. ∈ A) for all t ≥ 0, A ∈ F , (1.62)

using the Markov property (Def. 1.1(c)) with notation (1.5) and (1.60). Using ηt ∼ µ as initial
distribution, the definition of a stationary process can be extended to negative times on the path
space D(−∞,∞). If µ is also reversible, this implies

Pµ(ηt+. ∈ A) = Pµ(ηt−. ∈ A) for all t ≥ 0, A ∈ F , (1.63)

i.e. the process is time-reversible. More details on this are given at the end of this section.

Proposition 1.8 Consider a Feller process on a compact state space X with generator L. Then

µ ∈ I ⇔ µ(Lf) = 0 for all f ∈ C0(X) , (1.64)

and similarly

µ is reversible ⇔ µ(fLg) = µ(gLf) for all f, g ∈ C0(X) . (1.65)

Proof. The correspondence between semigroups and generatos in the is given Hille-Yosida theo-
rem in terms of limits in (1.44) and (1.45). By strong continuity of S(t) in t = 0 and restricting to
f ∈ C0(X) we can re-write both conditions as

Lf := lim
n→∞

S(1/n)f − f
1/n︸ ︷︷ ︸
:=gn

and S(t)f := lim
n→∞

(
Id+

t

n
L
)n
f︸ ︷︷ ︸

:=hn

. (1.66)

Now µ ∈ I implies that for all n ∈ N

µ
(
S(1/n)f

)
= µ(f) ⇒ µ(gn) = 0 . (1.67)
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Then we have

µ(Lf) = µ
(

lim
n→∞

gn

)
= lim

n→∞
µ(gn) = 0 , (1.68)

by bounded (or dominated) convergence, since gn converges in
(
C(X), ‖.‖∞

)
as long as f ∈

C0(X), X is compact and µ(X) = 1.
On the other hand, if µ(Lf) = 0 for all f ∈ C0(X), we have by linearity

µ(hn) = µ

((
Id+

t

n
L
)n
f

)
=

n∑
k=0

(
n

k

)
tk

nk
µ(Lkf) = µ(f) (1.69)

using the binomial expansion, where only the term with k = 0 contributes with L0 = Id. This
is by assumption since µ(Lkf) = µ

(
L(Lk−1f)

)
= 0 and Lk−1f ∈ C0(X). Then the same limit

argument as above (1.68) implies µ
(
S(t)f

)
= µ(f).

This finishes the proof of (1.64), a completely analogous argument works for the equivalence
(1.65) on reversibility. 2

It is well known for Markov chains that on a finite state space there exists at least one stationary
distribution (see Section 1.6). For IPS compactness of the state spaces X ensures a similar result.

Theorem 1.9 For every Feller process with compact state space X we have:

(a) I is non-empty, compact and convex.

(b) Suppose the weak limit µ = lim
t→∞

πS(t) exists for some initial distribution π ∈M1(X), i.e.

πS(t)(f) =
∫
X
S(t)f dπ → µ(f) for all f ∈ C(X) , (1.70)

then µ ∈ I.

Proof. (a) Convexity of I follows directly from two basic facts. Firstly, a convex combination of
two probability measures µ1, µ2 ∈M1(X) is again a probability measure, i.e.

ν := λµ1 + (1− λ)µ2 ∈M1(X) for all λ ∈ [0, 1] . (1.71)

Secondly, the stationarity condition (1.64) is linear, i.e. if µ1, µ2 ∈ I then so is ν since

ν(Lf) = λµ1(Lf) + (1− λ)µ2(Lf) = 0 for all f ∈ C(X) . (1.72)

I is a closed subset ofM1(X) if we have

µ1, µ2, . . . ∈ I, µn → µ weakly, implies µ ∈ I . (1.73)

But this is immediate by weak convergence, since for all f ∈ C(X)

µn(Lf) = 0 for all n ∈ N ⇒ µ(Lf) = lim
n→∞

µn(Lf) = 0 . (1.74)

Under the topology of weak convergenceM1(X) is compact since X is compact1, and therefore
also I ⊆M1(X) is compact since it is a closed subset of a convex set.

1For more details on weak convergence see e.g. [19], Section 2.
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Non-emptyness: By compactness ofM1(X) there exists a convergent subsequence of πS(t) for
every π ∈M1(X). With (b) the limit is in I.
(b) Let µ := limt→∞ πS(t). Then µ ∈ I since for all f ∈ C(X),

µ(S(s)f) = lim
t→∞

∫
X
S(s)f d[πS(t)] = lim

t→∞

∫
X
S(t)S(s)f dπ =

= lim
t→∞

∫
X
S(t+ s)f dπ = lim

t→∞

∫
X
S(t)f dπ =

= lim
t→∞

∫
X
f d[πS(t)] = µ(f) . (1.75)

2

Remark. By the Krein Milman theorem (see e.g. [17], Theorem 3.23), compactness and con-
vexity of I ⊆ M1(X) implies that I is the closed convex hull of its extreme points Ie, which
are called extremal invariant measures. Every invariant measure can therefore be written as a
convex combination of members of Ie, so the extremal measures are the ones we need to find for
a given process.

Definition 1.11 A Markov process with semigroup (S(t) : t ≥ 0) is ergodic if

(a) I = {µ} is a singleton, and (unique stationary measure)

(b) lim
t→∞

πS(t) = µ for all π ∈M1(X) . (convergence to equilibrium)

Phase transitions are related to the breakdown of ergodicity and in particular to non-uniqueness of
stationary measures. This can be the result of the presence of absorbing states (e.g. CP), or of spon-
taneous symmetry breaking/breaking of conservation laws (e.g. SEP or VM) as is discussed later.
On finite lattices, IPS are Markov chains which are known to have a unique stationary distribution
under reasonable assumptions of non-degeneracy (see Section 1.6). Therefore, mathematically
phase transitions occur only in infinite systems. Infinite systems are often interpreted/studied as
limits of finite systems, which show traces of a phase transition by divergence or non-analytic
behaviour of certain observables. In terms of applications, infinite systems are approximations or
idealizations of real systems which may be large but are always finite, so results have to interpreted
with care.
There is a well developed mathematical theory of phase transitions for reversible systems pro-
vided by the framework of Gibbs measures (see e.g. [10]). But for IPS which are in general
non-reversible, the notion of phase transitions is not unambiguous, and we will try to get an un-
derstanding by looking at several examples.

Further remarks on reversibility.
We have seen before that a stationary process can be extended to negative times on the path space
D(−∞,∞). A time reversed stationary process is again a stationary Markov process and the time
evolution is given by adjoint operators as explained in the following.

Let µ ∈M1(X) be the stationary measure of the process (S(t) : t ≥ 0) and consider

L2(X,µ) =
(
f ∈ C(X) : µ(f2) <∞

)
(1.76)

the set of test functions square integrable w.r.t. µ. With the inner product 〈f, g〉 = µ(fg) the
closure of this (w.r.t. the metric given by the inner product) is a Hilbert space, and the generator
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L and the S(t), t ≥ 0 are bounded linear operators on L2(X,µ). They are uniquely defined by
their values on C(X), which is a dense subset of the closure of L2(X,µ). Therefore they have an
adjoint operator L∗ and S(t)∗, respectively, uniquely defined by

〈S(t)∗f, g〉 = µ(gS(t)∗f) = µ(fS(t)g) = 〈f, S(t)g〉 for all f, g ∈ L2(X,µ) , (1.77)

and analogously for L∗. Note that the adjoint operators on the self-dual Hilbert space L2(X,µ)
are not the same as the adjoints mentioned in (1.42) onM1(X) (dual to C(X)), which evolve the
probability measures. To compute the action of the adjoint operator note that for all g ∈ L2(X,µ)

µ(gS(t)∗f) =
∫
X
fS(t)g dµ = Eµ

(
f(η0) g(ηt)

)
= Eµ

(
E
(
f(η0)

∣∣ηt)g(ηt)
)

=

=
∫
X

E
(
f(η0)

∣∣ηt = ζ
)
g(ζ)µ(dζ) = µ

(
g E
(
f(η0)

∣∣ηt = .
))

, (1.78)

where the identity between the first and second line is due to µ being the stationary measure. Since
this holds for all g it implies that

S(t)∗f(η) = E
(
f(η0)

∣∣ηt = η
)
, (1.79)

so the adjoint operator describes the evolution of the time-reversed process. Similarly, it can be
shown that the adjoint generator L∗ is actually the generator of the adjoint semigroup S(t)∗ : t ≥
0). This includes some technicalities with domains of definition, see e.g. [18] and references
therein. The process is time-reversible if L = L∗ and therefore reversibility is equivalent to L and
S(t) being self-adjoint as in (1.61) and (1.65).

1.6 Simplified theory for Markov chains

For Markov chains the state space X is countable, but not necessarily compact, think e.g. of a
random walk on X = Z. Therefore we have to restrict the construction of the semigroups to
bounded continuous functions

Cb(X) :=
{
f : X → R continuous and bounded

}
. (1.80)

In particular cases a larger space could be used, but the set Cb(X) of bounded observables is
sufficient to uniquely characterize the distribution of the of the Markov chain1. Note that if X
is compact (e.g. for finite state Markov chains or for all IPS considered in Section 1.4), then
Cb(X) = C(X). The domain of the generator (1.49)

Lf(η) =
∑
η′ 6=η

c(η, η′)
(
f(η′)− f(η)

)
(1.81)

for a Markov chain is then given by the full set of observables DL = Cb(X). This follows from
the uniform bound cη ≤ c̄ (1.9) on the jump rates, since for every f ∈ Cb(X)

‖Lf‖∞ = sup
η∈X
Lf(η) ≤ 2‖f‖∞ sup

η∈X

∑
η′∈X

c(η, η′) = 2‖f‖∞ sup
η∈X

cη <∞ . (1.82)

1cf. weak convergence of distributions, which is usually defined via expected values of f ∈ Cb(X) (see e.g. [13],
Chapter 4).
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In particular, indicator functions f = 1η : X → {0, 1} are always in Cb(X) and we have∫
X
S(t)f dµ =

[
µS(t)

]
(η) =: pt(η) (1.83)

for the distribution at time t with p0(η) = µ(η). Using this and (1.81) we get for the right-hand
side of the backward equation (1.47) for all η ∈ X∫

X
LS(t)1ηdµ =

∑
ζ∈X

µ(ζ)
∑
ζ′∈X

c(ζ, ζ ′)
(
S(t)1η(ζ ′)− S(t)1η(ζ)

)
=

=
∑
ζ∈X

[
µS(t)

]
(ζ)
(
c(ζ, η)− 1η(ζ)

∑
ζ′∈X

c(ζ, ζ ′)
)

=

=
∑
ζ∈X

pt(ζ) c(ζ, η)− pt(η)
∑
ζ′∈X

c(η, ζ ′) , (1.84)

where we use the convention c(ζ, ζ) = 0 for all ζ ∈ X . In summary we get

d

dt
pt(η) =

∑
η′ 6=η

(
pt(η′) c(η′, η)− pt(η) c(η, η′)

)
, p0(η) = µ(η) . (1.85)

This is called the master equation, with intuitive gain and loss terms into state η on the right-hand
side. It makes sense only for countable X , and in that case it is actually equivalent to (1.47), since
the indicator functions form a basis of Cb(X).

Analogous to the master equation (and using the same notation), we can get a meaningful
relation for Markov chains by inserting the indicator function f = 1η in the stationarity condition
(1.64). This yields with (1.81)

µ(L1η) =
∑
η′ 6=η

(
µ(η′) c(η′, η)− µ(η) c(η, η′)

)
= 0 for all η ∈ X , (1.86)

so that µ is a stationary solution of the master equation (1.85). A short computation yields

µ
(
1ηL1η′

)
=
∑
ζ∈X

µ(ζ)1η(ζ)
∑
ξ∈X

c(ζ, ξ)
(
1η′(ξ)− 1η′(ζ)

)
= µ(η) c(η, η′) , (1.87)

again using c(ζ, ζ) = 0 for all ζ ∈ X . So inserting f = 1η and g = 1η′ for η′ 6= η into the
reversibility condition (1.65) on both sides we get

µ(η′) c(η′, η) = µ(η) c(η, η′) for all η, η′ ∈ X, η 6= η′ , (1.88)

which are called detailed balance relations. So if µ is reversible, every individual term in the sum
(1.86) vanishes. On the other hand, not every solution of (1.86) has to fulfill (1.88), i.e. there are
stationary measures which are not reversible. The detailed balance equations are typically easy to
solve for µ, so if reversible measures exist they can be found as solutions of (1.88).

Examples. Consider the simple random walk on the torus X = Z/LZ, moving with rate p to the
right and q to the left. The uniform measure µ(η) = 1/L is an obvious solution to the stationary
master equation (1.86). However, the detailed balance relations are only fulfilled in the symmetric
case p = q. For the simple random walk on the infinite state space X = Z the constant solution
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cannot be normalized, and in fact (1.86) does not have a normalized solution.
Another important example is a birth-death chain with state space X = N and jump rates

c(η, η + 1) = α , c(η + 1, η) = β for all η ∈ N . (1.89)

In this case the detailed balance relations have the solution

µ(η) = (α/β)η . (1.90)

For α < β this can be normalized, yielding a stationary, reversible measure for the process.

In particular not every Markov chain has a stationary distribution. If X is finite there exists at
least one stationary distribution, as a direct result of the Perron-Frobenius theorem in linear alge-
bra. For general countable (possibly infinite) state space X , existence of a stationary measure is
equivalent to positive recurrence of the Markov chain (cf. [14], Section 3.5).

What about uniqueness of stationary distributions?

Definition 1.12 A Markov chain (Pη : η ∈ X) is called irreducible, if for all η, η′ ∈ X

Pη(ηt = η′) > 0 for some t ≥ 0 . (1.91)

So an irreducible Markov chain can sample the whole state space, and it can be shown that this
implies that it has at most one stationary distribution (cf. [14], Section 3.5). For us most important
is the following statement on ergodicity as defined in Def. 1.11.

Proposition 1.10 An irredubible Markov chain with finite state space X is ergodic.

Proof. Again a result of linear algebra, in particular the Perron-Frobenius theorem: The generator
can be understood as a finite matrix c(η, η′), which has eigenvalue 0 with unique eigenvector µ.
All other eigenvalues λi have negative real part, and the so-called spectral gap

γ := − inf
i
Re(λi) (1.92)

determines the speed of convergence to equilibrium. For every initial distribution π ∈M1(X) we
have weak convergence with∣∣πS(t)(f)− µ(f)

∣∣ ≤ C e−γt for all f ∈ C(X) . (1.93)

2

The spectrum of the generator plays a similar role also for general Markov processes and IPS.
The spectral gap is often hard to calculate, useful estimates can be found for reversible processes
(see e.g. [11], Appendix 3 and also [18]).
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2 The asymmetric simple exclusion process

As given in Def. 1.2 an exclusion process (EP) has state space X = {0, 1}Λ on a lattice Λ. The
process is characterized by the generator

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηxy)− f(η)

)
(2.1)

with jump rates

c(x, y, η) = p(x, y) η(x)
(
1− η(y)

)
. (2.2)

p(x, y) are irreducible transition rates of a single random walker on Λ. For the simple EP (SEP)
Λ is a regular lattice such as Zd and p(x, y) = 0 whenever x and y are not nearest neighbours. In
this chapter we focus on results and techniques that apply to the asymmetric SEP (ASEP) as well
as to the symmetric SEP (SSEP). For the latter there are more detailed results available based on
reversibility of the process (see e.g. [9], Section VIII.1).

2.1 Stationary measures and conserved quantities

Definition 2.1 For a function ρ : Λ → [0, 1], νρ is a product measure on X if for all k ∈ N,
x1, . . . , xk ∈ Λ mutually different and n1, . . . , nk ∈ {0, 1}

νρ
(
η(x1) = n1, . . . , η(xk) = nk

)
=

k∏
i=1

ν1
ρ(xi)

(
η(xi) = ni

)
, (2.3)

where the single-site marginals are given by

ν1
ρ(xi)

(
η(xi) = 1

)
= ρ(xi) and ν1

ρ(xi)

(
η(xi) = 0

)
= 1− ρ(xi) . (2.4)

Remark. In other words under νρ the η(x) are independent Bernoulli random variables η(x) ∼
Be
(
ρ(x)

)
with local density ρ(x) = ν

(
η(x)

)
. The above definition can readily be generalized to

non-Bernoulli product measures (see e.g. Section 3).

Theorem 2.1 (a) Suppose p(., .)/C is doubly stochastic for some C ∈ (0,∞), i.e.∑
y′∈Λ

p(x, y′) =
∑
x′∈Λ

p(x′, y) = C for all x, y ∈ Λ , (2.5)

then νρ ∈ I for all constants ρ ∈ [0, 1] (uniform density).

(b) If λ : Λ→ [0,∞) fulfilles λ(x) p(x, y) = λ(y) p(y, x) ,

then νρ ∈ I with density ρ(x) =
λ(x)

1 + λ(x)
, x ∈ Λ.

