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Notes on Elementary Martingale Theory

by John B. Walsh

1 Conditional Expectations

1.1 Motivation

Probability is a measure of ignorance. When new information decreases that ignorance,
it changes our probabilities. Suppose we roll a pair of dice, but don’t look immediately at
the outcome. The result is there for anyone to see, but if we haven’t yet looked, as far as
we are concerned, the probability that a two (“snake eyes”) is showing is the same as it
was before we rolled the dice, 1/36. Now suppose that we happen to see that one of the
two dice shows a one, but we do not see the second. We reason that we have rolled a two
if—and only if—the unseen die is a one. This has probability 1/6. The extra information
has changed the probability that our roll is a two from 1/36 to 1/6. It has given us a new
probability, which we call a conditional probability.

In general, if A and B are events, we say the conditional probability that B occurs
given that A occurs is the conditional probability of B given A. This is given by the
well-known formula

P{B | A} =
P{A ∩ B}

P{A} ,(1)

providing P{A} > 0. (Just to keep ourselves out of trouble if we need to apply this to a set
of probability zero, we make the convention that P{B | A} = 0 if P{A} = 0.) Conditional
probabilities are familiar, but that doesn’t stop them from giving rise to many of the most
puzzling paradoxes in probability. We want to study a far-reaching generalization of this,
called a conditional expectation. The final definition is going to look rather abstract if
we give it without preparation, so we will try to sneak up on it.

Note that (1) defines a new probability measure on the sets B of (Ω,F), and we can
define an expectation with respect to it. If X is an integrable random variable, then it will
also be integrable with respect to the conditional probability of (1). (See the exercises.)
Thus we can define the conditional expectation of X given A by
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E{X | A} =
∑

x

xP{X = x | A},

for discrete X, and we can extend it to the general integrable X by taking limits, as in
Section ??.

First, why do we insist on conditional expectations rather than conditional proba-
bilities? That is simple: conditional probabilities are just a special case of conditional
expectations.

If B is an event, then, IB is a random variable with P{IB = 1 | A} = P{B | A}, and
P{IB = 0 | A} = 1 − P{B | A} so that

P{B | A} = E{IB | A},

i.e. we can get conditional probabilities by taking conditional expectations of indicator
functions. Thus we will concentrate on conditional expectations rather than conditional
probabilities.

If X has possible values (xi),

E{X | A} =
∑

i

xiP {X = xi | A} =
1

P{A}
∑

i

xiP{{X = xi} ∩ A}

=
1

P{A}
∑

i

xiE{I{X=xi}IA} =
1

P{A}E

{(

∑

i

xiI{X=xi}

)

IA

}

=
1

P{A}E{XIA} ≡ 1

P{A }
∫

A
X dP .

Thus, in general, E{X | A} = (
∫

A X dP )/P{A }: the conditional expectation is the
average of X over A.

We will need much more general conditioning than this. For instance, we could condi-
tion on the value of a random variable. Let X and Y be random variables; suppose Y is
discrete. Then we can define E{X | Y = y} for every value of y such that P{Y = y} > 0.
If P{Y = y} = 0, we arbitrarily set E{X | Y = y} = 0. Now of course the conditional
expectation depends on Y , so it is actually a function of Y , which we can write:

E{X | Y }(ω)
def
=
∑

y

E{X | Y = y}I{Y =y}(ω), ω ∈ Ω .(2)

By our remarks above, E{X | Y } is a random variable, and

E{X | Y } =
1

P{Y = yi}
∫

{Y =yi}
X dP(3)

on the set {Y = yi}.
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Remark 1.1 Note that E{X | Y } is constant on each set {Y = yi}, and its value is equal
to the average value of X on {Y = yi}. This means that first, conditional expectations
are random variables, and second, conditional expectations are averages.

Let us summarize the properties of E{X | Y } for a discrete random variable Y .

(A) It is a random variable.

(B) It is a function of Y .

(C) It has the same integral as X over sets of the form {ω : Y (ω) = y}

∫

{Y =y}
E{X | Y } dP =

∫

{Y =y}

[

1

P{Y = y}
∫

{Y =y}
X dP

]

dP =
∫

{Y =y}
X dP/, .

since the term in square brackets is a constant, hence the P{Y = y} cancel.

If B is a Borel set and (yi) are the possible values of Y , {Y ∈ B} = ∪i:yi∈B{Y = yi},
and (3) tells us that

∫

{Y ∈B}
E{X | Y } dP =

∑

i:yi∈B

∫

{Y =yi}
E{X | Y } dP =

∑

i:yi∈B

∫

{Y =yi}
X dP =

∫

{Y ∈B}
X dP ,

as long as the sum converges absolutely. But | ∫{Y =yi}
X dP | ≤ ∑

i:yi∈B

∫

{Y =yi}
|X| dP and

∑

i

∫

{Y =yi}
|X| dP = E{|X|} < ∞ since X is integrable. In short, E{X | Y } satisfies the

following properties:

(a) It is a function of Y .