Proof. For stationarity we have to show that νρ(Lf) = 0 for all f ∈ C0(X). This condition is
linear in f and every cylinder function can be written as a linear combination of simple functions

f∆(η) =
{

1 , η(x) = 1 for eachx ∈ ∆
0 , otherwise

(2.6)
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for ∆ ⊆ Λ finite1. Therefore we have to check the stationarity condition only for such functions
where we have

νρ(Lf∆) =
∑
x,y∈Λ

p(x, y)
∫
X
η(x)

(
1− η(y)

)(
f∆(ηxy)− f∆(η)

)
dνρ . (2.7)

For x 6= y (we take p(x, x) = 0 for all x ∈ Λ) the integral terms in the sum look like∫
X
f∆(η) η(x)

(
1− η(y)

)
dνρ =

 0 , y ∈ ∆
(1− ρ(y))

∏
u∈∆∪{x}

ρ(u) , y 6∈ ∆

∫
X
f∆(ηxy) η(x)

(
1− η(y)

)
dνρ =

 0 , x ∈ ∆
(1− ρ(y))

∏
u∈∆∪{x}\{y}

ρ(u) , x 6∈ ∆ . (2.8)

This follows from the fact that the integrands take values only in {0, 1} and the right-hand side is
therefore the probability of the integrand being 1. Then re-arranging the sum we get

νρ(Lf∆) =
∑
x∈A
y 6∈A

[
ρ(y)

(
1− ρ(x)

)
p(y, x)− ρ(x)

(
1− ρ(y)

)
p(x, y)

] ∏
u∈A\{x}

ρ(u) . (2.9)

Assumption of (b) is equivalent to

ρ(x)
1− ρ(x)

p(x, y) =
ρ(y)

1− ρ(y)
p(y, x) , (2.10)

so the square bracket vanishes for all x, y in the sum (2.9). For ρ(x) ≡ ρ in (a) we get

νρ(Lf∆) = ρ|∆|(1− ρ)
∑
x∈∆
y 6∈∆

[
p(y, x)− p(x, y)

]
= 0 (2.11)

due to p(., .) being proportional to a doubly-stochastic. 2

For the ASEP (1.28) in one dimension with Λ = Z we have:

• Theorem 2.1(a) holds with C = p + q and therefore νρ ∈ I for all ρ ∈ [0, 1]. These
measures have homogeneous density; they are reversible iff p = q, which is immediate
from time-reversibility.

• Also Theorem 2.1(b) is fulfilled with λ(x) = c (p/q)x for all c ≥ 0, since
c (p/q)x p = c (p/q)x+1 q . Therefore

νρ ∈ I with ρ(x) =
c(p/q)x

1 + c(p/q)x
for all c ≥ 0 . (2.12)

For p = q these measures are homogeneous and in fact the same ones we found above using
Theorem 2.1(a). For p 6= q the measures are not homogeneous and since e.g. for p > q

1Remember that cylinder functions depend only on finitely many coordinates and with local state space {0, 1}
therefore only take finitely many different values.
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the density of particles (holes) is exponentially decaying as x → ±∞ they concentrate on
configurations such that∑

x<0

η(x) <∞ and
∑
x≥0

(
1− η(x)

)
<∞ . (2.13)

These are called blocking measures and turn out to be reversible also for p 6= q (see [20]).
Note that these measures are not translation invariant, but the dynamics of the ASEP is.

• To further understand the family of blocking measures, note that there are only countably
many configurations with property (2.13), forming the disjoint union of

Xn =
{
η :
∑
x<n

η(x) =
∑
x≥n

(
1− η(x)

)
<∞

}
, n ∈ Λ . (2.14)

Whenever a particle crosses the bond (n − 1, n) a hole crosses in the other direction, so
the process cannot leave Xn and it is an invariant set for the ASEP. This is of course a
consequence of the fact that no particles are created or destroyed. Conditioned on Xn

which is countable, the ASEP is an irreducible MC with unique stationary distribution
νn := νρ(.|Xn). Due to conditioning on Xn the distribution νn does actually not depend on
ρ any more (cf. next section for a more detailed discussion). In [20] Liggett showed using
couplings that all extremal stationary measures of the ASEP in one dimension are

Ie =
{
νρ : ρ ∈ [0, 1]

}
∪
{
νn : n ∈ Z

}
. (2.15)

To stress the role of the boundary conditions let us consider another example. For the ASEP on a
one-dimensional torus ΛL = Z/LZ we have:

• Theorem 2.1(a) still applies so νρ ∈ I for all ρ ∈ [0, 1]. But part (b) does no longer hold
due to periodic boundary conditions, so there are no blocking measures.
Under νρ the total number of particles in the system is a binomial random variable

ΣL(η) :=
∑
x∈Λ

η(x) ∼ Bi(L, ρ) where νρ
(
ΣL=N

)
=
(
L

N

)
ρN (1−ρ)L−N .(2.16)

Orininating from statistical mechanics, the measures {νρ : ρ ∈ [0, 1]} for the finite lattice
ΛL are called grand-canonical measures/ensemble.

• If we fix the number of particles at time 0, i.e. ΣL(η0) = N , we condition the ASEP on

XL,N =
{
η : ΣL(η) = N

}
( XL , (2.17)

which is an invariant set since the number of particles is conserved by the dynamics. For
each N ∈ N, the process is irreducible on XL,N and |XL,N | =

(
L
N

)
is finite. Therefore it

has a unique stationary measure πL,N on XL,N and the {πL,N : N = 0, . . . , L} are called
canonical measures/ensemble.
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2.2 Symmetries and conservation laws

Definition 2.2 For a given Feller process
(
S(t) : t ≥ 0

)
a bounded1 linear operator T : C(X)→

C(X) is called a symmetry, if it commutes with the semigroup. So for all t ≥ 0 we have S(t)T =
TS(t), i.e.

S(t)(Tf)(η) = T
(
S(t)f

)
(η) , for all f ∈ C(X), η ∈ X . (2.18)

Proposition 2.2 For a Feller process with generator L, a bounded linear operator T : C(X) →
C(X) is a symmetry iff LT = TL, i.e.

L(Tf)(η) = T
(
Lf
)
(η) , for all f ∈ C0(X) . (2.19)

We denote the set of all symmetries by S(L) or simply S. The symmetries form a semigroup w.r.t.
composition, i.e.

T1, T2 ∈ S ⇒ T1T2 = T1 ◦ T2 ∈ S . (2.20)

Proof. The first part is similar to the proof of Prop. 1.8 on stationarity (see problem sheet).
For the second part, note that composition of operators is associative. Then for T1, T2 ∈ S we
have

L(T1T2) = (LT1)T2 = (T1L)T2 = T1(LT2) = (T1T2)L (2.21)

so that T1T2 ∈ S. 2

Proposition 2.3 For a bijection τ : X → X let Tf := f ◦ τ , i.e. Tf(η) = f(τη) for all η ∈ X .
Then T is a symmetry for the process

(
S(t) : t ≥ 0

)
iff

S(t)(f ◦ τ) =
(
S(t)f

)
◦ τ for all f ∈ C(X) . (2.22)

Such T (or equivalently τ ) are called simple symmetries. Simple symmetries are invertible and
form a group.

Proof. The first statement is immediate by the definition, T is bounded since ‖f ◦ τ‖∞ = ‖f‖∞
and obviously linear.
In general compositions of symmetries are symmetries according to Prop. 2.2, and if τ1, τ2 : X →
X are simple symmetries then the composition τ1 ◦ τ2 : X → X is also a simple symmetry. A
simple symmetry τ is a bijection, so it has an inverse τ−1. Then we have for all f ∈ C(X) and all
t ≥ 0 (

S(t)(f ◦ τ−1)
)
◦ τ = S(t)(f ◦ τ−1 ◦ τ) = S(t)f (2.23)

since τ ∈ S. Composing with τ−1 leads to(
S(t)(f ◦ τ−1)

)
◦ τ ◦ τ−1 = S(t)(f ◦ τ−1) =

(
S(t)f

)
◦ τ−1 , (2.24)

so that τ−1 is also a simple symmetry. 2

1T : C(X)→ C(X) is bounded if there exists B > 0 such that for all f ∈ C(X), ‖f ◦ τ‖∞ ≤ B‖f‖∞.
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Example. For the ASEP on Λ = Z the translations τx : X → X for x ∈ Λ, defined by

(τxη)(y) = η(y − x) for all y ∈ Λ (2.25)

are simple symmetries. This can be easily seen since the jump rates are invariant under transla-
tions, i.e. we have for all x, y ∈ Λ

c(x, x+ 1, η) = p η(x)
(
1− η(x+ 1)

)
= p η(x+ y − y)

(
1− η(x+ 1 + y − y)

)
=

= c(x+ y, x+ 1 + y, τyη) . (2.26)

An analogous relation holds for jumps to the left with rate c(x, x− 1, η) = qη(x)
(
1− η(x− 1)

)
.

Note that the family {τx : x ∈ Λ} forms a group. The same symmetry holds for the ASEP on
ΛL = Z/LZ with periodic boundary conditions, where there are only L distinct translations τx
for x = 0, . . . , L − 1 (since e.g. τL = τ0 etc.). The argument using symmetry of the jump rates
can be made more general.

Proposition 2.4 Consider an IPS with jump rates c(η, η′) in general notation1. Then a bijection
τ : X → X is a simple symmetry iff

c(η, η′) = c(τη, τη′) for all η, η′ ∈ X . (2.27)

Proof. Assuming the symmetry of the jump rates, we have for all f ∈ C0(X) and η ∈ X(
L(Tf)

)
(η) =

(
L(f ◦ τ)

)
(η) =

∑
η′∈X

c(η, η′)
(
f(τη′)− f(τη)

)
=

=
∑
η′∈X

c(τη, τη′)
(
f(τη′)− f(τη)

)
=
∑
ζ′∈X

c(τη, ζ ′)
(
f(ζ ′)− f(τη)

)
=

= (Lf)(τη) =
(
T (Lf)

)
(η) , (2.28)

where the identity in the second line just comes from relabeling the sum which is possible since τ
is bijective and the sum converges absolutely. On the other hand, LT = TL implies that∑

η′∈X
c(η, η′)

(
f(τη′)− f(τη)

)
=
∑
η′∈X

c(τη, τη′)
(
f(τη′)− f(τη)

)
. (2.29)

Since this holds for all f ∈ C0(X) and η ∈ X it uniquely determines that c(η, ζ) = c(τη, τζ) for
all η, ζ ∈ X with η 6= ζ. In fact, if there existed η, ζ for which this is not the case, we can plug
f = 1τζ into (2.29) which yields a contradiction. For fixed η both sums then contain only a single
term, so this is even possible on infinite lattices even though 1τζ is not a cylinder function2. 2

Proposition 2.5 For an observable g ∈ C(X) define the multiplication operator Tg := g Id via

Tgf(η) = g(η) f(η) for all f ∈ C(X), η ∈ X . (2.30)

Then Tg is a symmetry for the process (ηt : t ≥ 0) iff g(ηt) = g(η0) for all t > 0. In that case Tg
(or equivalently g) is called a conservation law or conserved quantity.

1Remember that for fixed η there are only countably many c(η, η′) > 0.
2So the function η 7→ L1τζ(η) would in general not be well defined since it is given by an infinite sum for η = τζ.

But here we are only interested in a single value for η 6= ζ.
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Proof. First note that Tg is linear and bounded since ‖f‖∞ ≤ ‖g‖∞‖f‖∞. If g(ηt) = g(η0) we
have for all t > 0, f ∈ C(X) and η ∈ X(

S(t)(Tgf)
)
(η) = Eη

(
g(ηt) f(ηt)

)
= g(η)

(
S(t)f

)
(η) = Tg

(
S(t)f

)
(η) . (2.31)

On the other hand, if Tg is a symmetry the above computation implies that for all (fixed) t > 0

Eη
(
g(ηt) f(ηt)

)
= Eη

(
g(η) f(ηt)

)
. (2.32)

Since this holds for all f ∈ C(X) the value of g(ηt) is uniquely specified by the expected values
to be g(η) since g is continuous (cf. argument in (2.29)). 2

Remarks. If g ∈ C(X) is a conservation law then so is h ◦ g for all h : R → R provided that
h ◦ g ∈ C(X).
A subset Y ⊆ X is called invariant if η0 ∈ Y includes ηt ∈ Y for all t > 0. Then g = 1Y is a
conservation law iff Y is invariant. In general, every level set

Xl = {η ∈ X : g(η) = l} ⊆ X for all l ∈ R , (2.33)

for a conserved quantity g ∈ C(X) is invariant.
Examples. For the ASEP on ΛL = Z/LZ the number of particles ΣL(η) =

∑
x∈ΛL

η(x) is
conserved. The level sets of this integer valued function are the subsets

XL,N =
{
η : ΣL(η) = N

}
for N = 0, . . . , L , (2.34)

defined in (2.17). In particular the indicator functions 1XL,N are conserved quantities. Similar
conservation laws exist for the ASEP on Λ = Z in connection with the blocking measures (2.14).

The most important result of this section is the connection between symmetries and stationary
measures. For a measure µ and a symmetry T we define the measure µT via

(µT )(f) =
∫
X
f dµT :=

∫
X
Tf dµ = µ(Tf) for all f ∈ C(X) , (2.35)

analogous to the definition of µS(t) in Def. 1.6.

Theorem 2.6 For a Feller process
(
S(t) : t ≥ 0

)
with state space X we have

µ ∈ I, T ∈ S ⇒ 1
µT (X)

µT ∈ I , (2.36)

provided that the normalization µT (X) ∈ (0,∞).

Proof. For µ ∈ I and T ∈ S we have for all t ≥ 0 and f ∈ C(X)

(µT )S(t)(f) = µ
(
T S(t)f

)
= µ

(
S(t)Tf

)
µS(t)(Tf) = µ(Tf) = µT (f) . (2.37)

With µT (X) ∈ (0,∞), µT can be normalized and 1
µT (X) µT ∈ I. 2

Remarks. For µ ∈ I it will often be the case that µT = µ so that µ is invariant under some T ∈ S
and not every symmetry generates a new stationary measure. For ergodic processes I = {µ} is a
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singleton, so µ has to respect all the symmetries of the process, i.e. µT = µ for all T ∈ S.
If Tg = g Id is a conservation law, then µTg = g µ, i.e.

µTg(Y ) =
∫
Y
g(η)µ(dη) for all measurable Y ⊆ X . (2.38)

So g is the density of µTg w.r.t. µ and one also writes g = dµTg
dµ . This implies also that µTg is

absolutely continuous w.r.t. µ (short µTg � µ), which means that for all measurable Y , µ(Y ) = 0
implies µTg(Y ) = 01.
For an invariant set Y ⊆ X and the conservation law g = 1Y we have µTg = 1Y µ. If µ(Y ) ∈
(0,∞) the measure of Theorem (2.6) can be written as a conditional measure

1
µTg(X)

µTg =
1Y

µ(Y )
µ =: µ(.|Y ) (2.39)

concentrating on the set Y , since the normalization is µTg(X) = µ(1Y ) = µ(Y ).

Examples. The homogeneous product measures νρ, ρ ∈ [0, 1] are invariant under the translations
τx, x ∈ Λ for all translation invariant lattices with τxΛ = Λ such as Λ = Z or Λ = Z/LZ. But
the blocking measures νn for Λ = Z are not translation invariant, and in fact νn = ν0 ◦ τ−n, so the
family of blocking measures is generated from a single one by applying translations.
For ΛL = Z/LZ we have the invariant sets XL,N for a fixed number of particles N = 0, . . . , L
as given in (2.17). Since the ASEP is irreducible on XL,N it has a unique stationary measure
πL,N (see previous section). Using the above remark we can write πL,N as a conditional product
measure νρ (which is also stationary). For all ρ ∈ (0, 1) we have (by uniqueness of πL,N )

πL,N = νρ(. |XL,N ) =
1XL,N

νρ(XL,N )
νρ , (2.40)

where νρ(XL,N ) =
(
L
N

)
ρN (1 − ρ)L−N is binomial (see previous section). Therefore we can

compute explicitly

πL,N (η) =

{
0 , η 6∈ XL,N

ρN (1−ρ)L−N

(LN)ρN (1−ρ)L−N
= 1/

(
L
N

)
, η ∈ XL,N

, (2.41)

and πL,N is uniform onXL,N and in particular independent of ρ. We can write the grand-canonical
product measures νρ as convex combinations

νρ =
L∑

N=0

(
L

N

)
ρN (1− ρ)L−NπL,N , (2.42)

but this is not possible for the πL,N since they concentrate on irreducible subsets XL,N ( XL.
Thus for the ASEP on ΛL = Z/LZ we have

Ie = {πL,N : N = 0, . . . , L} (2.43)

given by the canonical measures. So for each value of the conserved quantity ΣL we have an
extremal stationary measure and these are the only elements of Ie. The latter follows from

XL =
L⋃

N=0

XL,N and irreducibility on each XL,N . (2.44)

1In fact, absolute continuity and existence of a density are equivalent by the Radon-Nikodym theorem (see e.g. [13]
Thm. 2.10).
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In fact, suppose that for some λ ∈ (0, 1) and µ1, µ2 ∈ I

πL,N = λµ1 + (1− λ)µ2 . (2.45)

Then for all measurable Y ⊆ X with Y ∩XL,N = ∅ we have

0 = πL,N (Y ) = λµ1(Y ) + (1− λ)µ2(Y ) , (2.46)

which implies that µ1(Y ) = µ2(Y ) = 0. So µ1, µ2 ∈ I concentrate onXL,N and thus µ1 = µ2 =
πL,N by uniqueness of πL,N on XL,N . So the conservation law provides a decomposition of the
state space XL into irreducible non-communicating subsets.
In general, taking into account all symmetries and conservation laws provides a full decomposition
of the state space, and on each part concentrates a unique extremal stationary measure. This is the
appropriate notion of uniqueness of stationary measures (cf. Def. 1.11) for systems with conserved
quantities/symmetries. In general, a symmetry T is said to be broken, if there exists µ ∈ Ie such
that

µT (X) ∈ (0,∞) and
1

µT (X)
µT 6= µ . (2.47)

This is usually a result of non-commuting symmetries. For instance for the ASEP on ΛL = Z/LZ
the πL,N are invariant under translations, but not under CP-symmetry, since CP-invariance and
particle conservation do not commute (see problem sheet). CP-invariance is a simple symmetry
and corresponds to particle-hole and space inversion, given by

τη(x) = 1− η(L+ 1− x) . (2.48)

A similar situation holds for the blocking measures for the ASEP on the infinite lattice Λ = Z,
which are not invariant under translations. Symmetry breaking is a form of non-uniqueness of
stationary measures and is therefore often regarded as a phase transition in analogy to the theory
of Gibbs measures. However the use of this analogy is doubtful, because if we take it literally
phase transitions are all over the place (e.g. CP-invariance is broken even on finite lattices) and
the concept becomes less and less useful.

2.3 Currents and conservation laws

Consider the one-dimensional ASEP on Λ = Z or ΛL = Z/LZ. Remember the forward equation
from Theorem 1.6

d

dt
S(t)f = S(t)Lf which holds for all f ∈ C0(X) . (2.49)

Integrating w.r.t. the initial distribution µ the equation becomes

d

dt
µ
(
S(t)f

)
= µ

(
S(t)Lf

)
= (µS(t))(Lf) . (2.50)

Using f(η) = η(x) and writing µt := µS(t) for the distribution at time t we have

µt(f) = Eµ
(
ηt(x)

)
=: ρ(x, t) (2.51)
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for the particle density at site x at time t. Note that η(x) is a cylinder function and we have

(Lf)(η) =
∑
y∈Λ

(
pη(y)

(
1− η(y + 1)

)
+ qη(y + 1)

(
1− η(y)

))(
f(ηy,y+1)− f(η)

)
=

= −pη(x)
(
1− η(x+ 1)

)
+ qη(x+ 1)

(
1− η(x)

)
−qη(x)

(
1− η(x− 1)

)
+ pη(x− 1)

(
1− η(x)

)
. (2.52)

Taking expectations w.r.t. µt and writing

µt
(
η(x)(1− η(x+ 1))

)
= µt(1x0x+1) (2.53)

we get with (2.49)

d

dt
ρ(x, t) = pµt(1x−10x) + qµt(0x1x+1)︸ ︷︷ ︸

gain

−pµt(1x0x+1)− qµt(0x−11x)︸ ︷︷ ︸
loss

. (2.54)

Definition 2.3 The average current of particles across a directed edge (x, y) on a general lattice
(graph) is given by

j(x, y, t) := µt
(
c(x, y, η)− c(y, x, η)

)
. (2.55)

For the ASEP this is non-zero only across nearest-neighbour bonds and given by

j(x, x+ 1, t) = pµt(1x0x+1)− qµt(0x1x+1) . (2.56)

Then we can write, using the lattice derivative∇xj(x−1, x, t) = j(x, x+1, t)− j(x−1, x, t),

d

dt
ρ(x, t) +∇xj(x− 1, x, t) = 0 (2.57)

which is the (lattice) continuity equation. It describes the time evolution of the density ρ(x, t)
in terms of higher order (two-point) correlation functions. The form of this equation implies that
the particle density is conserved, i.e. on the finite lattice ΛL = Z/LZ with periodic boundary
conditions we have

d

dt

∑
x∈ΛL

ρ(x, t) = −
∑
x∈ΛL

∇xj(x− 1, x, t) = 0 . (2.58)

In general on any finite subset A ∈ Λ

d

dt

∑
x∈A

ρ(x, t) = −
∑
x∈∂A

∇xj(x− 1, x, t) , (2.59)

where ∂A is the boundary of A. The other terms in the telescoping sum on the right-hand side
cancel, which is a primitive version of Gauss’ integration theorem (we have not been very careful
with the notation at the boundary here).

In the special case p = q (2.57) simplifies significantly. Let’s take p = q = 1, then adding and
subracting an auxiliary term we see

j(x, x+ 1, t) = µt(1x0x+1) + µt(1x1x+1)− µt(1x1x+1)− µt(0x1x+1) =
= µt(1x)− µt(1x+1) = ρ(x, t)− ρ(x+ 1, t) = −∇xρ(x, t) . (2.60)
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So the current is given by the lattice derivative of the density, and (2.57) turns into a closed equation

d

dt
ρ(x, t) = ∆xρ(x, t) = ρ(x− 1, t)− 2ρ(x, t) + ρ(x+ 1, t) . (2.61)

Thus the particle density of the SSEP behaves like the probability density of a single simple ran-
dom walk with jump rates p = q = 1.

To describe this behaviour on large scales we scale the lattice constant by a factor of 1/L
and embed it in the continuum, i.e. 1

LΛ ⊆ R and 1
LΛL ⊆ T = R/Z for the torus. Using the

macroscopic space variable y = x/L ∈ R,T we define

ρ̃(y, t) := ρ
(
[yL], t

)
(2.62)

for the macroscopic density field and use a Taylor expansion

ρ(x± 1, t) = ρ̃(y ± 1
L , t) = ρ̃(y, t)± 1

L∂yρ̃(y, t) + 1
2L2∂

2
y ρ̃(y, t) + o( 1

L2 ) (2.63)

to compute the lattice Laplacian in (2.61). This leads to

∆xρ(x, t) =
1
L2
∂2
y ρ̃(y, t) , (2.64)

since first order terms vanish due to symmetry. In order to get a non-degenerate equation in the
limit L→∞, we have to scale time as s = t/L2. This corresponds to speeding up the process by
a factor of L2, in order to see diffusive motion of the particles on the scaled lattice. Using both in
(2.61) we obtain in the limit L→∞

∂sρ̃(y, s) = ∂2
y ρ̃(y, s) , (2.65)

the heat equation, describing the diffusion of particles on large scales.
If we use a stationary measure µt = µ in the continuity equation (2.57) we get

0 =
d

dt
µ(1x) = j(x− 1, x)− j(x, x+ 1) , (2.66)

which implies that the stationary current j(x, x + 1) := pµ(1x0x+1) − qµ(0x1x+1) is site-
independent. Since we know the stationary measures for the ASEP from the previous section
we can compute it explicitly. For the homogeneous product measure µ = νρ we get

j(x, x+ 1) := pνρ(1x0x+1)− qνρ(0x1x+1) = (p− q)ρ(1− ρ) =: φ(ρ) , (2.67)

which is actually just a function of the total particle density ρ ∈ [0, 1]. We can use this to arrive at
a scaling limit of the continuity equation for the asymmetric case p 6= q. We use the same space
scaling y = x/L as above and write

∇xj(x− 1, x, t) = 1
L∂y j̃(y −

1
L , y, t) + o( 1

L) , (2.68)

with a similar notation j̃ as for ρ̃ above. In the asymmetric case the first order terms in the spatial
derivative do not vanish and we have to scale time as s = t/L, speeding up the process only by a
factor L to see ballistic motion. In the limit L→∞ this leads to the conservation law (PDE)

∂sρ̃(y, s) + ∂y j̃(y, s) = 0 , (2.69)

where we have redefined j̃ as

j̃(y, s) := lim
L→∞

j
(
[yL]− 1, [yL], sL) . (2.70)
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Since we effectively take microscopic time t = sL → ∞ in that definition, it is plausible to
assume that

j̃(y, s) = φ
(
ρ̃(y, s)

)
(2.71)

is in fact the stationary current corresponding to the local density ρ̃(y, s). This is equivalent to
the process becoming locally stationary in the limit L → ∞, the only (slowly) varying quantity
remaining on a large scale is the macroscopic density field. Local stationarity (also called local
equilibrium) implies for example

µS(sL)(1[yL]0[yL]+1)→ νρ̃(y,s)(1001) = ρ̃(y, s)
(
1− ρ̃(y, s)

)
as L→∞ . (2.72)

Definition 2.4 The ASEP on 1
LZ or 1

LZ/LZ with initial distribution µ, such that

ρ̃(y, 0) = lim
L→∞

µ(1[yL]) (2.73)

exists, is in local equilibrium if

µS(Ls)τ−[yL] → νρ̃(y,s) weakly (locally), as L→∞ , (2.74)

where ρ̃(y, s) is a solution of the Burgers equation

∂sρ̃(y, s) + ∂yφ
(
ρ̃(y, s)

)
= 0 where φ(ρ) = (p− q)ρ(1− ρ) , (2.75)

with initial condition ρ̃(y, 0).

By local weak convergence we mean

µS(Ls)τ−[yL](f)→ νρ̃(y,s)(f) for all f ∈ C0(X) . (2.76)

Local equilibrium has been established rigorously for the ASEP in a so-called hydrodynamic limit,
the formulation of this result requires the following definition.

Definition 2.5 For each t ≥ 0 we define the empirical measure

πLt :=
1
L

∑
x∈Λ

ηt(x)δx/L ∈M(R) orM(T) , (2.77)

and the measure-valued process (πLt : t ≥ 0) is called the empirical process.

The πLt describe the discrete particle densities on R, T. They are (random) measures depending
on the configurations ηt and for A ⊆ R,T we have

πLt (A) =
1
L

(
# of particles in A ∩ 1

LΛ at time t
)
. (2.78)

Theorem 2.7 Consider the ASEP (ηt : t ≥ 0) on the lattice 1
LZ or 1

LZ/LZ with initial distribu-
tion µ which has a limiting density ρ̃(y, 0) analogous to (2.73). Then as L→∞

πLsL → ρ̃(., s) dy weakly, in probability , (2.79)

where ρ̃(y, s) is a solution of (2.75) on R or T with initial condition ρ̃(y, 0).
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Here weak convergence means that for every g ∈ C0(R) continuous with compact support

πLsL(g) =
1
L

∑
x∈Λ

g(x/L) ηt(x)→
∫

R,T
g(y) ρ̃(y, s) dy . (2.80)

The left-hand side is still random, and convergence holds in probability, i.e. for all ε > 0

Pµ
(∣∣∣ 1
L

∑
x∈Λ

g(x/L) ηt(x)−
∫

R,T
g(y) ρ̃(y, s) dy

∣∣∣ > ε
)
→ 0 as L→∞ . (2.81)

The proof is far beyond the scope of this course. The basic idea consists of two steps:

• For large L the empirical distribution πsL should be close to the distribution µS(sL) at time
sL due to a law of large numbers effect resulting from the space scaling.

• Establish a local equilibrium according to Def. 2.4, which should follow from the time
scaling and the process reaching local stationarity.

Of course space and time scaling are carried out simultaneously. Both approximations above will
give error terms depending on L, which have to be shown to vanish in the limit L → ∞. Hydro-
dynamic limits are still an area of major research and technically quite involved. Relevant results
and references can be found in [11] Chapter 8. The above result was first proved in [21] for the
TASEP (q = 0), and in [22] for a more general class of models using attractivity, a concept that
will be discussed in Section 4.

2.4 Hydrodynamics and the dynamic phase transition

In the previous section we were often talking about solutions to the Burgers equation (2.75), not
mentioning that it is far from clear wether that equation actually has a unique solution. A useful
method to solve a hyperbolic conservation law of the form

∂tρ(x, t) + ∂xφ(ρ(x, t)) = 0 , ρ(x, 0) = ρ0(x) (2.82)

with general flux function φ are characteristics (see [23] for full details). In this section we write
again ρ for the macroscopic density to avoid notational overload, the notation ρ̃ was only intro-
duced to make the scaling argument clear in the previous section. We consider (2.82) for x ∈ R
or with periodic boundary conditions x ∈ T.

Definition 2.6 A curve x : [0,∞)→ R,T with t 7→ x(t) is a characteristic for the PDE (2.82) if

d

dt
ρ
(
x(t), t

)
= 0 for all t ≥ 0 , (2.83)

i.e. the solution is constant along x(t) and given by the initial conditions, ρ(x(t), t) = ρ0(x(0)).

Using the PDE (2.82) to compute the total derivative we get

d

dt
ρ
(
x(t), t

)
= ∂tρ

(
x(t), t

)
+ ∂xρ

(
x(t), t

)
ẋ(t) =

= −φ′
(
ρ(x(t), t)

)
∂xρ(x(t), t) + ∂xρ

(
x(t), t

)
ẋ(t) = 0 , (2.84)
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which implies that

ẋ(t) = φ′
(
ρ(x(t), t)

)
= φ′

(
ρ0(x(0))

)
(2.85)

is a constant given by the derivative of the flux function. This is called the characteristic velocity
u(ρ), and for the ASEP we have

u(ρ) = φ′(ρ) = (p− q)(1− 2ρ) . (2.86)

It turns out (see [23]) that a general solution theory for hyperbolic conservation laws of the form
(2.82) can be based on understanding the solutions to the Riemann problem, which is given by step
initial data

ρ0(x) =
{
ρl , x ≤ 0
ρr , x > 0

. (2.87)

Discontinuous solutions of a PDE have to be understood in a weak sense.

Definition 2.7 ρ : R × [0,∞) → R is a weak solution to the conservation law (2.82) if ρ ∈
L1
loc(R× [0,∞)) and for all ψ ∈ C1

(
R× [0,∞)

)
with compact support and ψ(x, 0) = 0,∫

R

∫ ∞
0

∂tψ(x, t)ρ(x, t) dx dt+
∫

R

∫ ∞
0

f
(
ρ(x, t)

)
∂xψ(x, t) dx dt = 0 . (2.88)

L1
loc means that for all compact A ⊆ R× [0,∞) ,

∫
A |ρ(x, t)| dx dt <∞ .

The characteristics do not necessarily uniquely determine a solution everywhere, so weak solu-
tions are in general not unique. They can be undetermined or over-determined, and both cases
appear already for the simple Riemann problem (2.87) (cf. Fig. 3). However, for a given initial
density profile, the corresponding IPS which lead to the derivation of the PDE shows a unique
time evolution on the macroscopic scale. This unique admissible solution can be recovered from
the variety of weak solutions to (2.82) by several regularization methods. The viscosity method
is directly related to the derivation of the continuum equation in a scaling limit. For every ε > 0
consider the equation

∂tρ
ε(x, t) + ∂xφ(ρε(x, t)) = ε∂2

xφ(ρε(x, t)) , ρε(x, 0) = ρ0(x) . (2.89)

This is a parabolic equation and has a unique smooth global solution for all t > 0, even when
starting from non-smooth initial data ρ0. This is due to the regularizing effect of the diffusive
term (consider e.g. the heat equation starting with initial condition δ0(x)), which captures the
fluctuations in large finite IPS. The term can be interpreted as a higher order term of order 1/L2 in
the expansion (2.68), which disappears in the scaling limit from a particle system. Then one can
define the unique admissible weak solution to (2.82) as

ρ(., t) := lim
ε→0

ρε(., t) in L1
loc-sense as above for all t > 0 . (2.90)

It can be shown that this limit exists, and further that for one-dimensional conservation laws the
precise form of the viscosity is not essential, i.e. one could also add the simpler term ε∂2

xρ
ε(x, t)

leading to the same weak limit solution [23]. There are also other admissibility criteria for hyper-
bolic conservation laws such as entropy conditions, which can be shown to be equivalent to the
viscosity method in one dimension. We do not discuss this further here, for details see [23].
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Figure 3: Characteristics for the Riemann problem with ρl < ρr (left) showing a rarefaction fan, and
ρl > ρr (right), showing a shock. The curve is shock location is shown in red and the speed is given by
(2.93).

For the Riemann problem with flux function φ(ρ) = (p − q)ρ(1 − ρ) for the ASEP, there
are two basic scenarios for the time evolution of step initial data shown in Fig. 3. For ρr < ρl
the characteristic speeds are u(ρr) > u(ρl), and the characteristics point away from each other
and open a cone of points (x, t) where the solution is not determined. The admissibility criteria
described above show that the consistent solution in this case is is given by the rarefaction fan

ρ(x, t) =


ρl , x ≤ u(ρl)t
ρr , x > u(ρr)t

ρl + (x− tu(ρl))
ρl−ρr

t(u(ρl)−u(ρr))
, u(ρl)t < x ≤ u(ρr)t

. (2.91)

So the step dissolves and the solution interpolates linearly between the points uniquely determined
by the characteristics. An illustrative extreme version of this case is the ’traffic light problem’,
where ρl = 1 and ρr = 0 corresponding to cars piling up behind a red traffic light. When
the traffic light turns green not all cars start moving at once, but the density gradually decreases
following a continuous linear profile like in real situations.

For ρr > ρl we have u(ρr) < u(ρl) and the characteristics point towards each other so that
the solution is over-determined in a cone around the origin. Admissibility criteria show that in this
case the step is stable, called a shock solution,

ρ(x, t) =
{
ρl , x ≤ vt
ρr , x > vt

. (2.92)

In the traffic analogy shocks correspond sharp ends of traffic jams, where density and flow change
rather abruptly. The shock speed v = v(ρl, ρr) can be derived by the conservation of mass. The
average number of particles m ≥ 0 transported through the shock in negative direction during a
time interval ∆t is given by m = ∆t

(
φ(ρr)− φ(ρl)

)
. If m > 0 (m < 0) this causes the shock to

move with positive (negative) speed v. Therefore m is also given by m = ∆t v (ρr − ρl) leading
to

v(ρl, ρr) =
φ(ρr)− φ(ρl)

ρr − ρl
. (2.93)

As mentioned before, understanding the Riemann problem is sufficient to construct solutions to
general initial data by approximations with piecewise constant functions.
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In the following we will use our knowledge on solutions to the Riemann problem to understand
the time evolution of the ASEP with step initial distribution

µ = νρl,ρr product measure with νρl,ρr
(
η(x)

)
=
{
ρl , x ≤ 0
ρr , x > 0

. (2.94)

Theorem 2.8 For the ASEP on Λ = Z with p > q we have as t→∞

νρl,ρrS(t)→


νρr , ρr ≥ 1

2 , ρl > 1− ρr (I)
νρl , ρl ≤ 1

2 , ρr < 1− ρr (II)
ν1/2 , ρl ≥ 1

2 , ρr ≤
1
2 (III)

(2.95)

Proof. by studying shock and rarefaction fan solutions of the conservation law (2.82).