(b)
∫

{Y ∈B}
E{X | Y } dP =

∫

{Y ∈B}
X dP .

Let’s translate this into the language of sigma fields. According to Proposition ?? a
random variable is a function of Y iff it is FY -measurable, and by Propsition ??, sets of
the form {Y ∈ B} comprise FY , so we can express (a) purely in terms of measurability
and (b) in terms of FY , so that we have

E{X | Y } is FY -measurable.(4)
∫

Λ
E{X | Y } dP =

∫

Λ
X dP , ∀Λ ∈ FY .(5)

1.2 Conditional Expectations Defined

Rather than trying to give a constructive definition of conditional expectations, we will
give a set of properties which they satisfy. As long as these properties characterize them
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uniquely, this is a perfectly legal definition. At the same time, we will generalize the idea.
Notice that (4) and (5) characterize E{X | Y } entirely in terms of the sigma field F Y .
Sigma fields contain information—in fact, to all intents and purposes, sigma fields are
information, so we will define conditional expectations relative to argitrary sigma fields.
If G is a sigma field, then E{X | G } will be the conditional expectation of X, given all
the information in G. This will seem strange at first, but it is in fact the most natural
way to define it. So, we just replace FY by a general sigma field G in (4) and (5) to get:

Definition 1.1 Let (Ω,F , P ) be a probability space and let G be a sub-sigma field of F .
If X is an integrable random variable, then the conditional expectation of X given

G is any random variable Z which satisfies the following two properties:

(CE1) Z is G-measurable;

(CE2) if Λ ∈ G, then
∫

Λ
Z dP =

∫

Λ
X dP .(6)

We denote Z by E{X | G}.

Remark 1.2 It is implicit in (CE2) that Z must be integrable.

There are some immediate questions which arise; most of them can be answered by
looking at the example of E{X | Y }. Let’s take them in order. Perhaps the most
pressing is, “What is the role of the sigma field in all this?” The answer is that a sigma
field represents information. For instance, if G is generated by a random variable Y , G
will contain all of the sets {Y ∈ B} for Borel B. Thus we can reconstruct Y from the
sets in G. In other words, if we know G, we also know Y .

The second question is, “Why should the conditional expectation be a random vari-
able?” Look again at the example where G is generated by Y . We expect that E{X |
G} = E{X | Y }, and the latter is a function of Y ; as Y is a random variable, so is a
function of Y , and the conditional expectation should indeed be a random variable.

The third question is, “How does measurability come into this?” In the case G = F Y ,
the conditional expectation should be a function of Y , as we saw just above. But by
Proposition ??, if Z is FY -measurable, it is indeed a function of Y . The next—but not
last—question we might ask is “What does (CE2) mean?” Look at (C). This equation
says that the conditional expectation is an average of X over certain sets. Since (CE2)
is a generalization of (C), we can interpret it to mean that E{X | G} is an average in a
certain sense over sets of G.

It remains to be seen how we can actually use (CE1) and (CE2). This is best seen
by simply proving some facts about conditional expectations and observing how they are
used. It happens, rather surprisingly, that even in cases where we have an explicit formula
for the conditional expectation, it is much quicker to use the definition, rather than the
formula, to prove things.
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Proposition 1.3 If Z and Z ′ are two random variables satisfying (CE1) and (CE2),
then Z = Z ′ a.e.

Proof. Since Z and Z ′ are G-measurable by (CE1), {Z − Z ′ > 0} ∈ G. (This takes a
little proof: {Z − Z ′ > 0} = {Z > Z ′} = ∪r∈QI {Z ′ < r} ∩ {Z ≥ r} which is in G since
both {Z ′ < r} and {Z ≥ r} are.) Apply (CE2) to both Z and Z ′:

∫

{Z>Z′}
(Z − Z ′) dP =

∫

{Z>Z′}
Z dP −

∫

{Z>Z′}
Z ′ dP =

∫

{Z>Z′}
X dP −

∫

{Z>Z′}
X dP = 0.

But since Z − Z ′ > 0 on {Z > Z ′}, we must have P{Z > Z ′} = 0. Thus Z ≤ Z ′ a.e.
Now reverse Z and Z ′ to see Z ′ ≤ Z a.e. as well, so Z = Z ′ a.e. ♣

Unfortunately, the conditional expectation is not uniquely defined. It is only defined
up to sets of measure zero—changing Z on a set of measure zero doesn’t change the
integrals in (CE2)—so two candidates are only equal a.e., but not necessarily identical.
If one wanted to be pedantic, one could insist that the conditional expectation was an
equivalence class of r.v.s which are a.e. equal and satisfy (CE1) and (CE2). But we won’t
do this, since in fact, ambiguities on a set of probability zero seldom difficulties. (We had
better quickly qualify that: while null sets seldom cause difficulties, when they do, they
are likely to be serious ones! As we are just about to see.)