Note that all the limiting distributions are stationary product measures of the ASEP, as required
by Theorem 1.9. But depending on the initial distribution, the systems selects different stationary
measures in the limit t → ∞, which do not depend smoothly on ρl and ρr. Therefore this phe-
nomenon is called a dynamic phase transition. The set I of stationary measures is not changed,
but the long-time behaviour of the process depends on the initial conditions in a non-smooth way.
This behaviour can be captured in a phase diagram, whose axes are given by the (fixed) parameters
of our problem, ρl and ρr. We choose the limiting density

ρ∞ := lim
t→∞

νρl,ρrS(t)
(
η(0)

)
(2.96)

as the order parameter, which characterizes the phase transition. The different phase regions
correspond to areas of qualitatively distinct behaviour of ρ∞ as a function of ρl and ρr.

high density HIL
Ρ¥=Ρr

low density HIIL
Ρ¥=Ρl

Ρ¥=½
maximum current HIIIL

shocks

rarefaction

fans

0 ½ 1
0

½

1

Ρl

Ρr

Above the dashed diagonal the solutions of the conservation law (2.82) are given by shocks, and
below by rarefaction fans. Analysing the different cases reveals the following behaviour:

(I) High density phase: The limiting density ρ∞ = ρr ≥ 1/2, since particles drifting to the
right are jamming behind the region of high density.
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(II) Low density phase: The limiting density is ρ∞ = ρl ≤ 1/2, since particles can drift to the
right without jamming.

(III) Maximum current phase: The solution to the PDE is a rarefaction fan with negative (pos-
itive) characteristic velocity u on the left (right). Thus the limiting density is given by the
density 1/2 with vanishing u(1/2) = 0.

The dashed blue line is a continuous phase transition line, i.e. crossing this line the order parameter
ρ∞(ρl, ρr) is continuous. The full red line is a first order transition line, across which the order
parameter jumps from ρl < 1/2 to ρr > 1/2. The exact behaviour of the system on that line is
given by

νρl,ρrS(t)→ 1
2νρl + 1

2νρr . (2.97)

So the limiting distribution is a mixture, and with equal probability all local observables are deter-
mined by the left or the right product measure. Formally this leads to ρ∞ = 1/2 as ρl + ρr = 1,
but this is misleading. The local density at the origin averaged over space is typically either ρl or
ρr with equal probability, but never 1/2 as it would be for ν1/2. This difference can be detected
by looking at a higher order correlation functions such as η(0)η(1), which leads to(

1
2νρl + 1

2νρr
)(
η(0)η(1)

)
= 1

2(ρ2
l + ρ2

r) , (2.98)

as opposed to ν1/2

(
η(0)η(1)

)
= 1/4. More details on this in the context of a similar phase

transition are derived and discussed in the next subsection for a finite system with open boundary
conditions.

The characteristics of the hyperbolic conservation law (2.82) provide a powerful tool to de-
scribe the transport properties of an IPS on a macroscopic scale. Their counterpart on a micro-
scopic lattice scale are so-called second class particles, which move randomly along the character-
istics depending on the local density. Since characteristics meet in shocks, second class particles
are attracted by shocks, and provide a good microscopic marker for the position of a shock. This
is important since a priori shocks do not look sharp on the lattice scale do not have a well defined
location. Therefore second class particles are an important concept and have been studied in great
detail (see e.g. [5] Section III.2 and references therein).

2.5 *Open boundaries and matrix product ansatz

In the following we consider the ASEP on the lattice ΛL = {1, . . . L} with open boundary condi-
tions. So in addition to the bulk rates

10
p−→ 01 and 01

q−→ 10 , (2.99)

we have to specify boundary rates for creation and annihilation of particles at sites x = 1 and L,

|0 α−→ |1 , |1 γ−→ |0 , 1| β−→ 0| and 0| δ−→ 1| . (2.100)

In principle we are free to choose α, β, γ and δ ≥ 0 independently. We would like to model
the situation where the system is coupled to particle reservoirs at both ends with densities ρl and
ρr ∈ [0, 1], which implies

α = ρlp , γ = q(1− ρl) , β = p(1− ρr) and δ = qρr . (2.101)
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The generator of the process is then given by the sum

Lf(η) = Lbulkf(η) + Lboundf(η) =

=
L−1∑
x=1

(
pη(x)

(
1− η(x+ 1)

)
− qη(x+ 1)

(
1− η(x)

))(
f(ηx,x+1)− f(η)

)
+

+
(
pρl(1− η(1))− qη(1)(1− ρl)

)(
f(η1)− f(η)

)
+

+
(
pη(L)(1− ρr)− qρr(1− η(L))

)(
f(ηL)− f(η)

)
. (2.102)

Note that for ρl, ρr ∈ (0, 1) particles are created and destroyed at the boundaries, and the number
of particles is not conserved. The ASEP on ΛL is thus a finite state irreducible Markov chain on
XL = {0, 1}ΛL . Therefore with Prop. 1.10 the process is ergodic and has a unique stationary
measure µL = µL(ρl, ρr) depending on the boundary parameters.

Following the analysis of the previous section, the scaled stationary density profile

ρ(y) := lim
L→∞

µL(1[yL]) with y ∈ [0, 1] (2.103)

should be a stationary solution of the conservation law (2.82). This is given by the boundary value
problem

0 = ∂yφ(ρ(y)) = (p− q)(1− 2ρ(y))∂yρ(y) with ρ(0) = ρl, ρ(1) = ρr , (2.104)

which has constant solutions. This is a first order equation which is not well posed having two
boundary conditions ρl 6= ρr. So jumps at the boundary cannot be avoided and obviously the
solution can be any arbitrary constant. Again one can apply the viscosity method as in the previous
section to get a unique solution for all ε > 0. Adding a second order term to (2.104) yields a well
posed parabolic equation with a unique solution ρε(y), form which we retreive the admissible
stationary profile ρ(y) in the limit ε→ 0.

Understanding the motion of shocks and rarefaction fans, we can derive the stationary profile
ρ(y) also from the time dependent solution ρ(y, t) in the limit t→∞. As initial condition we can
choose

ρ0(y) =
{
ρl , 0 ≤ y ≤ a
ρr , a < y ≤ 1

for some a ∈ (0, 1) . (2.105)

Then the macroscopic stationary profile ρ(y) is given by a constant ρbulk that corresponds exactly
to the densities ρ∞ observed in Theorem 2.8 for the infinite system, i.e.

ρbulk =


ρr , ρr ≥ 1

2 , ρl > 1− ρr (high density)
ρl , ρl ≤ 1

2 , ρr < 1− ρr (low density)
1/2 , ρl ≥ 1

2 , ρr ≤
1
2 (maximum current)

. (2.106)

In contrast to the previous section this is only correct in the scaling limit. For finite L boundary
effects produce visible deviations and in particular correlations. So the stationary measure is not
of product form, except for the trivial case ρl = ρr.

A very powerful ansatz to represent the non-product stationary distribution in this case is given
by using products of matrices.
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Theorem 2.9 Consider the ASEP on ΛL = {0, . . . , L} with boundary densities ρl, ρr ∈ (0, 1)
and bulk rates p, q. Suppose that the (possibly infinite) matrices D, E and vectors w, v satisfy

pDE − qED = D + E

wT
(
ρlpE − (1− ρl)qD

)
= w(

(1− ρr)pD − ρrqE
)
v = v . (2.107)

These relations are called a quadratic algebra. For η ∈ XL put

gL(η) = wT
L∏
x=1

(
η(x)D +

(
1− η(x)

)
E
)
v . (2.108)

If this is a well defined number in R for all η ∈ XL and the normalization

ZL =
∑
η∈XL

gL(η) 6= 0 , (2.109)

then the stationary distribution of the ASEP is given by µL(η) = gL(η)/ZL .

Remark. The matrices D,E and the vectors v,w are purely auxiliary and have no a priori in-
terpretation in terms of the particle system. In a field theoretic interpretation of the process, the
matrices can be related to creation and annihilation operators. For more details on this and the
matrix product ansatz in general see [24] and references therein.
Proof. (ηt : t ≥ 0) is a finite state irreducible MC and has a unique stationary measure µL, given
by the stationary solution of the master equation

d

dt
µL(η) = 0 =

∑
η′∈XL

(
πL(η′)c(η′, η)− πL(η)c(η, η′)

)
for all η ∈ XL . (2.110)

(Recal that this is the stationarity condition µL(Lf) = 0 for f = 1η.)
Therefore it suffices to show that gL given in (2.108) fulfilles the master equation, then it can
automatically be normalized. In our case the (unnormalized) individual terms in the sum are of
the form

gL(ηx,x+1)c(x, x+ 1, ηx,x+1)− gL(η)c(x, x+ 1, η) (2.111)

for the bulk and similar for the boundaries. They can be simplified using the quadratic algebra
(2.107). Using the first rule we get for the bulk

gL(.., 0, 1, ..)q − gL(.., 1, 0, ..)p = −gL−1(.., 1, ..)− gL−1(.., 0, ..) and

gL(.., 1, 0, ..)p− gL(.., 0, 1, ..)q = gL−1(.., 1, ..) + gL−1(.., 0, ..) . (2.112)

In general we can write for x ∈ {1, . . . , L− 1}

gL(ηx,x+1)c(ηx,x+1, η)− gL(η)c(η, ηx,x+1) =
(
1− 2η(x)

)
gL−1

(
.., η(x− 1), η(x), ..

)
−

−
(
1− 2η(x+ 1)

)
gL−1

(
.., η(x), η(x+ 1), ..

)
. (2.113)

For the boundaries we get analogously

gL(η1)c(1, η1)− gL(η)c(1, η) = −(1− 2η(1)
)
gL−1(η(2), ..) and

gL(ηL)c(L, ηL)− gL(η)c(L, η) = (1− 2η(L)
)
gL−1(.., η(L− 1)) . (2.114)
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The sum over all x ∈ ΛL corresponds to the right-hand side of (2.110), and vanishes since it is a
telescoping sum. 2

If the system is reversible then the terms (2.111) vanish individually. In the general non-reversible
case they are therefore called defects from reversiblity, and the quadratic algebra provides a sim-
plification of those in terms of distributions for smaller system sizes.

In terms of the matrices, the normalization is given by

ZL = wTCLv with C = D + E . (2.115)

Correlation functions can be computed as

ρ(x) = µL(1x) =
wTCx−1DCL−xv

wTCLv
, (2.116)

or for higher order with x > y,

µL(1x1y) =
wTCx−1DCy−x−1DCL−yv

wTCLv
. (2.117)

In particular for the stationary current we get

j(x) =
wTCx−1(pDE − qED)CL−x−1v

wTCLv
=

wTCL−1v
wTCLv

=
ZL−1

ZL
, (2.118)

which is independent of the lattice site as expected from (2.66).
For ρl = ρr = ρ and p 6= q the algebra (2.107) is fulfilled by the one-dimensional matrices

E =
1

ρ(p− q)
, D =

1
(1− ρ)(p− q)

and w = v = 1 (2.119)

since

pDE − qED =
(p− q)

(p− q)2ρ(1− ρ)
=

1
(p− q)ρ(1− ρ)

= D + E = C (2.120)

and ρpE − (1− ρ)qD = (1− ρ)pD − ρqE = 1 .
E,D ∈ R implies that µL is a product measure, and the density is hardly surprising,

ρ(x) = ρ(1) =
DCL−1

CL
= ρ so µL = νρ . (2.121)

In general µL is a product measure if and only if there exist scalars E,D fulfilling the algebra
(2.107), and it turns out that for ρl 6= ρr this is not the case. In general, there are several infinite
representations possible, summarized in [24].

In the following let’s focus on the totally asymmetric case p = 1, q = 0 (TASEP) with ρl, ρr ∈
(0, 1). The algebra simplifies to

DE = D + E , wTE =
1
ρl

wT , Dv =
1

1− ρr
v , (2.122)

and the question is what kind of matrices fulfill these relations.

Proposition 2.10 For p = 1, q = 0, if E,D are finite dimensional, then they commute.
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Proof. Suppose u satisfies Eu = u. Then by the first identity Du = Du + u and hence u = 0.
Therefore E − I is invertible and we can solve the first identity

D = E(E − I)−1 which implies that D and E commute . 2 (2.123)

So to describe the non-product stationary measure µL, D and E have to be infinite dimensional.
Possible choices are

D =


1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
...

...
. . . . . .

 , E =


1 0 0 0 . . .
1 1 0 0 . . .
0 1 1 0 . . .
...

...
. . . . . .

 (2.124)

with corresponding vectors

wT =
(

1,
1− ρl
ρl

,
(1− ρl

ρl

)2
, . . .

)
and vT =

(
1,

ρr
1− ρr

,
( ρr

1− ρr

)2
, . . .

)
. (2.125)

Correlation functions can be computed without using any representations by repeatedly applying
the algebraic relations. Using the rules

DE = C , DC = D2 + C , CE = C + E2 and

wTEk =
1
ρkl

wT , Dkv =
1

(1− ρr)k
v , (2.126)

the probability of every configuration can be written as a combination of terms of the form Zk =
wTCkv. Explicit formulas can be derived which look rather complicated (see [24] and references
therein), for the current we get the following limiting behaviour,

j =
ZL−1

ZL
→


ρr(1− ρr) , ρr > 1/2, ρl > 1− ρr
ρl(1− ρl) , ρl < 1/2, ρr < 1− ρl

1/4 , ρr ≤ 1/2, ρl ≥ 1/2
as L→∞ . (2.127)

This is consistent with the hydrodynamic result. Using the matrix product ansatz, the following
result can be shown rigorously.

Theorem 2.11 Suppose p = 1, q = 0 and let xL be a monotone sequence of integers such that
xL →∞ and L− xL →∞ for L→∞. Then

µLτxL →


νρr , ρr > 1/2, ρl > 1− ρr
νρl , ρl < 1/2, ρr < 1− ρl
ν1/2 , ρr ≤ 1/2, ρl ≥ 1/2

weakly, locally . (2.128)

If ρl < 1/2 < ρr and ρl + ρr = 1 (first order transition line), then

µLτxL → (1− a)νρl + aνρr where a = lim
L→∞

xL
L
. (2.129)

Proof. see e.g. [5], Section III.3

Note that on the first order transition line, the result can be interpreted in terms of a shock measure
with diffusing shock location, where the left part of the system has distribution νρl and the right
part νρr . This phenomenon is called phase coexistence, and is described by a mixture of the form
(2.129).
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3 Zero-range processes

3.1 From ASEP to ZRPs

Consider the ASEP on the lattice ΛL = Z/LZ. For each configuration η ∈ XL,N with N =∑
x∈ΛL

η(x) label the particles j = 1, . . . , N and let xj ∈ ΛL be the position of the jth particle.
We attach the labels such that the positions are ordered x1 < . . . < xN . We map the configuration
η to a configuration ξ ∈ NΛN on the lattice ΛN = {1, . . . , N} by

ξ(j) = xj+1 − xj − 1 . (3.1)

Here the lattice site j ∈ ΛN corresponds to particle j in the ASEP and ξj ∈ N to the distance to
the next particle j + 1. Note that η and ξ are equivalent descriptions of an ASEP configuration up
to the position x1 of the first particle.

η
1 2 3 4 5

p q

ξ
1 2 3 4 5

p q

As can be seen from the construction, the dynamics of the ASEP (ηt : t ≥ 0) induce a process
(ξt : t ≥ 0) on the state space NΛN with rates

c(ξ, ξj→j+1) = q(1− δ0,ξ(j)) and c(ξ, ξj→j−1) = p(1− δ0,ξ(j)) , (3.2)

where we write ξx→y =


ξ(x)− 1 , z = x
ξ(y) + 1 , z = y
ξ(z) , z 6= x, y

.

Since the order of particles in the ASEP is conserved, we have ξt(j) ≥ 0 and therefore ξt ∈ NΛN

for all t ≥ 0. Note also that the number of ξ-particles is∑
j∈ΛN

ξ(j) = L−N = number of holes in ASEP , (3.3)

which is conserved in time, and therefore (ξt : t ≥ 0) is a lattice gas. There is no exclusion
interaction for this process, i.e. the number of particles per site is not restricted. With analogy to
quantum mechanics this process is sometimes called a bosonic lattice gas, whereas the ASEP is a
fermionic system.

The ξ-process defined above is an example of a more general class of bosonic lattice gases,
zero-range processes, which we introduce in the following. From now on we will switch back to
our usual notation denoting configurations by η and lattice sizes by L.
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Definition 3.1 Consider a lattice Λ (any discrete set) and the state space X = NΛ. Let p(x, y) be
the irreducible, finite range transition probabilities of a single random walker on Λ with p(x, x) =
0, called the jump probabilities. For each x ∈ Λ define the jump rates gx : N → [0,∞) as a
non-negative function of the number of particles η(x) at site x, where

gx(n) = 0 ⇔ n = 0 for all x ∈ Λ . (3.4)

Then the process (ηt : t ≥ 0) on X defined by the generator

Lf(η) =
∑
x,y∈Λ

gx
(
η(x)

)
p(x, y)

(
f(ηx→y)− f(η)

)
(3.5)

is called a zero-range process (ZRP).

Remarks.

• ZRPs are interacting random walks with zero-range interaction, since the jump rate of a
particle at site x ∈ Λ depends only on the number of particles η(x) at that site. The inter-
pretation of the generator is that each site x loses a particle with rate g(η(x)), which then
jumps to a site y with probability p(x, y).

• The above ξ-process is a simple example of a ZRP with Λ = Z/NZ and

gx(n) ≡ p+ q , p(x, x+ 1) =
q

p+ q
and p(x, x− 1) =

p

p+ q
. (3.6)

• On finite lattices ΛL of size L, irreducibility of p(x, y) and (3.4) imply that ZRPs are irre-
ducible finite state Markov chains on

XL,N =
{
η ∈ NΛL

∣∣ΣL(η) = N
}

(3.7)

for all fixed particle numbers N ∈ N (remember the shorthand ΣL(η) =
∑

x∈ΛL
η(x)).

Therefore they have a unique stationary distribution πL,N on XL,N .

Examples.

• For the rates gx(n) = gx > 0 for all n ≥ 0 and x ∈ Λ the ZRP can be interpreted as
a network of M/M/1 server queues1, where at each site x a single server completes jobs
with rate gx and passes them on to another server y according to p(x, y).

• For the rates gx(n) = gxn for all x ∈ Λ, we have a network of M/M/∞ server queues,
i.e. each queue can serve all the particles present at the same time. That means that each
particle individually exits the queue at rate gx independently of all others, leading to a total
exit rate gxn. (Remember from Section 1.1 that the sum of n independent PP (gx) processes
is a PP (gxn) process.) Thus this corresponds to a system of independent random walkers
moving with rates gxp(x, y).

1M/M/1 means that a single server (1) receives input and generates output via continuous-time Markov processes
(M), i.e. with exponential waiting time distributions. There are more general queueng systems with applications in
traffic routing or process optimization (see e.g. [15] Chapter 11).
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On infinite lattices the number of particles is in general also infinite, but as opposed to exclu-
sion processes the local state space of a ZRP is N. This is not compact, and therefore in general
also X is not compact and the construction of the process with semigroups and generators given
in Chapter 1 does not apply directly and has to be modified.
In addition to non-degeneracy (3.4) we assume a sub-linear growth of the jump rates, i.e.

ḡ := sup
x∈Λ

sup
n∈N

∣∣gx(n+ 1)− gx(n)
∣∣ <∞ , (3.8)

and restrict to the state space

Xα =
{
η ∈ NΛ

∣∣ ‖η‖α <∞} with ‖η‖α =
∑
x∈Λ

∣∣η(x)
∣∣α|x| (3.9)

for some α ∈ (0, 1). Let L(X) ⊆ C(X) be the set of Lipshitz-continuous test functions f : Xα →
R, i.e.∣∣f(η)− f(ζ)

∣∣ ≤ l(f)‖η − ζ‖α for all η, ζ ∈ Xα . (3.10)

Theorem 3.1 Under the above conditions (3.8) to (3.10) the generator L given in (3.5) is well-
defined for f ∈ L(X)∩C0(X) and generates a Markov semigroup (S(t) : t ≥ 0) on L(X) which
uniquely specifies a ZRP (ηt : t ≥ 0).

Proof. Andjel (1982). The proof includes in particular the statement that η0 ∈ Xα implies
ηt ∈ Xα for all t ≥ 0, which follows from showing that the semigroup is contractive, i.e.∣∣S(t)f(η)− S(t)f(ζ)

∣∣ ≤ l(f)e3ḡ t/(1−α)‖η − ζ‖α .

Remarks.

• Let µ be a measure on NΛ with density

µ(η(x)) ≤ C1C
|x|
2 for some C1, C2 > 0 (3.11)

(this includes in particular uniformly bounded densities). Then for all α < 1/C1 we have
µ(Xα) = 1, so the restricted state space is very large and contains most cases of interest.

• The conditions (3.8) to (3.10) are sufficient but not necessary, in particular (3.8) can be re-
laxed when looking on regular lattices and imposing a finite range condition on p(x, y).

3.2 Stationary measures

Let (ηt : t ≥ 0) be a (non-degenerate, well defined) ZRP on a lattice Λ with jump probabilities
p(x, y) and jump rates gx.

Lemma 3.2 There exists a positive harmonic function λ = (λx : x ∈ Λ) such that∑
y∈Λ

p(y, x)λy = λx , (3.12)

which is unique up to multiples.
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Proof. Existence of non-negative λx follows directly from p(x, y) being the transition probabili-
ties of a random walk on Λ, irreducibility of p(x, y) implies uniqueness up to multiples and strict
positivity. 2

Note that we do not assume λ to be normalizable, which is only the case if the corresponding
random walk is positive recurrent. Since (3.12) is homogeneous, every multiple of λ is again a
solution. In the following we fix λ0 = 1 (for some lattice site 0 ∈ Λ, say the origin) and denote
the one-parameter family of solutions to (3.12) by

{φλ : φ ≥ 0} , (3.13)

where the parameter φ is called the fugacity.

Theorem 3.3 For each φ ≥ 0, the product measure νφ with marginals

νxφ(η(x) = n) =
wx(n)(φλx)n

zx(φ)
and wx(n) =

n∏
k=1

1
gx(k)

(3.14)

is stationary, provided that the local normalization (also called partition function)

zx(φ) =
∞∑
n=0

wx(n)(φλx)n <∞ for all x ∈ Λ . (3.15)

Proof. To simplify notation in the proof we will write

νxφ(n) := νxφ(η(x) = n) , (3.16)

and we will assume that Λ is finite. Our argument can be immediately extended to infinite lattices.
First note that using wx(n) = 1/

∏n
k=1 gx(k) we have for all n ≥ 0

νxφ(n+ 1) =
1

zx(φ)
wx(n+ 1)(φλx)n+1 =

φλx
gx(n+ 1)

νxφ(n) . (3.17)

We have to show that for all cylinder test functions f

νφ(Lf) =
∑
η∈X

∑
x,y∈Λ

gx
(
η(x)

)
p(x, y)

(
f(ηx→y)− f(η)

)
νφ(η) = 0 , (3.18)

which will be done by two changes of variables.
1. For all x, y ∈ Λ we change variables in the sum over η∑

η∈X
gx
(
η(x)

)
p(x, y) f(ηx→y)ν(η) =

∑
η∈X

gx
(
η(x) + 1

)
p(x, y) f(η)ν(ηy→x) . (3.19)

Using (3.17) we have

νφ(ηy→x) = νxφ
(
η(x) + 1

)
νyφ
(
η(y)− 1

) ∏
z 6=x,y

νzφ
(
η(z)

)
=

=
φλx

gx
(
η(x) + 1

) νxφ(η(x)
) gy(η(y)

)
φλy

νyφ
(
η(y)

) ∏
z 6=x,y

νzφ
(
η(z)

)
=

= νφ(η)
λx
λy

gy
(
η(y)

)
gx
(
η(x)

) . (3.20)
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Plugging this into (3.18) we get

νφ(Lf) =
∑
η∈X

f(η)νφ(η)
∑
x,y∈Λ

(
gy
(
η(y)

)
p(x, y)

λx
λy
− gx

(
η(x)

)
p(x, y)

)
. (3.21)

2. Exchanging summation variables x↔ y in the first part of the above sum we get

νφ(Lf) =
∑
η∈X

f(η)νφ(η)
∑
x∈Λ

gx
(
η(x)

)
λx

∑
y∈Λ

(
p(y, x)λy − p(x, y)λx

)
= 0 , (3.22)

since ∑
y∈Λ

(
p(y, x)λy − p(x, y)λx

)
=
∑
y∈Λ

(
p(y, x)λy

)
− λx = 0 . (3.23)

Note that terms of the form νyφ(−1) do not appear in the above sums, since gy(0) = 0. 2

Examples. Take Λ = ΛL = Z/LZ, p(x, y) = p δy,x+1 + q δy,x−1 corresponding to nearest-
neighbour jumps on a one-dimensional lattice with periodic boundary conditions. Then we simply
have λx = 1 for all x ∈ ΛL as the solution to (3.12).
For the constant jump rates gx(n) = 1 for all n ≥ 1, x ∈ ΛL the stationary weights are just
wx(n) = 1 for all n ≥ 01. So the stationary product measures νφ have geometric marginals

νxφ(η(x) = n) = (1− φ)φn since zx(φ) =
∞∑
k=0

φn =
1

1− φ
, (3.24)

which are well defined for all φ ∈ [0, 1).
For independent particles with jump rates gx(n) = n for all x ∈ ΛL we have wx(n) = 1/n! and
the νφ have Poisson marginals

νxφ(η(x) = n) =
φn

n!
e−φ since zx(φ) =

∞∑
k=0

φk

k!
= eφ , (3.25)

which are well defined for all φ ≥ 0.

Remarks.

• The partition function zx(φ) =
∑∞

n=0wx(n)(φλx)n is a power series with radius of con-
vergence

rx =
(

lim sup
n→∞

wx(n)1/n
)−1 and so zx(φ) <∞ if φ < rx/λx . (3.26)

If g∞x = limk→∞ gx(k) exists, we have

wx(n)1/n =
( n∏
k=1

gx(k)−1
)1/n

= exp
(
− 1
n

n∑
k=1

log gx(k)
)
→ 1/g∞x (3.27)

as n→∞, so that rx = g∞x .

1We always use the convention that the empty product
∏0
k=1 1/gx(k) = 1.
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• The density at site x ∈ Λ is given by

ρx(φ) = νxφ(η(x)) =
1

zx(φ)

∞∑
k=1

k wx(k)(φλx)k . (3.28)

Multiplying the coefficients wx(k) by k (or any other polynomial) does not change the
radius of convergence of the power series and therefore ρx(φ) <∞ for all φ < rx/λx.
Furthermore ρx(0) = 0 and it can be shown that ρx(φ) is a monotone increasing function
of φ (see problem sheet). Note that for φ > rx/λx the partition function and ρx(φ) diverge,
but for φ = rx/λx both, convergence or divergence, are possible.

• With Def. 2.3 the expected stationary current across a bond (x, y) is given by

j(x, y) = νxφ(gx) p(x, y)− νyφ(gy) p(y, x) , (3.29)

and using the form wx(n) = 1/
∏n
k=1 gx(k) of the stationary weight we have

νxφ(gx) =
1

zx(φ)

∞∑
n=1

gx(n)wx(n)(φλx)n =

=
φλx
zx(φ)

∞∑
n=1

wx(n−1)(φλx)n−1 = φλx . (3.30)

So the current is given by

j(x, y) = φ
(
λxp(x, y)− λyp(y, x)

)
, (3.31)

which is proportional to the fugacity φ and the stationary probability current of a single
random walker (as long as λ can be normalized).

Examples. For the above example with ΛL = Z/LZ, p(x, y) = p δy,x+1+q δy,x−1 and gx(n) = 1
for n ≥ 1, x ∈ Λ the density is of course x-independent and given by

ρx(φ) = ρ(φ) = (1− φ)
∞∑
k=1

kφk =
φ

1− φ
(mean of a geometric) . (3.32)

The stationary current j(x, x + 1) = φ(p − q) for all x ∈ ΛL, and as we have seen before in
one-dimensional systems it is bond-independent. Using the invertible relation (3.32) we can write
the stationary current as a function of the density ρ analogous to the ASEP in Section 2,

j(ρ) = (p− q) ρ

1 + ρ
, (3.33)

where we use the same letter j to avoid notational overload.
For independent particles with gx(n) = n for all x ∈ Λ, we get the very simple relation

ρ(φ) = e−φ
∞∑
k=1

k
φk

k!
= φ e−φ

∞∑
k=0

φk

k!
= φ (mean of a Poisson) . (3.34)

For the current this implies

j(ρ) = (p− q)ρ , (3.35)

which is to be expected for independent particles.
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3.3 Equivalence of ensembles and relative entropy

In this section let (ηt : t ≥ 0) be a homogeneous ZRP on the lattice ΛL = Z/LZ with state
space XL = NΛL , jump rates gx(n) ≡ g(n) and translation invariant jump probabilities p(x, y) =
q(y−x). This implies that the stationary product measures νφ given in Theorem 3.3 are translation
with marginals

νxφ
(
η(x) = n

)
=
w(n)φn

z(φ)
. (3.36)

Analogous to Section 2.1 for exclusion processes, the family of measures{
νLφ : φ ∈ [0, φc)

}
is called grand-canonical ensemble , (3.37)

where φc is the radius of convergence of the partition function z(φ) (called rx in the previous
section for more general processes). We further assume that the jump rates are bounded away
from 0, i.e. g(k) ≥ C > 0 for all k > 0, which implies that w(k) ≤ C−k and thus φc ≥ C > 0
using (3.27). The particle density ρ(φ) is characterized uniquely by the fugacity φ as given in
(3.28).

As noted before the ZRP is irreducible on

XL,N =
{
η ∈ NΛL

∣∣ΣL(η) = N
}

(3.38)

for all fixed particle numbers N ∈ N. It has a unique stationary measure πL,N on XL,N , and
analogous to the ASEP in Section 2.2 it can be written as a conditional product measure

πL,N (η) = νLφ (η|XL,N ) = 1XL,N (η)
φN
∏
xw(η(x))
z(φ)L

z(φ)L

φN
∑

η∈XL,N
∏
xw(η(x))

=

=
1XL,N (η)
ZL,N

∏
x∈ΛL

w(η(x)) , (3.39)

where we write ZL,N =
∑

η∈XL,N
∏
xw(η(x)) for the canonical partition function.

The family of measures{
πL,N : N ∈ N

}
is called canonical ensemble . (3.40)

In general these two ensembles are expected to be ’equivalent’ as L → ∞, in vague analogy to
the law of large numbers for iid random variables. We will make this precise in the following. To
do this we need to quantify the ’distance’ of two probability measures.

Definition 3.2 Let µ1, µ2 ∈ M1(Ω) be two probability measures on a countable space Ω. Then
the relative entropy of µ1 w.r.t. µ2 is defined as

H(µ1;µ2) =

{
µ1

(
log µ1

µ2

)
=
∑

ω∈Ω µ1(ω) log µ1(ω)
µ2(ω) , if µ1 � µ2

∞ , if µ1 6� µ2

, (3.41)

where µ1 � µ2 is a shorthand for µ2(ω) = 0 ⇒ µ1(ω) = 0 (called absolute continuity).

Lemma 3.4 Properties of relative entropy
Let µ1, µ2 ∈M1(Ω) be two probability measures on a countable space Ω.
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(i) Non-negativity:
H(µ1;µ2) ≥ 0 and H(µ1;µ2) = 0 ⇔ µ1(ω) = µ2(ω) for all ω ∈ Ω.

(ii) Sub-additivity:
Suppose Ω = SΛ with some local state space S ⊆ N and a lattice Λ. Then for ∆ ⊆ Λ and
marginals µ∆

i , H
(
µ∆

1 ;µ∆
2

)
is increasing in ∆ and

H(µ1;µ2) ≥ H
(
µ∆

1 ;µ∆
2

)
+H

(
µ

Λ\∆
1 ;µΛ\∆

2

)
. (3.42)

If µ1 and µ2 are product measures, then equality holds.

(iii) Entropy inequality:
For all bounded f ∈ Cb(Ω) and all ε > 0 we have

µ1(f) ≤ 1
ε

(
logµ2

(
eεf
)

+H(µ1;µ2)
)
. (3.43)

Proof. In the following let µ1 � µ2 and h(ω) = µ1(ω)/µ2(ω) ≥ 0.
(i) Then

H(µ1;µ2) = µ2(h log h) = µ2

(
φ(h)

)
with φ(u) := u log u+ 1− u , (3.44)

since µ2(1− h) = 1− µ1(1) = 1− 1 = 0. Elementary properties of φ are

φ(u) ≥ 0 for u ≥ 0 and φ(u) = 0 ⇔ u = 1 , (3.45)

which implies that H(µ1;µ2) ≥ 0. If µ1 = µ2 the relative entropy obviously vanishes.
On the other hand, if H(µ1;µ2) = 0 then φ

(
h(ω)

)
= 0 whenever µ2(ω) > 0, which implies

h(ω) = 1 and thus µ1(ω) = µ2(ω). Since µ1 � µ2 equality also holds when µ2(ω) = 0.
(ii) For Ω = SΛ we fix some ∆ ( Λ and write h(η) = µ1(η)/µ2(η) and h∆(η(∆)) =
µ∆

1 (η(∆))/µ∆
2 (η(∆)) for marginal distributions with ∆ ⊆ ΛL. Then h∆ is given by an ex-

pectation conditioned on the sub-configuration η(∆) on ∆,

h∆(η(∆)) =
µ∆

1

µ∆
2

(η(∆)) = µ2

(µ1

µ2

∣∣∣η(∆)
)

= µ2

(
h
∣∣η(∆)

)
. (3.46)

Since φ is convex we can apply Jensen’s inequality to get

φ(h∆(η(∆)) = φ
(
µ2

(
h
∣∣η(∆)

))
≤ µ2

(
φ(h)

∣∣η(∆)
)
. (3.47)

Therefore with µ2

(
µ2

(
φ(h)

∣∣η(∆)
))

= µ2

(
φ(h)

)
we have

H
(
µ∆

1 ;µ∆
2

)
= µ2

(
φ(h∆)

)
≤ µ2

(
φ(h)

)
= H

(
µ1;µ2

)
, (3.48)

which implies that in general H
(
µ∆

1 ;µ∆
2

)
is increasing in ∆.

Using the auxiliary measure ν = µ∆
1

µ∆
2
µ2 monotonicity in ∆ implies

H(µ1;µ2)−H
(
µ∆

1 ;µ∆
2

)
= µ1

(
log

µ1 µ
∆
2

µ2 µ∆
1

)
= µ1

(
log

µ1

ν

)
= H(µ; ν) ≥

≥ H
(
µ

Λ\∆
1 ; νΛ\∆) = H

(
µ

Λ\∆
1 ;µΛ\∆

2

)
, (3.49)
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since νΛ\∆ = µ
Λ\∆
2 by definition (µ∆

1 /µ
∆
2 does not change µ2 on Λ \∆).