This definition may appear to be overly abstract, but it is not: it is needed in order to
handle the general case—indeed, one of the triumphs of the measure-theoretic approach
is that it handles conditional expectations correctly. The reason that conditional expecta-
tions are so tricky to handle is a problem of null sets–and this is a case where the null-set
difficulty is serious: if P{Y = y} = 0 for all y, how is one to define E{X | Y }? The
formula (3) simply does not work. Yet this exactly what happens for any r.v. with a
continuous distribution function. One can extend the formula to random variables having
probability densities, but this still leaves many important cases uncovered.

This leaves us with an important question: “Does the conditional expectation always
exist?” That is, we have a definition: a conditional expectation is any r.v. satisfying the
two properties. But does any r.v. actually satisfy them? The answer turns out to be
“yes,” but—and this is almost embarrassing—there is no way we can prove this with the
tools we have at hand. Still, there is one case in which we can prove there is.

Consider the case where the sigma field G is generated by a partition of disjoint sets
Λ1, Λ2, . . ., with Λi ∈ F , ∪iΛi = Ω.

Proposition 1.4 Let X be an integrable random variable, and G ⊂ F the sigma-field
generated by the partition Λi, i = 1, 2, . . .. Then with probability one,

E{X | G} =
∑

i

E{XIΛi
}

P{Λi}
IΛi

.(7)
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In particular, with probability one

E{X | Y } = E{X | FY }.(8)

Proof. In fact, we have already proved (8), since (4) and (5) are equivalent to (CE1)
and (CE2) in this case. But the seemingly more general case (7) where G is generated by
the Λi follows from (8). We need only define the random variable Y by Y = i on the set
Λi. Then G = FY and E{X | G} = E{X | FY }. ♣

Remark 1.5 Warning Number One In what follows, we can prove the existence of condi-
tional expectations when the sigma fields are generated by partitions, but not otherwise.
So, in effect, we will be assuming that all sigma fields are generated by partitions in what
follows. In the end, we will show the existence of conditional expectations in general—
using only sigma fields generated by partitions—so that all we do below will be correct
in full generality.

Remark 1.6 Warning Number Two Everything will work out neatly in the end, so don’t
worry about Warning Number One.

1.3 Elementary Properties

Theorem 1.7 Let X and Y be integrable random variables, a and b real numbers. Then
(i) E{E{X | G}} = E{X} .
(ii) G = {φ, Ω} =⇒ E{X | G} = E{X} a.e.
(iii) If X is G-measurable, E{X | G} = X a.e.
(iv) E{aX + bY | G} = aE{X | G} + bE{Y | G} a.e.
(v) If X ≥ 0 a.e., E{X | G} ≥ 0 a.e.
(vi) If X ≤ Y a.e., E{X | G} ≤ E{Y | G} a.e.
(vii) |E{X | G}| ≤ E{|X| | G} a.e.
(viii) Suppose Y is G-measurable and XY is integrable. Then

E{XY | G} = Y E{X | G} a.e.(9)

(ix) If Xn and X are integrable, and if either Xn ↑ X, or Xn ↓ X, then

E{Xn | G} −→ E{X | G} a.e.

Proof. (i) Just take Λ = Ω in (CE2).

(ii) E
lbrX }, considered as a r.v., is constant, hence G-measurable. The only sets on which to

check (CE2) are φ, where it is trivial, and Ω, where it is obvious. This means Z
def
= E{X }

satisfies the properties of the conditional expectation, and hence it is the conditional
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expectation. Note that we only have equality a.e. since the conditional expectation is
only defined up to sets of measure zero. Another way of putting this is to say that E{X}
is a version of the conditional expectation.

(iii) Set Z ≡ X. Then (CE1) and (CE2) are immediate, and X must be a version of
the conditional expectation.

(iv) Once more we verify that the right-hand side satisfies (CE1) and (CE2). It is
clearly G-measurable, and if Λ ∈ G, apply (CE2) to X and Y to see that

∫

Λ
aE{X | G} + bE{Y | G} dP = a

∫

Λ
X dP + b

∫

Λ
Y dP =

∫

Λ
aX + bY dP .

(v) Take Λ = {E{X | G} < 0} ∈ G. Then by (CE2)

0 ≥
∫

Λ
E{X | G} =

∫

Λ
X ≥ 0 =⇒ P{Λ} = 0.

(vi) Let Z = Y − X and apply (v).