If µ1 and µ2 are product measures h = µ1/µ2 factorizes, leading to equality.
(iii) harder, see e.g. [11], Appendix 1. 2

Remarks.

• H(µ1;µ2) is not symmetric and therefore not a metric onM1(X).

• (i) only holds if µ1, µ2 ∈ M1(X) are normalized probability measures, for general distri-
butions inM(X) the relative entropy can also be negative.

• H(µ1;µ2) is a well studied concept from information theory, often also called Kullback-
Leibler divergence or information gain.

Theorem 3.5 Consider the canonical and grand-canonical ensembles for a homogeneous ZRP as
defined above. Then the specific relative entropy

hL(φ) :=
1
L
H(πL,N ; νLφ )→ 0 (3.50)

in the thermodynamic limit L → ∞ and N/L → ρ̄ ≥ 0, provided that φ ∈ [0, φc) solves
ρ(φ) = ρ̄.

Proof. First we fix some L ≥ 0. Note that for all η ∈ XL and φ > 0, νφ(η) > 0, so in particular
πL,N � νφ and we have

hL(φ) =
1
L

∑
η∈XL,N

πL,N (η) log
πL,N (η)
νLφ (η)

. (3.51)

Using the form (3.36) and (3.39) of the two measures we get for η ∈ XL,N

πL,N (η)
νLφ (η)

=
∏
xw(η(x))
ZL,N

z(φ)L∏
xw(η(x))φη(x)

=
z(φ)L

ZL,NφN
. (3.52)

So due to the special form of the ensembles we get the simple expression

hL(φ) =
1
L

∑
η∈XL,N

πL,N (η) log
z(φ)L

ZL,NφN
= − 1

L
log

ZL,Nφ
N

z(φ)L
. (3.53)

Further note that

ZL,N =
∑

η∈XL,N

∏
x∈ΛL

w(η(x)) = νLφ
(
ΣL(η) = N

)
φ−Nz(φ)L , (3.54)

and thus

hL(φ) = − 1
L

log νLφ
(
ΣL(η) = N

)
. (3.55)

Since φ < φc we have
∑

n n
2w(n)φn < ∞. So under νφ the η(x) are iidrvs with finite variance

and mean νxφ(η(x)) = ρ(φ) = ρ̄. Now taking L → ∞ with N/L → ρ̄ by the local central limit
theorem (see e.g. [28], Chapter 9)

νLφ
(
ΣL(η) = N

)
= νLφ

( ∑
x∈ΛL

η(x) = N
)

= O(L−1/2) , (3.56)
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which corresponds to the width
√
L of the distribution of a sum of iidrv’s. This implies that

hL(φ) = O
( 1
L

logL
)
→ 0 as L→∞ . (3.57)

2

Note that this convergence result only holds if ρ̄ is in the range of the function ρ(φ) for φ ∈ [0, φc).
Whenever this is not the case the system exhibits an interesting phase transition which is discussed
in detail in the next section.

Corollary 3.6 Let f ∈ C0(X) be a cylinder test function with νφ
(
eεf
)
< ∞ for some ε > 0.

Then with νφ being the product measure on the whole lattice,

µL,N (f)→ νφ(f) as L→∞ , (3.58)

provided that φ ∈ [0, φc) solves ρ(φ) = ρ̄ = limL→∞N/L.

Proof. Let ∆ ⊆ ΛL be the finite range of dependence of the cylinder function f ∈ C0(X). Then
we can plug f − ν∆

φ (f) and ν∆
φ (f)− f in the entropy inequality (3.43) to show that∣∣πL,N (f)− νφ(f)

∣∣ ≤ H(π∆
L,N ; ν∆

φ ) . (3.59)

This involves extending the inequality to unbounded functions f with finite exponential moments
and a standard ε−δ argument. It is rather lengthy and we do not present this here, for a reference
see e.g. [25], Lemma 3.1.
Then sub-additivity (Lemma 3.4(ii)) gives

H(π∆
L,N ; ν∆

φ ) ≤ |∆|
L
H(πL,N ; νLφ ) = |∆|hL(φ)→ 0 (3.60)

as L→∞ which implies the statement. 2

Remarks.

• The above corrolary implies e.g. convergence of the test function f(η) = η(x), since for all
φ < φc

∞∑
n=0

eεnw(n)φn <∞ for eεφ < φc , i.e. ε < log
φc
φ
. (3.61)

So πL,N (η(x)) = N/L→ νφ(η(x)) = ρ(φ), which is not very surprising since φ is chosen
to match the limiting density ρ̄.

• The function f(η) = η(x)2 corresponding to the second moment is not covered by the
above result, since eεn

2
grows to fast with n for all ε > 0. However, convergence can be

extended to functions f ∈ L2(νφ) (with considerable technical effort, see e.g. appendix of
[11]). Since φ < φc leads to an exponential decay of w(n)φn, this extension includes all
polynomial correlation functions.
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3.4 Phase separation and condensation

Since ZRPs are bosonic lattice gases, they exhibit a condensation transition under certain con-
ditions which is similar to Bose-Einstein condensation for bosons. For more details and other
applications and related results to this section see [27] and references therein. As in the previous
section we consider a homogeneous ZRP on the lattice ΛL = Z/LZ with jump rates g(n) bounded
away from 0 for n > 0 and translation invariant jump probabilities p(x, y) = q(y − x).

Definition 3.3 Let ρ(φ) = νφ(η(x)) be the density of the grand-canonical product measure νφ
and φc ∈ [0,∞] be the radius of convergence of the partition function z(φ). Then we define the
critical density

ρc = lim
φ↗φc

ρ(φ) ∈ [0,∞] . (3.62)

ρc can take the value∞, as we have seen above for the example

g(k) = 1− δk,0 ⇒ ρ(φ) =
φ

1− φ
↗∞ as φ↗ φc = 1 . (3.63)

In fact, this is the ’usual’ situation since it implies that the function ρ(φ) is a bijection and there
exists a grand-canonical stationary measure for all densities ρ ≥ 0.

To have an example with ρc <∞ we need
∞∑
n=0

nw(n)φnc <∞ , (3.64)

i.e. the power series has to converge at the radius of convergence φc. Therefore w(n)φnc has to
decay sub-exponentially (by definition of φc), but fast enough for the sum to converge. A generic
example is a power law decay

w(n)φnc ' n−b as n→∞ with b > 2 . (3.65)

Since we have the explicit formula w(n) =
∏n
k=1 g(k)−1 this implies for the jump rates

g(n) =
w(n− 1)
w(n)

' (n− 1)−bφ−(n−1)
c

n−bφ−nc
= φc(1− 1/n)−b ' φc(1 + b/n) (3.66)

to leading order. Such a ZRP with rates

g(n) = 1 + b/n with φc = 1 and w(n) ' Γ(1 + b)n−b (3.67)

was introduced [26]. For this model ρc can be computed explicitly,

ρc =
1

b− 2
<∞ for b > 2 . (3.68)

The interesting question is now, what happens to the equivalence of ensembles in the limit L→∞
with N/L→ ρ̄ > ρc?

Theorem 3.7 Consider the canonical πL,N and the grand-canonical measures νLφ of a homoge-
neous ZRP, for which we assume that

lim
n→∞

1
n

n∑
k=1

log g(k) ∈ R exists . (3.69)
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Then

hL(φ) :=
1
L
H(πL,N ; νLφ )→ 0 as L→∞ and N/L→ ρ̄ ≥ 0 , (3.70)

provided that for ρ̄ ≤ ρc, φ ∈ [0, φc] solves ρ(φ) = ρ (sub-critical case) and for ρ̄ > ρc, φ = φc
(super-critical case).

Proof. Analogous to the proof of Theorem 3.5 we have

hL(φ) = − 1
L

log νLφ
(
ΣL(η) = N

)
, (3.71)

and for ρ̄ ≤ ρc or ρc =∞ this implies the result as before.
For ρ̄ > ρc,

∑
x∈ΛL

η(x) = N is a large deviation event, and to get an upper bound on (3.71) we
need a lower bound on its probability under the critical measure νLφc .

νLφc

( ∑
x∈ΛL

η(x) = N
)
≥

≥ ν1
φc

(
η(1) = N − [ρc(L− 1)]

)
ν

ΛL\{1}
φc

( ∑
x∈ΛL\{1}

η(x) = [ρc(L− 1)]
)
, (3.72)

which corresponds to putting an extensive amount of particles on a single lattice site (we arbitrar-
ily chose 1), and distributing an amount which is typical under νφc on the remaining sites.
The second term can be treated by local limit theorems analogous to the previous result* (see
remark below). Since φc is the radius of convergence of the partition function, ν1

φc
has a subexpo-

nential tail, i.e.

1
L

log ν1
φc

(
η(1) = N − [ρc(L− 1)]

)
→ 0 as L→∞ , (3.73)

since N − [ρc(L − 1)] ' (ρ̄ − ρc)L → ∞ for ρ̄ > ρc. The fact that this holds not only along a
subsequence but the limit really exists, is guaranteed by assumption (3.69) using

log ν1
φc

(
η(1) = n

)
= n log

(
φcw(n)1/n

)
− log z(φc) (3.74)

and (3.27). Plugging these results for (3.72) into (3.71) we get hL(φc)→ 0 for ρ̄ > ρc. 2

Remarks.

• Existence of the (Cesàro) limit in (3.69) is a very weak assumption, it is certainly fulfilled
if g(k) has a limit as k → ∞ as in our example above. It only excludes pathological cases
where g(k) has an exponentially diverging subsequence.

• *For b > 3 the η(x) are iidrvs with finite variance and the second term in (3.72) is of order
1/
√
L. For 2 < b ≤ 3 the variance is infinite and the sum of η(x) has a non-normal limit

distribution. Using adapted local limit theorems (see also [28], Chapter 9), the second term
can still be bounded below by terms of order 1/L for all b > 2.

• Corollary 3.6 still applies, but note that in the super-critical case νφc(e
εη(x)) = ∞ for all

ε > 0 due to sub-exponential tails. So the test function f(η) = η(x) is not included in the
result, which is to be expected, since for ρ > ρc

πL,N (η(x)) = N/L→ ρ > ρc = νφc(η(x)) . (3.75)
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Interpretation.

• Elements νφ of the grand-canonical ensemble are also called fluid phases. For ρ > ρc the
ensemble{

νφ : φ ∈ [0, φc]
}

has density range [0, ρc] , (3.76)

and there are no fluid phases with density ρ > ρc.

• The limiting distribution in any finite fixed volume ∆ is given by the fluid phase ν∆
φc

with
density is ρc. Therefore for large systems the excess mass (ρ − ρc)L concentrates in a re-
gion with vanishing volume fraction (volume o(L)), the so-called condensed phase. This
phenomenon is called phase separation in general, and since one of the phases covers only
a vanishing fraction of the system this particular form of phase separation is called conden-
sation.

• It can be shown (see [29]) that in fact the condensed phase concentrates on a single lattice
site, i.e. for ρ > ρc we have a law of large numbers for the maximal occupation number in
the canonical ensemble,

πL,N

(∣∣∣ 1
L

max
x∈ΛL

η(x)− (ρ− ρc)
∣∣∣ > ε

)
→ 0 as L→∞ for all ε > 0 . (3.77)

For the above example with g(k) = 1 + b/k, k > 0 and ρc(b) = 1/(b − 2) these results can be
summarized in the following phase diagram.

Ρbulk=Ρc

condensed

Ρbulk=Ρ

fluid

ΡcHbL

0 1 2 3 4 5
0

1

2

3

4

5

b

Ρ

The axes are given by the system parameters b and the density ρ̄ = limL→∞N/L. As order
parameter we took the limiting bulk density ρbulk := νφ

(
η(x)

)
, where νφ is the limit measure of

Theorem 3.7. This leads to

ρbulk =
{
ρ̄ , ρ̄ ≤ ρc
ρc , ρ̄ > ρc

, (3.78)

corresponding to two phase regions which we call fluid and condensed. ρbulk is continuous across
the phase transition line (red), and therefore condensation is a continuous phase transition w.r.t.
the order parameter ρbulk.
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4 The contact process

The lattice Λ, an arbitrary countable set, is endowed with a graph structure by a directed edge
set E ⊆ Λ × Λ. We assume that (Λ, E) is strongly connected, i.e. for all x, y ∈ Λ there exists
a directed path of edges connecting x to y. The state space of the contact process (CP) is X =
{0, 1}Λ and the generator is

Lf(η) =
∑
z∈Λ

(
η(z) + λ

(
1− η(z)

)∑
y∼z

η(y)
)(
f(ηz)− f(η)

)
, (4.1)

where y ∼ x if (y, x) ∈ E. Infected sites (η(x) = 1) recover independently with rate 1, and infect
neighbouring sites independently with rate λ > 0.

4.1 Mean-field rate equations

Choosing f(η) = η(x), denoting by µt = µ0S(t) the distribution at time t and writing ρ(x, t) =
µt(η(x)) ∈ [0, 1] for the density, we get from the forward equation (1.46)

d

dt
ρ(x, t) = µt(Lf) = −ρ(x, t) + λ

∑
y∼x

µt

(
η(y)

(
1− η(x)

))
. (4.2)

This follows from plugging f(η) = η(x) and f(ηx) = 1− η(x) into (4.1), which leads to

Lf(η) = η(x)
(
1− η(x)

)
+ λ
(
1− η(x)

)2∑
y∼x

η(y)− η(x)2 − λη(x)
(
1− η(x)

)∑
y∼x

η(y)

= −η(x) + λ
(
1− η(x)

)∑
y∼x

η(y) , (4.3)

since η(x) ∈ {0, 1} leads to simplifications η(x)
(
1 − η(x)

)
= 0 and η(x)2 = η(x). Note that

only the term z = x in the sum in (4.1) contributes.
So the time evolution of the first moment ρ(t) involves second moments and is not a closed equa-
tion, similar to what we have seen for the ASEP in Section 2. The simplest way to close these
equations is called the mean-field assumption:

µt
(
η(y)(1− η(x))

)
= µt

(
η(y)

)
µt
(
1− η(x)

)
= ρ(y, t)

(
1− ρ(x, t)

)
, (4.4)

i.e. µt is assumed to be a product measure and the η(x) to be independent. If the graph (Λ, E) is
translation invariant, e.g. a regular lattice such as Zd or

(
Z/LZ

)d or homogeneous trees, and the
initial distribution µ0 is as well, the system is homogeneous and we have the additional identity
ρ(x, t) ≡ ρ(t) for all x ∈ Λ. Using this and the mean-field assumption in (4.2) we get the
mean-field rate equation for the CP

d

dt
ρ(t) = −ρ(t) +mλρ(t)

(
1− ρ(t)

)
, (4.5)

where m is the coordination number or vertex degree of the lattice Λ, i.e. the number of neigh-
bours of a lattice site, such as m = 2d for d-dimensional cubic lattices.

Remarks.
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• Of course there is no reason why the mean-field assumption should be correct, in fact it
is known to be false (see later sections). However, it turns out that for high coordination
number the replacement

µt

(∑
y∼x

η(y)(1− η(x))
)
≈
∑
y∼x

ρt(y)
(
1− ρt(x)

)
(4.6)

leads to quantitatively good predictions. Due to a ’law of large numbers’-effect
∑

y∼x η(y)
can be replaced by its expected value when the number m of terms is large. For example
this is the case for high dimensional cubic lattices with m = 2d, and it can even be shown
that mean-field results are ’exact’ as long as d > 4. The highest dimension for which the
mean-field assumption is not exact is often referred to as the upper critical dimension in the
physics literature.

• Another situation with high coordination number is when the lattice Λ is actually a complete
graph, i.e. E = ΛL × ΛL. Here it can be shown that (4.5) holds rigorously with m+ L for
ρ(t) = 1

L

∑
x∈ΛL

ρ(x, t).

• For low dimensions/coordination numbers the mean-field assumption still is useful to get a
first idea of the critical behaviour of the system, since it typically easy to derive and analyze.
In most cases quantitative predictions are wrong (such as location of phase boundaries and
critical exponents), but qualitative features are often predicted correctly (such as the number
of phase regions or existence of critical points).

Analysis of the rate equation.
The long-time behaviour of solutions to an equation of the form d

dtρ(t) = f
(
(ρ(t)

)
is given by

stationary points of the right-hand side f(ρ) = 0. In our case for (4.5) these are given by

0 = −ρ+mλρ(1− ρ) = −mλρ2 + (mλ− 1)ρ , (4.7)

which are the roots of a downward parabola, given by ρ1 = 0 and ρ2 = 1− 1/(mλ).
ρ ≡ ρ1 = 0 is always a stationary solution to the equation, corresponding to the absorbing state
η = 0 of the CP, called the inactive phase. For mλ > 1 there is a second stationary density
ρ2 = 1 − 1/(mλ) ∈ (0, 1) called the active phase. The domains of attraction of these stationary
points are determined by the sign of f(ρ), and ρi is locally stable if f ′(ρi) < 0. In summary we
have

f ′(0) = mλ− 1 ⇒ ρ = 0
stable for mλ ≤ 1

unstable for mλ > 1

f ′(ρ2) = 1−mλ ⇒ ρ = ρ2
6∈ (0, 1] for mλ ≤ 1
stable for mλ > 1

, (4.8)

which leads to the following mean-field prediction of the phase diagram of the CP with the critical
value λc = 1/m.

Λ

0
ergodic non-ergodic

Ρ=0 Ρ=0

Ρ=Ρ2>0

1�m
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As opposed to previous sections the diagram is one-dimensional, since the number of particles
in the CP is not conserved and λ is the only system parameter. The two phase regions can be
characterized by ergodicity of the infinite system, as is explained below.

Remarks.

• The mean-field rate equation does not take into account fluctuations. Since the CP is irre-
ducible on X \ {0}, on a finite lattice the states in the active phase are transient and the CP
is ergodic with unique stationary measure µ = δ0.
However, if the infection rate λ is large enough and we start the system in the active phase
(e.g. η0(x) = 1 for all x), it remains active for a (random) time with mean of the order
exp(CL) where L is the size of the lattice. If L is large it takes the system very long to
reach its stationary distribution and the active phase is said to be metastable (see e.g. [5],
Chapter I.3).

• The lifetime of the active phase diverges for infinite lattice size. Therefore infinite systems
exhibit a truly stationary active phase if λ is large enough. The system is no longer ergodic
since it has two stationary distributions, δ0 corresponding to the absorbing state (inactive
phase) and µ corresponding to the active phase (more details on µ follow later).

• On Z (d = 1) precise numerical estimates (and rigorous bounds) show that λc = 1.64893,
which is quite far from the mean-field value 1/m = 1/2 predicted by (4.5). Nevertheless,
the qualitative prediction of a phase transitions turns out to be true. Comparing to the first
remark it is actually not surprising that mean-field underestimates the critical value, since
even for λ > 1/2 the system can still die out due to fluctuations. Clearly λc should decrease
with m since the total infection rate of one infected site is actually mλ, and in fact the nu-
merical estimate for Z2 is 0.4119 (MF prediction 1/m = 0.25).

4.2 Stochastic monotonicity and coupling

In this section we introduce a powerful technique which can be used to get rigorous results on the
contact process. Let X = SΛ be the state space of a particle system with S ⊆ N and Λ some
arbitrary discrete lattice. X is a partially ordered set, given by

η ≤ ζ if η(x) ≤ ζ(x) for all x ∈ Λ . (4.9)

Definition 4.1 A function f ∈ C(X) is increasing if

η ≤ ζ implies f(η) ≤ f(ζ) . (4.10)

This leads to the concept of stochastic monotonicity for probability measures µ1, µ2 on X:

µ1 ≤ µ2 provided that µ1(f) ≤ µ2(f) for all increasing f ∈ C(X) . (4.11)

This definition is quite hard to work with, and the best way to understand and use stochastic
monotonicity is in terms of couplings.

Definition 4.2 A coupling of two measures µ1, µ2 ∈M1(X) is a measure µ on the product state
space X ×X of pair configurations η = (η1, η2), such that the marginals for i = 1, 2 are

µi = µi i.e. µ
(
{η : ηi ∈ A}

)
= µi(A) for all measurable A ⊆ X . (4.12)
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Remark. In other words, a coupling means constructing the random variables η1(ω) and η2(ω)
on the same probability space (Ω,A,P), such that

P
(
{ω : ηi(ω) ∈ A}

)
= µi(A) for all measurable A ⊆ X . (4.13)

Theorem 4.1 (Strassen) Suppose µ1, µ2 ∈ M1(X). Then µ1 ≤ µ2 if and only if there exists a
coupling µ ∈M1(X ×X) such that

µ
(
{η : η1 ≤ η2}

)
= 1 (η1 ≤ η2 µ− a.s.) . (4.14)

Proof. ⇐: Suppose such a coupling µ exists. If f ∈ C(X) is increasing then f(η1) ≤ f(η2)
µ − a.s. and writing πi : X ×X → X for the projection on the i-th coordinate πi(η) = ηi, we
have

µ1(f) = µ
(
f ◦ π1

)
≤ µ

(
f ◦ π2

)
= µ2(f) , (4.15)

so that µ1 ≤ µ2.
⇒: involves a construction of the coupling on a probability space, see e.g. Theorem 2.4, p. 72 [5]2

Example. Let νρ1 , νρ2 be product measures onX = {0, 1}Λ with ρ1 ≤ ρ2. Then for each i = 1, 2
the ηi(x) are iid Be(ρi) random variables. We construct a (so-called maximal) coupling µ on
X × X that concentrates on configurations η1 ≤ η2. Let Ωx = (0, 1) and Px = U(0, 1) be the
uniform measure independently for each x ∈ Λ. Then define

ηi(x)(ω) :=
{

1 , ωx ≤ ρi
0 , ωx > ρi

, (4.16)

which implies that η1(x)(ω) ≤ η2(x)(ω) for all ω ∈ Ω and x ∈ Λ. Taking the product over all
lattice sites with P =

∏
x Px, we can define a coupling measure on X ×X by

µ := P ◦ η−1 i.e. µ(A) = P
(
{ω : η(ω) ∈ A}

)
for all A ∈ X ×X , (4.17)

and we have η1 ≤ η2 µ− a.s.. Therefore the theorem implies νρ1 ≤ νρ2 .
In practice, to sample from µ (i.e. choose a coupled pair of configurations η1 ≤ η2), first fix η1 by
choosing iid Be(ρ1) variables. Then under the coupling measure η1(x) = 1 implies η2(x) = 1,
which fixes η2 on those sites. On the remaining empty sites, choose iid Be

(ρ2−ρ1

1−ρ1

)
variables.

Then the η2(x) are independent and since µ
(
η1(x) = 1

)
= νρ1

(
η1(x) = 1

)
= ρ1 we have

µ
(
η2(x) = 1

)
= ρ1 + (1− ρ1)

ρ2 − ρ1

1− ρ1
= ρ2 , (4.18)

so η2 ∼ νρ2 has the right marginal.

The idea of monotinicity and coupling can be extended to processes.

Definition 4.3 Consider an IPS on X with generator (S(t) : t ≥ 0). The process is attractive or
monotone if

f increasing ⇒ S(t)f increasing for all t ≥ 0 , (4.19)

or equivalently

µ1 ≤ µ2 ⇒ µ1S(t) ≤ µ2S(t) for all t ≥ 0 . (4.20)
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Let P1,P2 ∈ M1

(
D[0,∞)

)
be the path space measures of two IPS (η1

t : t ≥ 0) and (η2
t ; t ≥ 0).

Then a coupling of the processes is given by a Markov process
(
(η1
t , η

2
t ) : t ≥ 0

)
on X × X

with measure P ∼ M1

(
D[0,∞) ×D[0,∞)

)
, having marginal processes (ηit : t ≥ 0) ∼ Pi, i.e.

Pi = Pi.

Lemma 4.2 The contact process is attractive.

Proof. We couple two contact processes (η1
t : t ≥ 0) (shown red) and (η2

t ; t ≥ 0) (shown blue)
using a graphical construction.

X=Z

time

0 21−1−2−3−4 3 4

Both processes use the same realization of infection and recovery processes→,← and ×, and the
initial conditions fulfill η2

0 ≤ η1
0 . Then by inspection of the coupling construction this immediately

implies that η2
t ≤ η1

t for all t ≥ 0 (example shown above). Therefore we have for all f ∈ C(X),

S(t)f(η2
0) = Eη

2
0
(
f(η2

t )
)
≤ Eη

1
0
(
f(η1

t )
)

= S(t)f(η1
0) , (4.21)

and since this holds for all ordered initial conditions the CP is attractive as given in Def. 4.3. 2

More generally it can be shown that:

Proposition 4.3 A general spin system on {0, 1}Λ with generator

Lf(η) =
∑
x∈Λ

c(x, η)
(
f(ηx)− f(η)

)
(4.22)

is attractive if and only if the jump rates (spin flip rates) fulfill

η ≤ ζ implies
{
c(x, η) ≤ c(x, ζ) , if η(x) = ζ(x) = 0
c(x, η) ≥ c(x, ζ) , if η(x) = ζ(x) = 1

. (4.23)
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Proof. Suppose the spin system is attractive, i.e. f increasing implies S(t)f increasing for all
t ≥ 0. Since f(η) = η(x) is increasing and in C0(X) we have

Lf(η) = lim
t↘0

S(t)f(η)− f(η)
t

, (4.24)

and for all η ≤ ζ with η(x) = ζ(x)

Lf(η)− Lf(ζ) = lim
t↘0

S(t)f(η)− S(t)f(ζ) + η(x)− ζ(x)
t

≤ 0 . (4.25)

Therefore Lf(η) ≤ Lf(ζ) and since

Lf(η) = c(x, η)
(
1− 2η(x)

)
(4.26)

this implies 4.23.
The other direction involves a more general version of the coupling given in the proof of Lemma
4.2 above, see e.g. Theorem 2.2, p. 134 [5]. 2

Remark. Property (4.23) asserts that 0 is more likely to flip to 1 in a environment of more 1s (ζ ≥
η), and vice versa. That means that local occupation numbers ’attract’ one another, explaining the
term ’attractive’ for such particle systems.

Lemma 4.4 Monotonicity in λ
Let (ηλt : t ≥ 0) and (ηλ

′
t : t ≥ 0) be two CPs with infection rates λ ≤ λ′. Then

µλ ≤ µλ′ implies µλSλ(t) ≤ µλ′Sλ′(t) for all t > 0 , (4.27)

i.e. there exists a coupling such that

ηλ0 ≤ ηλ
′

0 and ηλt ≤ ηλ
′
t for all t > 0 . (4.28)

Proof. By Strassen’s Theorem, µλ ≤ µλ
′

implies existence of a coupling µ ∈ M1(X ×X) such
that ηλ0 ≤ ηλ

′
0 µ − a.s.. Suppose first that ηλ0 = ηλ

′
0 and couple the processes (ηλt : t ≥ 0) and

(ηλ
′
t : t ≥ 0) by using coupled infection processes PP (λ) and PP (λ) + PP (λ′ − λ) ∼ PP (λ′)

in the graphical construction. Then clearly ηλt ≤ ηλ
′
t for all t > 0. Now by attractivity of the

process (ηλt : t ≥ 0) this also holds for initial conditions ηλ0 ≤ ηλ
′

0 . 2

4.3 Invariant measures and critical values

Consider a CP with infection rate λ on some connected graph (Λ, E) and let δ0 be the point mass
on the empty configuration and δ1 on the full configuration η(x) = 1, x ∈ Λ. Since η ≡ 0 is
absorbing, δ0 is stationary.

Proposition 4.5 For all 0 ≤ s ≤ t we have

δ1S(t) ≤ δ1S(s) , ν̄λ = lim
t→∞

δ1S(t) exists and ν̄λ ∈ Ie . (4.29)

ν̄λ is called the upper invariant measure, and we have δ0 ≤ µ ≤ ν̄λ for all µ ∈ I.
Furthermore, λ < λ′ implies ν̄λ ≤ ν̄λ′ , and for each x ∈ Λ

ρx(λ) := ν̄λ
(
η(x)

)
is monotone increasing in λ . (4.30)
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Proof. Since δ1 is maximal on X we have

δ1 ≥ δ1S(t− s) for all 0 ≤ s ≤ t . (4.31)

By attractivity of the CP and the Markov property this implies

δ1S(s) ≥ δ1S(t− s)S(s) = δ1S(t) . (4.32)

Therefore δ1S(t) is a monotone sequence, and by compactness of M1(X) (in the topology of
weak convergence) the limit exists and is stationary by Theorem 1.9(b). Furthermore δ0 ≤ π ≤ δ1

for all π ∈ M1. Every stationary measure µ ∈ I can be written as µ = limt→∞ πS(t) for some
π ∈M1, so by attractivity

δ0S(t) ≤ πS(t) ≤ δ1S(t) and after t→∞ , δ0 ≤ µ ≤ ν̄λ . (4.33)

Suppose that ν̄λ ∈ I is not extremal, i.e. ν̄λ = αµ1 + (1 − α)µ2 for µ1, µ2 ∈ I and α ∈ (0, 1).
Then µ1, µ2 ≤ ν̄λ, so for all increasing f ∈ C(X) we have µ1(f), µ2(f) ≤ ν̄λ(f). Suppose now
that µ1(f) < ν̄λ(f), then

αµ1(f) + (1− α)µ2(f) < αν̄λ(f) + (1− α)ν̄λ(f) = ν̄λ(f) (4.34)

in contradiction to the assumption. So µ1(f) = µ2(f) = ν̄λ(f) for all increasing f ∈ C(X), and
thus µ1 = µ2 = ν̄λ and ν̄λ ∈ Ie.
By monotonicity in λ we have for all t ≥ 0

δ1S
λ(t) ≤ δ1S

λ′(t) , (4.35)

provided that λ ≤ λ′, which implies ν̄λ ≤ ν̄λ′ . Since η(x) is increasing this also holds for the
corresponding densities. 2

On a finite lattice η ≡ 0 can be reached in finite time from any other configuration, and since
η ≡ 0 is absorbing this implies

µS(t)→ δ0 as t→∞ for all µ ∈M1(X) . (4.36)

This holds in particular for µ = δ1, and thus the upper invariant measure is ν̄λ = δ0 and the CP is
ergodic for all λ ≥ 0. On the other hand, on an infinite lattice it might be possible that ν̄λ 6= δ0

and the mean-field prediction of an active phase is correct. It turns out that this is indeed the case
for high enough infection rate λ as we will see below.

Definition 4.4 Denote by

αη := Pη(ηt 6= 0 for all t ≥ 0) (4.37)

the survival probability with initial configuration η ∈ X . For each x ∈ Λ denote by ξx ∈ X the
configuration with ξx(y) = δy,x having a single infection at x. The CP (ηt : t ≥ 0) is said to die
out if αξx = 0 for some x ∈ Λ, otherwise it is said to survive.

Note that condition (4.4) actually does not depend on the lattice site x, since Λ is connected and
therefore the CP is irreducible on X \ {0}.

Proposition 4.6 If the CP dies out for infection rate λ′ > 0, then it dies out for all λ ∈ [0, λ′].
The critical value λc ∈ [0,∞] is then given by

λc := sup
{
λ ≥ 0 : CP with infection rate λ dies out

}
. (4.38)
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Proof. Monotonicity in λ of the CP (Lemma 4.4) and ηλ0 = ηλ
′

0 imply that if (ηλ
′
t : t ≥ 0) dies out

so does (ηλt : t ≥ 0).
Since the CP with λ = 0 certainly dies out, the supremum λc is well defined in [0,∞]. 2

Proposition 4.7 Analogous to above for any A ⊆ Λ write ξA ∈ X for ξA(y) = 1A(y). Then the
survival probability is

αξA = PξA(ηt 6= 0 for all t ≥ 0) = ν̄λ
(
{ξB : B ∩A 6= ∅}

)
, (4.39)

and for λ < λc we have ν̄λ = δ0 for λ > λc, ν̄λ 6= δ0.

Proof. The result is based on the following duality property of the CP. For all A,B ⊆ Λ where
one of them, say A is finite, we have

PξA(ηt(x) = 1 for some x ∈ B) = PξB (ηt(x) = 1 for some x ∈ A) . (4.40)

For a proof of this see e.g. [9] Theorem VI.1.7. Now choosing B = Λ we have ξB(x) = 1 for all
x ∈ Λ and

PξA(ηt 6= 0) = Pδ1(ηt(x) = 1 for some x ∈ A) . (4.41)

Taking the limit t → ∞ implies the first statement. For λ < λc the process dies out with proba-
bility 1 for all initial configurations ξx and thus with A = {x} in (4.39) we have

ν̄λ
(
η(x) = 1

)
= ν̄λ

(
η(x)

)
= ρx(λ) = 0 for all x ∈ Λ , (4.42)

which imlies that ν̄λ = δ0. For λ > λc the process survives, and thus (4.42) has non-zero value
and ν̄λ 6= δ0. 2

Remark. Note that Prop. 4.7 implies in particular that the density

ρx(λ) = ν̄λ
(
η(x)

)
= Pξx(ηt 6= 0 for all t ≥ 0) (4.43)

is equal to the survival probability.
Our results so far imply that there is a well defined critical value λc ∈ [0,∞] such that the CP dies
out and ν̄λ = δ0 for λ < λc, and the CP survives and ν̄λ 6= δ0 for λ > λc. On a finite lattice we
have discussed above that λc = ∞. The crucial question on infinite lattices is now whether λc is
non-trivial, i.e. λc ∈ (0,∞). Certainly the value of λc will depend on the lattice Λ but at least one
can derive a quite general lower bound.

Let (ηt : t ≥ 0) be the CP with infection rate λ on a connected graph (Λ, E). Consider the
auxiliary process (ζt : t ≥ 0) on the same graph with state space X = NΛ and generator

Lf(ζ) =
∑
x∈Λ

(
η(x)

(
f(ζ−x)− f(ζ)

)
+ λ

∑
y∼x

ζ(y)
(
f(ζ+x)− f(ζ)

))
, (4.44)

where we write ζ±x(y) =
{
ζ(y)± 1 , y = x
ζ(y) , y 6= x

. In this process particles independently create

new particles at connected sites with rate λ and die independently with rate 1, so the number of
particles per site can be larger than 1. We couple this process to a CP (ηt : t ≥ 0) by using the same
Poisson processes PP (λ) and PP (1) for infection/creation and death/recovery in the graphical
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construction. If for the auxiliary process ζt > 1, we use independent creation and death processes
for the extra particles. This construction implies that the CP is dominated by the ζ-process, i.e.

η0 ≤ ζ0 ⇒ ηt ≤ ζt for all t ≥ 0 . (4.45)

Therefore if (ζt : t ≥ 0) dies out then the CP dies out as well. Now let m be the maximal vertex
degree of the graph (Λ, E). Then the number of particles in the ζ-process is dominated by a
Markov chain N(t) on the state space N with transition rates

c(n, n+ 1) = nmλ for n ≥ 0 , c(n, n− 1) = n for n ≥ 1 . (4.46)

All the particles independently create new particles at rate mλ and die at rate 1. Again there exists
an obvious coupling such that∑

x∈Λ

ζt(x) ≤ N(t) for all t ≥ 0 . (4.47)

N(t) is a well-known birth-death chain with absorbing state n = 0, and dies out with probability
1 if and only ifmλ ≤ 1. Formλ > 1 the average E(N(t)) is monotone increasing and the process
can survive with positive probability.