(vii) This follows from (vi) and (iv) since X ≤ |X| and −X ≤ |X|.
(viii) The right-hand side of (9) is G-measurable, so (CE1) holds. Assume first that

both X and Y are positive and let Λ ∈ G. First suppose Y = IΓ for some Γ ∈ G. Then
∫

Λ
Y E{X | G} dP =

∫

Λ∩Γ
E{X | G} dP =

∫

Λ∩Γ
X dP =

∫

Λ
XY dP

Thus (CE2) holds in this case. Now we pull ourselves up by our bootstraps. It follows
from (iv) that (CE2) holds if Y is a finite linear combination of indicator functions, i.e.
if Y is simple. Now let Y n = k2−n on the set {k2−n ≤ Y < (k + 1)2−n}, k = 0, 1, . . . and
set Y ′

n = min{Y n, n}. Then Y ′
n ≤ Y and Y ′

n increases to Y as n → ∞. Y ′
n is simple, so

∫

Λ
Y ′

nE{X | G} dP =
∫

Λ
XY ′

n dP .(10)

Let n → ∞. Since X ≥ 0, E{X|G} ≥ 0 by (v) and we can apply the Monotone
Convergence Theorem to both sides of (10) to see that

∫

Λ
Y E{X | G} dP =

∫

Λ
XY dP .(11)

Now in the general case, write X+ = max{X, 0} and X− = X+ − X = max{−X, 0}.
Then both X+ and X− are positive, X = X+ − X− and |X| = X+ + X−. X+ is the
positive part of X and X− is the negative part of X. Define the positive and negative
parts of Y similarly, and note that both are G-measurable. If X is integrable, so is |X|,
and hence so are X+ and X−. Moreover, XY = X+Y + +X−Y −−X+Y −−X−Y +. Since
(11) holds for all four products, it holds for XY . Thus Y E{X | G} satisfies (CE1) and
(CE2), proving (viii).
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(ix) Assume without loss of generality that (Xn) increases. (Otherwise consider the
sequence (−Xn).) Let Zn = E{Xn | G}. Then Zn ≤ {X | G} and by (vi), Zn increases to a
limit Z. By the Monotone Convergence Theorem ??, E{Z} ≤ E{E{X | G}} = E{X} by
(i). X is integrable, so this is finite and Z must be integrable. Each Zn is G-measurable,
hence so is Z. Moreover, again by the Monotone Convergence Theorem, for Λ ∈ G

∫

Λ
Z dP = lim

∫

Λ
Zn dP =

∫

Λ
Z dp .

Thus Z satisfies both (CE1) and (CE2), and therefore equals E{X | G}.
♣

1.4 Changing the Sigma Field

What happens if we take successive conditional expectations with respect to different
sigma fields? If one sigma field is contained in the other, the answer is that we end up
with the conditional expectation with respect to the coarsest sigma field of the two.

Theorem 1.8 If X is an integrable r.v. and if G1 ⊂ G2, then

E{E{X | G1} | G2} = E{E{X | G2} | G1} = E{X | G1}(12)

Proof. We will show that each of the first two terms of (12) equals the third. First,
E{X | G1} is G1-measurable, and therefore G2 measurable as well, since G1 ⊂ G2. By
(iii), then, E{E{X | G1} | G2} = E{X | G1}.

Consider the second term, E{E{X | G2} | G1}. To show this equals E{X | G1}, note
that it is G1-measurable, as required. If Λ ∈ G1, apply (CE2) to E{X | G2} and X
successively to see that

∫

Λ
E{E{X | G2} | G1} dP =

∫

Λ
E{X | G2} dP =

∫

Λ
X dP .

Thus it satisfies both (CE1) and (CE2). This completes the proof. ♣.

Remark 1.9 Note that (i) of Theorem 1.7 is a special case of Theorem 1.8. If we think
of the conditional expectation as an average, this result is an instance of the principle
that the average of sub-averages is the grand average.

Corollary 1.10 Let X be an integrable r.v. and let G1 ⊂ G2 be sigma fields. Then a
necessary and sufficient condition that E{X | G2} = E{X | G1} is that E{X | G2} be
G1-measurable.

Proof. Suppose E{X | G2} is G1-measurable. By Theorem 1.7 (iii), E{X | G2} =
E{E{X | G2} | G1} and by Theorem 1.8 this equals E{X | G1}. The converse is clear. ♣
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1.5 Jensen’s Inequality

A function φ on RI is convex if for any a < b ∈ RI and 0 ≤ λ ≤ 1, we have φ(λa+(1−λ)b) ≤
λφ(a)+(1−λ)φ(b). A well-known and useful inequality concerning these is the following,
known as Jensen’s inequality.

Theorem 1.11 Let X be a r.v. and φ a convex function. If both X and φ(X) are
integrable, then

φ(E{X}) ≤ E{φ(X)} .(13)

We will assume this, along with some of the elementary properties of convex functions.
We want to extend it to conditional expectations. This turns out to be not quite trivial—
the usual proof, elegant though it is, doesn’t extend easily to conditional expectations.

Theorem 1.12 Let X be a r.v. and let φ be a convex function on RI . Suppose both X
and φ(X) are integrable, and G ⊂ F is a sigma field. Then

φ (E{X | G}) ≤ E{φ(X) | G} a.e.(14)

Proof. Case 1: suppose X is discrete, say X =
∑

i xiIΓi
where the Γi are disjoint and

∪iΓi = Ω.

φ (E{X | G}) = φ

(

∑

i

xiP{Γi | G}
)

.

For a.e. fixed ω,
∑

i P{Γi | G} = P{∪iΓi | G} = 1 a.e. (see the exercises.) Thus by
Theorem 1.11, this is

≤
∑

i

φ(xi)P{Γi | G} = E{φ(X) | G} .

In the general case, there exists a sequence of integrable Xn such that Xn ↑ X and
|X − Xn| ≤ 2−n. Then E{Xn | G} ↑ E{X | G} a.e. by the Monotone Convergence
Theorem for conditional expectations, 1.7 (ix). φ is convex, therefore continuous, so
φ(E{Xn | G}) → φ(E{X | G}). Now either φ is monotone or else it has a minimum a,
and φ is decreasing on (−∞, a] and increasing on [a,∞). If φ is monotone, we can apply
the monotone convergence to φ(Xn) to finish the proof.

If not, for a positive integer m, and n > m write

φ(Xn) = I{X<a−2−m} φ(Xn) + I{a−2−m≤X<a+2−m} φ(Xn) + I{X>a+2−m} φ(Xn)

so

E{φ(Xn) | G} = E{I{X<a−2−m} φ(Xn) | G} + E{I{a−2−m≤X≤a+2−m} φ(Xn) | G}
+E{I{X>a+2−m} φ(Xn) | G} .
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In the first expectation, Xn < X ≤ a, and φ decreases on (−∞, a], so that φ(Xn) decreases
to φ(X), and we can go to the limit by Theorem 1.7 (ix). In the third expectation,
a ≤ Xn; since φ is increasing there, φ(Xn) increases to φ(X) and we can again go to the
limit. In the middle expectation, φ(X) and φ(Xn) are caught between φ(a) (the minimum
value of φ) and φ(a) + Mm, where Mm = max{φ(a − 2−m), φ(a + 2−m)} − φ(a). Thus
E{I{a−2−m≤Xn≤a+2−m} φ(Xn) | G} and E{I{a−2−m≤X≤a+2−m} φ(Xn) | G} are both caught
between φ(a)P{a − 2−m ≤ X ≤ a + 2−m} and (φ(a) + Mn)P{a − 2−m ≤ X ≤ a + 2−m}.
Since φ is continuous, these can be made as close together as we wish by making m large
enough. This proves convergence. ♣

Remark 1.13 Suppose X is square-integrable. Then E{X | G} is also square-integrable
by Jensen’s inequality. Here is another interesting characterizaton of E{X | G}: it is the
best mean-square approximation of X among all G-measurable random variables.

Indeed, suppose Y is square-integrable and G-measurable. Then

E{(Y − X)2} = E
{

(Y − E{X | G} + (E{X | G} − X)2
}

= E
{

(Y − E{X | G})2
}

+
(

E {E{X | G} − X)2
}

+2E{(Y − E{X | G})(E{X | G} − X)} .

Now Y − E{X | G} is G-measurable, so that by Theorem 1.7 (iii) and (i)

E{(Y − E{X | G}) (E{X | G} − X)} = (Y − E{X | G}) E{E{X | G} − X} = 0 ,

so the cross terms above drop out. Thus we can minimize E{(Y − X)2} by setting
Y = E{X | G}.

Remark 1.14 In the language of Hilbert spaces, E{X | G} is the projection of X on the
space of G-measurable random variables. If we had already studied Hilbert spaces, we
could settle the problem of the existence of the general conditional expectation right now:
projections exist—this is a consequence of the Riesz-Fischer Theorem—and the existence
of general conditional expectations follows easily. However, we will wait a bit, and show
this existence later as a result of some martingale convergence theorems.

1.6 Independence

We will quickly translate some well known facts about independence to our setting. Let
(Ω,F , P ) be a probability space.

Definition 1.2 (i) Two sigma fields G and H are independent if for Λ ∈ G and Γ ∈ H,

P{Λ ∩ Γ} = P{Λ}P{Γ} .

10



(ii) A finite family G1, . . . ,Gn of sigma fields is independent if for any Λi ∈ Gi, i =
1, . . . , n,

P{∩iΛi} =
∏

i

P{Λi} .

(iii) An infinite family {Gα, α ∈ I} is independent if any finite sub-family is.

We define independence of random variables in terms of this.