Proposition 4.8 Lower bound for λc Consider a CP on a connected graph (Λ, E) with maximal
vertex degree m. Then λc ≥ 1/m.

Proof. With initial condition ξx as in Definition 4.4 and using the above coupling the number of
active sites in the CP is dominated by the birth-death chain∑

x∈Λ

ηt(x) ≤ N(t) with N(0) = 1 . (4.48)

Therefore λ ≤ 1/m implies that the CP dies out and thus λc ≥ 1/m. 2

Note that the lower bound coincides with the mean-field prediction λc = 1/m = 1/(2d) of Sec-
tion 4.1. To get an upper bound on λc is in general harder. In the following we will concentrate on
Λ = Zd and only give a small part of the proof.

4.4 Results for Λ = Zd

Consider the CP on the regular lattice Λ = Zd.

Theorem 4.9 For the critical value λc(d) of a CP on the lattice Λ = Zd we have

1
2d
≤ λc(d) ≤ 2

d
for all d ≥ 1 . (4.49)

Proof. The lower bound is given by Prop. 4.8, for the proof of λc(1) ≤ 2 see Theorem VI.1.33 in
[9]. For higher dimensions the required inequality λc(d) ≤ λc(1)/d follows from

Pξx(ηdt 6= 0) ≥ Pξx(η1
t 6= 0) , t ≥ 0 , (4.50)

where (ηdt : t ≥ 0) is the d-dimensional CP with rate λ, and (η1
t : t ≥ 0) is a 1-dimensional CP

with rate dλ. We show this by coupling the two processes such that for each y ∈ Z

η1
t (y) = 1 implies ηdt (x) = 1 for some x such that πd(x) = y , (4.51)
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where for all x ∈ Zd we denote

πd(x) = πd(x1, . . . , xd) = x1 + . . .+ xd ∈ Z . (4.52)

Suppose that A ⊆ Zd and B ⊆ Z are finite and such that

B ⊆ πd(A) =
{
πd(x) : x ∈ A

}
, (4.53)

i.e. for each y ∈ B there is (at least) one x ∈ A such that y = πd(x). Choose one of these x̄, and
associate its PP (1) death process with site y. Also, for all of the 2d neighbours of x̄ we have

x ∼ x̄ implies πd(x) = y ± 1 ∼ y . (4.54)

Now associate the infection processes PP (λ) pointing towards x̄ from all its neighbours with in-
fections at y, which leads to a net infection rate of dλ from each of the two neighbours y±1. Note
that all other deaths and infections in the d-dimensional CP that would correspond to y are not
used in the coupling. With this construction both marginal processes (η1

t : t ≥ 0) and (ηdt : t ≥ 0)
have the right law, and clearly (4.51) is fulfilled, which finishes the proof. 2

Using more involved techniques than we do here, lower and upper bound can be improved signif-
icantly, depending on the dimension d. Further it can be shown that

d λc(d)→ 1
2

as d→∞ , (4.55)

supporting the physcis wisdom that ’mean-field theory is exact in high dimensions’.

Theorem 4.10 Complete convergence
Consider the CP on λ = Zd. For every η ∈ X as t→∞ we have

δηS(t)→ αην̄λ + (1− αη)δ0 weakly (locally) , (4.56)

where αη = Pη(ηt 6= 0 for all t ≥ 0) is the survival probability.

Proof. See e.g. [5], Theorem I.2.27.

Remark.
Taking the expected value w.r.t. an initial distribution µ in (4.56) we get weak convergence of

µS(t)→ µ(αη)ν̄λ +
(
1− µ(αη)

)
δ0 . (4.57)

This holds in particular for all stationary µ ∈ M1(X), and therefore every stationary distribution
is a convex combination of δ0 and ν̄λ and we have

Ie = {δ0, ν̄λ} . (4.58)

Theorem 4.11 Extinction time
Suppose λ > λc and for the CP (ηt : t ≥ 0) let

τ := inf{t ≥ 0 : ηt = 0} (4.59)

be the extinction time of the process. Then there exists ε > 0 such that for every initial condition
η0 = η ∈ X

Pη(τ <∞) ≤ e−ε|η| where |η| =
∑
x∈Λ

η(x) . (4.60)
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Proof. see [5], Theorem I.2.30

Note that this implies that the supercritical CP can only die out with positive probability if the
initial condition is finite |η| <∞. If, however, µ ∈M1(X) is translation invariant and µ(η(x)) >
0, then we have µ

(
|η| =∞

)
= 1, and therefore

Pη(τ =∞) = αη = 1 (4.61)

and the process survives with probability 1. With Theorem 4.10 this implies

µS(t)→ ν̄λ as t→∞ . (4.62)

Theorem 4.12 The critical contact process dies out.

Proof. see [5], Theorem I.2.25

This implies that the density

ρ(λ) = ν̄λ
(
η(x)

)
= Pξx(ηt 6= 0 for all t ≥ 0) (4.63)

which is independent of x due to translation invariance, is a continuous function of λ. By Propo-
sition 4.5 it is also monotone increasing, for λ > λc and vanishes for λ < λc by Proposition 4.7.
In particular, to leading order the behaviour at the critical point is given by

ρ(λ) ∼ C(λ− λc)β (4.64)

for some exponent β > 0. The only rigorous bound is β ≤ 1, and our mean-field result from
section 4.1 predicts λc = 1/(2d) and for λ ≥ λc similar we have to leading order

ρ(λ) = 1− 1
2dλ

= 1− 1
2dλc

(
1 +

λ− λc
λc

)−1
' λ− λc

λc
, (4.65)

which implies β = 1. In fact numerical estimates give values β ≈ 0.28 (d = 1), 0.58 (d =
2), 0.81 (d = 3), and for d ≥ 4 the mean-field value β = 1 should be ’exact’.

The CP has also been analyzed on other regular lattices, in particular homogeneous trees T d (see
e.g. Chapter I.4 in [5]). In this case the critical behaviour turns out to be more complicated, there
exists a second critical value λ2 > λc and complete convergence in the sense of Theorem 4.10
only holds outside the interval [λc, λ2]. Inside this interval there exist infinitely many extremal
invariant measures and the infection survives globally but dies out locally.

4.5 Duality

Definition 4.5 Consider two independent Markov processes (ηt : t ≥ 0) on X and (ξt : t ≥ 0)
on X̃ with corresponding path measures Pη and P̃ξ. (ξt : t ≥ 0) is the dual of (ηt : t ≥ 0) with
duality function D : X × X̃ → R if

EηD(ηt, ξ) = ẼξD(η, ξt) for all η ∈ Xand ξ ∈ X̃ . (4.66)

An equivalent formulation using semigroups
(
S(t) : t ≥ 0

)
and

(
S̃(t) : t ≥ 0

)
is

S(t)D(., ξ)(η) = S̃(t)D(η, .)(ξ) for all η ∈ Xand ξ ∈ X̃ . (4.67)

If X = X̃ and Pη = P̃η for all η ∈ X , (ηt : t ≥ 0) is called self-dual.
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Proposition 4.13 Consider the processes (ηt : t ≥ 0) on X with generator L and (ξt : t ≥ 0) on
X̃ with generator L̃. The processes are dual duality function D : X × X̃ → R if and only if

LD(., ξ)(η) = LD(η, .)(ξ) for all η ∈ Xand ξ ∈ X̃ . (4.68)

This holds provided that LD(., ξ) and D̃(η, .) are well defined for all η ∈ X and ξ ∈ X̃ .

Proof. Assume duality of (ηt : t ≥ 0) and (ξt : t ≥ 0). Then

1
t

(
S(t)D(., ξ)(η)−D(η, ξ)

)
=

1
t

(
S̃(t)D(η, .)(ξ)−D(η, ξ)

)
(4.69)

for all t > 0. Taking the limit t↘ 0 implies (4.68) using the definition (1.44) of the generator. By
the Hille-Yosida Theorem 1.6 the reverse follows from taking the limit n→∞ in the identity(

Id+
t

n
L
)n
D(., ξ)(η) =

(
Id+

t

n
L̃
)n
D(η, .)(ξ) , (4.70)

which holds for all n ∈ N by induction over n. 2

Remarks.

• LD and L̃D are well defined e.g. if (ηt : t ≥ 0) and (ξt : t ≥ 0) are Markov chains with
countable state space. If they are IPS with state spaces X and X̃ then D(., ξ) and D(η, .)
should be cylinder functions for all η ∈ X and ξ ∈ X̃ .

• Duality is a symmetric relation, i.e. if (ηt : t ≥ 0) is dual to (ξt : t ≥ 0) then (ξt : t ≥ 0) is
dual to (ηt : t ≥ 0) with the same duality function modulo coordinate permutation.

Proposition 4.14 The CP with X = {0, 1}Λ, Λ connected, is self-dual.

Proof. For η ∈ X and A ⊆ Λ finite define

D(η,A) :=
∏
x∈A

(
1− η(x)

)
=
{

1 , if η ≡ 0 on A
0 , otherwise

. (4.71)

Then, using D(η,A) =
(
1− η(x)

)
D
(
η,A \ {x}

)
for x ∈ A, we have

D(ηx, A)−D(η,A) =


D
(
η,A \ {x}

)
, x ∈ A, η(x) = 1

−D(η,A) , x ∈ A, η(x) = 0
0 , x 6∈ A

. (4.72)

This implies for the generator of the contact process (ηt : t ≥ 0)

LD(., A)(η) =
∑
x∈Λ

(
η(x) + λ

(
1− η(x)

)∑
y∼x

η(y)
)(
D(ηx, A)−D(η,A)

)
=

=
∑
x∈ A

(
η(x)D

(
η,A \ {x}

)
− λ

∑
y∼x

η(y)
(
1− η(x)

)
D(η,A)

)
. (4.73)

Using
(
1 − η(x)

)
D(η,A) =

(
1 − η(x)

)
D
(
η,A \ {x}

)
= D(η,A) for x ∈ A and writing

η(x) = η(x)−1+1 we get

LD(., A)(η) =
∑
x∈A

(
D
(
η,A \ {x}

)
−D(η,A) + λ

∑
y∼x

(
D
(
η,A ∪ {y}

)
−D(η,A)

)
=

=: L̃D(η, .)(A) . (4.74)
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Now L̃ is a generator on X̃ = {A ⊆ Λ finite} with transitions

A→ A \ {x} at rate 1, if x ∈ A ,

A→ A ∪ {y} at rate λ
∣∣{x ∈ A : x ∼ y}

∣∣, if y 6∈ A . (4.75)

If we identify A =
{
x : η̃(x) = 1

}
to be the set of infected sites of a process (η̃t : t ≥ 0), then

this is again a CP on X with infection rate λ. 2

Remark. It is often convenient to describe a CP (ηt : t ≥ 0) also in terms of the set of infections
(At : t ≥ 0). We use the same notation for the path measures P to indicate that we really have the
same process only in different notation. In that sense (4.71) is a duality function for the CP and
we have

EηD(., A) = Pη(ηt ≡ 0 on A) = PA(η ≡ 0 on At) = EAD(η, .) . (4.76)

Note that this is the relation we used in the proof of Proposition 4.7 in slightly different notation.

Proposition 4.15 Let (ηt : t ≥ 0) on X be dual to (ξt : t ≥ 0) on X̃ w.r.t. D : X × X̃ → R.
If T : C(X) → C(X) is a simple symmetry or a conservation law for (ηt : t ≥ 0) according to
Propositions 2.3 and 2.5, then

D′(η, ξ) =
(
T D(., ξ)

)
(η) (4.77)

is also a duality function.

Proof. For a symmetry T we have S(t)T = TS(t) for all t ≥ 0, so

S(t)D′(., ξ)(η) = S(t)T D(., ξ)(η) = T S(t)D(., ξ)(η) = T
(
S̃(t)D(., .)(ξ)

)
(η) . (4.78)

Now, if T is a simple symmetry with Tf = f ◦ τ , τ : X → X for all f ∈ C(X), we have

T
(
S̃(t)D(., .)(ξ)

)
(η)=

(
S̃(t)D(., .)(ξ)

)
(τη)=S̃(t)D(τη, .)(ξ)=S̃(t)D′(η, .)(ξ) . (4.79)

If T is a conservation law with Tf = gf for all f ∈ C(x) and some g ∈ C(X),

T
(
S̃(t)D(., .)(ξ)

)
(η)=g(η)S̃(t)D(η, .)(ξ)=S̃(t)g(η)D(η, .)(ξ)=S̃(t)D′(η, .)(ξ) , (4.80)

since g(η) is a constant under S̃(t), and the latter is a linear operator. 2

Remarks.

• Of course it is possible that D′ = TD = D. For example, translation invariance is a
symmetry of the CP on Λ = Zd, and the duality functionD in (4.71) is translation invariant.
But the linear voter model (see Definition 1.4) has a particle-hole symmetry, which can
generate two different duality functions (see example sheet).

• The result of Proposition 4.15 holds for all symmetries for which the commutation relation
T S̃(t)D = S̃(t)D holds. As seen in the proof this holds for general duality functions
D as long as we restrict to simple symmetries or conservation laws. For more general
symmetries regularity assumptions on D are necessary. Even though T and S̃(t) act on
different arguments of D(η, ξ), they do not necessarily commute in general, like e.g. partial
derivatives of a function f : R2 → R only commute if f is differentiable.
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attractivity, 60–62

of the contact process, 61, 63

backward equation, 15
Bernoulli product measure, 24
birth-death chain, 23
Burgers equation, 34, 35

characteristic
equation, 35–37
velocity, 36, 37, 39

compact metric space, 5, 13
complete convergence, 66, 67
condensation, 56
conservation law, 2, 4, 10, 11, 20, 28, 30, 32, 69

hyperbolic, 35
conserved quantity, see conservation law
contact process, 11
contractive, 14
correlation function, 17
coupling

measure, 59, 60
process, 61, 62, 65

critical
behaviour, 58, 67
density, 54
exponent, 58

mean-field, 67
measure, 55
point, 58, 67
value, 58, 59, 63–65

mean field, 59
mean-field, 65

current, 32, 33
maximum, 39, 40
stationary, 33, 34, 42, 49

cylinder function, 16, 17, 32, 53
cylinder set, 5

density, 17, 24
bulk, 40, 56

detailed balance, 22, 23
discrete Laplacian, 16, 33
duality, 67, 68

function, 67, 69
of the contact process, 68
self, 67

empirical measure, 34
empirical process, 34
ensemble

canonical, 26, 30, 50, 52, 56
grand-canonical, 26, 30, 50, 52, 56

equivalence of ensembles, 50, 54
ergodic, 20, 23, 59, 63
exclusion process, 10, 24

asymmetric simple (ASEP), 10, 24
symmetric simple, 10

extinction, 4, 59
time, 66

Feller process, 13, 14, 19
flux function, 35, 36
forward equation, 15, 31, 57
fugacity, 47, 49, 50

generator, 15–17
adjoint, 21
of contact process, 57
of exclusion process, 24
of zero-range process, 45

graphical construction, 9, 11, 61, 62, 64

heat equation, 33
Hille-Yosida theorem, 15
holding time, 6, 8
hydrodynamic limit, 34, 35

invariant measure, see stationary measure
irreducible, 23, 26, 40, 59

jump rates, 6, 10

lattice, 10
lattice gas, 10, 16, 44, 54
local equilibrium, 34
loss of memory property, 7, 8
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Markov chain, 6, 16, 19, 22
Markov process, 6
Markov property, 6, 13, 18, 63
master equation, 22, 41
matrix product ansatz, 39
mean field, 66

assumption, 58
rate equation, 57, 59

mean-field, 57
assumption, 57

measurable, 5, 6, 59, 60
metastability, 59
monotonicity

in λ, 62, 63
in lambda, 62
stochastic, 59, 60

order parameter, 38

partition function, 47, 48
canonical, 50
grand-canonical, 50

path measure, 6, 14
path space, 5, 18, 20
phase diagram, 38, 56, 59

mean-field prediction, 58
phase region, 38
phase separation, 56
phase transition, 2, 20, 31

continuous, 39, 56, 67
dynamic, 38
first order, 39

Poisson distribution, 8
Poisson process, 8, 9, 64
product topology, 5

quadratic algebra, 41, 42

random walk, 9, 10, 16, 22, 47
rarefaction fan, 37–40
relative entropy, 50–52

inequality, 51, 53
specific, 52

reversible, 18, 20–22
time-reversible, 18, 21

Riemann problem, 36–38

sample path, 5

scaling limit, 33
second class particles, 39
semigroup, 13–15

adjoint, 14, 21
shock, 37, 38, 40, 43

speed, 37
spectrum, 23

spectral gap, 23
state space, 3–5

local, 5
stationary measure, 18, 20, 22

existence, 19
of contact process, 62
of exclusion processes, 24
of zero-range process, 47
uniqueness, 23
upper invariant measure, 62, 63

stochastic process, 5
Strassen’s thoerem, 60
strong continuity, 6, 14
survival, 4, 59

probability, 63, 64, 66
symmetry, 27–29, 31

breaking, 31
CP-invariance, 31
simple, 27, 69

upper critical dimension, 58

viscosity method, 36, 40
voter model, 12

linear, 12, 69

weak convergence, 19, 35, 63, 66
local, 34

weak solution, 36
admissible, 36

zero-range process, 45
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