Definition 1.3 (i) A finite family X1, . . . , Xn of r.v. is independent if the sigma fields
FX1

, . . . ,FXn
are independent.

(ii) an infinite family {Xα, α ∈ I} of r.v. is independent if any finite subfamily is.

Proposition 1.15 Let X be a r.v. and G a sigma field. Suppose X and G are independent
(i.e. FX and G are independent.) Then E{X | G} = E{X} a.e.

1.7 Exercises

2◦ Let S be an integrable random variable and B a set of positive probability. Show that
X will be integrable with respect to the conditional probability measure P{A | B}.
2◦ Let Λi be a countable partition of Ω and G a sigma field. Show that with probability
one,

∑

i P{Λi | G} = 1.

3◦ Show that the definition of independence of given above is equivalent to the usual
definition: P{X1 ∈ B1, . . . , Xn ∈ Bn} = Πn

i=1P{Xi ∈ Bn} for Borel sets B1, . . . , Bn.

4◦ Prove Proposition 1.15.
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2 Martingales

A martingale is a mathematical model for a fair wager. It takes its name from “la grande
martingale,” the strategy for even-odds bets in which one doubles the bet after each loss.
(If you double the bet with each loss, the first win will recoup all previous losses, with
a slight profit left over. Since one is bound to win a bet sooner or later, this system
guarantees a profit. Its drawbacks have been thoroughly explored.) The term also refers
to the back belt of a dress or jacket, a part of a sailing ship’s rigging, and a tie-down
used on horses’ bridles, which might explain some bizarre birthday gifts to prominent
probabilists.

What do we mean by “fair”? One reasonable criterion is that on the average, the
wagerer should come out even. In mathematical language, the expected winnings should
be zero. But we must go a little deeper than that. It is not enough to have the total
expectation zero—the expectation should be zero at the time of the bet. This is not an
arbitrary distinction. Consider, for example, the three-coin game: we are given a fair coin,
an unbalanced coin which comes up heads with probability 2/3, and another unbalanced
coin which comes up tails with probability 2/3. We first toss the fair coin. If it comes up
heads, we toss the coin with P{heads} = 2/3. If it comes up tails, we toss the other coin.
We bet on the final outcome—heads or tails—at even odds. In this case, it is important
to know exactly when we bet. If we bet before the first coin is tossed, by symmetry we
will have a fifty-fifty chance of winning our bet, and we will gain a dollar if we guess
correctly, and lose it if we are wrong. Thus the wager is fair. But if we bet after we see
the result of the first toss, we have a much better chance of winning our bet. The one-for-
one payoff is no longer fair, but is greatly in our favor. Thus, it is really the conditional
expectation—given all our knowledge at the time of the bet—which should be zero.

We will model a succession of bets, keeping track of the total amount of money we
have—our fortune—at each bet. Let X0 be our initial fortune, X1 our fortune after the
first bet, X2 our fortune after the second, and so on. At the time we place each bet,
we will know certain things, including our fortune at the time, but we will not know the
result of the bet. Our winnings at the nth bet are Xn−Xn−1. The requirement of fairness
says that that the conditional expectation of Xn − Xn−1 given our knowledge at the time
we bet, is zero. As we have seen, we can represent knowledge by sigma fields. So let us
represent the knowledge we have at the time we make the nth bet by a sigma field Fn.
Then we should have E{Xn − Xn−1 | Fn−1} = 0, or E{Xn | Fn−1} = Xn. This leads us
to the following definitions.

Definition 2.1 A filtration on the probability space (Ω,F , P ) is a sequence {Fn : n =
0, 1, 2, . . .} of sub-sigma fields of F such that for all n, Fn ⊂ Fn+1.

The filtration represents our knowledge at the successive betting times. This increases
with time—in this model we don’t forget things—so that the sigma fields increase.
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Definition 2.2 A stochastic process is a collection of random variables defined on the
same probability space.

That is a fairly general definition—it is almost hard to think of something numerical
which is not a stochastic process. However, we have something more specific in mind.

Definition 2.3 A stochastic process X = {Xn, n = 0, 1, 2, . . .}, is adapted to the
filtration (Fn) if for all n, Xn is Fn-measurable.

Definition 2.4 A process X = {Xn,Fn, n = 0, 1, 2, . . .}, is a martingale if for each
n = 0, 1, 2, . . .,

(i) {Fn, n = 0, 1, 2 . . .} is a filtration and X is adapted to (Fn);
(ii) for each n, Xn is integrable;
(iii) for each n, E{Xn+1 | Fn} = Xn .

At the same time, we can define the related notions of submartingales and supermartin-
gales.

Definition 2.5 A process X = {Xn,Fn, n = 0, 1, 2, . . .}, is a submartingale (resp.
supermartingale) if for each n = 0, 1, 2, . . .,

(i) {Fn, n = 0, 1, 2 . . .} is a filtration and X is adapted to (Fn);
(ii) for each n, Xn is integrable;
(iii) for each n, Xn ≤ E{Xn+1 | Fn} (resp. Xn ≥ E{Xn+1 | Fn} .)

Remark 2.1 Think of the parameter n as time, and Fn as the history of the world up
to time n. If a r.v. is measurable with respect to Fn, it depends only on the past before
n. If a process (Xn) is adapted to (Fn), then each Xn depends only on what has already
happened before time n. One sometimes calls such processes “non-anticipating” because,
quite simply, they can’t look into the future. This is, needless to say, a rather practical
hypothesis, one which is satisfied by all living beings, with the possible exception of a few
(doubtless rich) seers.

Remark 2.2 We can define the notion of a martingale relative to any subset of the real
line. If I ⊂ RI is any set, and if {F t, t ∈ I} is a filtration (s, t ∈ I and s ≤ t =⇒ F s ⊂ F t),
then a stochastic process {Xt, t ∈ I} is a submartingale if s ≤ t =⇒ Xs ≤ E{Xt | F s} a.e.
However, for the minute we will restrict ourselves to discrete parameter sets. Continuous
parameter martingales, though useful and interesting, will have to await their turn.

We could consider an arbitrary discrete parameter set t1 < t2 < . . ., but the main
property of a discrete parameter set is simply its order, so without any loss of generality,
we may map tn to n, and take it to be a subset of the integers. If it is finite, we take it
to be 0, 1, 2, . . . , n. If it is infinite, we can take either NI + ≡ 0, 1, 2 . . ., NI − ≡ . . . − 2,−1,
or NI ≡ . . . 0,±1,±2, . . .. Let us start by considering processes of the form {Xn, n =
0, 1, 2, . . .}, with the understanding that this includes the case where the parameter set is
finite.
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If a martingale represents a fair game, then a submartingale represents a favorable
game (the expected winnings are positive) and a supermartingale represents an unfavor-
able game. As a practical matter, the patron of a gambling casino plays games which
are supermartingales (with the exception of blackjack where there is a known winning
strategy) while the casino plays submartingales. In the business world, financiers go to
great length to make sure they are playing submartingales, not supermartingales.

First, here are some elementary properties.

Proposition 2.3 (i) A stochastic process X ≡ {Xn,Fn, n = 0, 1, 2 . . .} is a submartin-
gale if and only if −X is a supermartingale. It is a martingale if and only if it is both a
sub- and supermartingale.

(ii) Suppose (Xn) is a submartingale relative to the filtration (Fn). Then for each
m < n, Xm ≤ E{Xn | Fm}.

(iii) If X is a martingale, E{Xn} = E{X0} for all n. If m < n and if X is a
submartingale, then E{Xm} ≤ E{Xn}; if X is a supermartingale, then E{Xm} ≥ E{Xn}.

(iv) If (Xn) is a submartingale relative to some filtration (Fn), then it is also a sub-
martingale with respect to its natural filtration Gn ≡ σ{X0, . . . , Xn}.

Remark 2.4 Because of (i), we will state most of our results for submartingales. The
corresponding results for martingales and submartingales follow immediately.

By (iii), martingales have constant expectations, while the expectations of submartin-
gales increase with time, and the expectations of supermartingales decrease. (iv) shows
us that if necessary, we can always use the natural filtration of the processes. However,
it is useful to have the flexibility to choose larger filtrations.

Proof. (i) is clear. Note (ii) is true for n = m + 1 from the definition of submartingale.
Suppose it is true for n = m + k. Then Xm ≤ E{Xm+k | Fm}. But by the submartingale
inequality, Xm+k ≤ E{Xm+k+1 | Fm+k}, so that Xm ≤ E{E{Xm+k+1 | Fm+k} | Fm}.
Since Fm ⊂ Fm+k, Theorem 1.8 implies that this equals E{Xm+k+1 | Fm}, hence (ii) is
true for n = k + 1, hence for all n > m by induction.

(iii) If Xn is a submartingale, Xn ≤ E{Xn+1 | Fn}. Take the expectation of both sides
and note that the expectation of the right-hand side is E{Xn+1}, so E{Xn } ≤ E{Xn+1 }
for all n.

(iv) Note that Gn ⊂ Fn (why?) so X is adapted to its natural filtrations, and if m < n,
Xm ≤ E{Xn | Fn} so

E{Xn | Gm} = E{E{Xn | Fm} | Gm} ≥ E{Xm | Gm} = Xm .

♣
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Proposition 2.5 (i) Suppose {Xn,Fn, n = 0, 1, 2, . . .} is a martingale and φ is a
convex function on RI . Then, if φ(Xn) is integrable for all n, {φ(Xn),Fn, n = 0, 1, 2, . . .}
is a submartingale.

(ii) Suppose that {Xn,Fn, n = 0, 1, 2, . . .} is a submartingale and φ is an increasing
convex function on RI . Then, if φ(Xn) is integrable for all n, {φ(Xn),Fn n = 0, 1, 2, . . .}
is a submartingale.

Proof. (i) By Jensen’s inequality for conditional expectations,

φ(Xm) = φ(E{Xn | Fm}) ≤ E{φ(Xn) | Fm} .

The proof for (ii) is almost the same: Xm ≤ E{Xm | Fm} so φ(Xm) ≤ φ(E{Xn |
Fm}) ≤ E{(φ(Xn) | Fm}, where the last inequality follows by Jensen. ♣

Thus if Xn is a martingale, then (subject to integrability) |Xn|, X2
n, eXn , and e−Xn

are all submartingales, while if Xn > 0,
√

Xn and log(Xn) are supermartingales. If Xn

is a submartingale and K a constant, then max{Xn, K} is a submartingale, while if Xn

is a supermartingale, so is min{Xn, K}. (The last two follow because x 7→ max{x, K} is
convex and increasing.)

2.1 Examples

1◦ Let x0, x1, x2, . . . be real numbers. If the sequence is increasing, it is a submartingale,
if it is constant, it is a martingale, and if it is decreasing, it is a supermartingale.

Indeed, we can define constant random variables Xn ≡ xn on any probability space
whatsoever, and take Fn to be the trivial filtration Fn = {φ, Ω} for all n to make this
into a stochastic process. Trivial tho it may be, this example is sometimes useful to curb
over-enthusiastic conjectures.

2◦ For a more interesting example, let Y1, Y2, . . . be a sequence of independent random
variables with E{Yn} ≥ 0 for all n. Set X0 = 0, Xn =

∑n
i=1 Yi for n ≥ 1. Let Fn =

σ{Y1, . . . , Yn} be the sigma field generated by the first n Yi’s. Then {Xn, n ≥ 0} is a
submartingale relative to the filtration (Fn). If the Yn all have expectation zero, it is a
martingale.

Indeed, E{Xn+1 | Fn} = E{Xn + Yn+1 | Fn}. Now Xn is easily seen to be Fn-
measurable, so this equals Xn + E{Yn+1 | Fn}. But Yn+1 is independent of Y1, . . . , Yn,
and hence of Fn, so this equals Xn + E{Yn+1} ≥ Xn. Thus X is a submartingale.

3◦ Example 2◦ could describe a sequence of gambles: the gambler bets one dollar each time
and Yj is the gain or loss at the jth play. We would say the game is fair if E{Yj} = 0 for all
j, that it is favorable if E{Yj} ≥ 0 for all j, and that it is unfair (or realistic) if E{Yj} ≤ 0.
A more worldly model would allow the gambler to vary the bets. Suppose at the time of
the nth bet the gambler decides to wager a stake of Kn dollars; Kn must be positive, and
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it may well be random—the gambler might vary the bets according to the situation (this
is the principal strategy in the system for blackjack) or on a random whim. At the time
of the wager, the bettor does not know the result Yn of the nth bet, but knows all the
previous results Y1, . . . , Yn−1, so that K should be measurable with respect to Fn−1. Call
the new process X̂. Thus the gambler’s fortune after the nth wager is X̂n = X̂n−1 +KnYn,
where Kn is an Fn−1 measurable positive random variable. (We will also assume it is
bounded to preserve integrability.) Then E{X̂n | Fn−1} = X̂n−1 + KnE{Yn | Fn−1} =
X̂n−1 + KnE{Yn}, since both X̂n−1 and Kn are Fn−1-measurable. Since Kn is positive,
X̂ will be a martingale (resp. submartingale, supermartingale) if the fixed-bet process X
is a martingale (resp. submartingale, supermartingale)

This tells us that we can’t change the basic nature of the game by changing the size of
the bets. (And, incidentally, it shows the superiority of the stock market to casinos. In
casinos, one can’t bet negative dollars. In the stock market one can, by selling short.)

4◦ Here is an important example. Let (Fn) be a filtration and let X be any integrable
random variable. Define Xn ≡ E{X | Fn}. Then {Xn, n = 0, 1, . . .} is a martingale
relative to the filtration (Fn).

Indeed, E{Xn+1 | Fn} = E{E{X | Fn+1} | Fn} ≡ E{X | Fn} = Xn by Theorem 1.8.

5◦ Let Y1, Y2, . . . be a sequence of i.i.d. r.v. with P{Yj = 1} = p, and P{Yj = 0} = 1− p.
Then

Xn =
n
∏

j=1

Yj

p

is a martingale. Indeed,

E{Xn+1 | Y1, . . . Yn} = E{XnYn+1/p | Y1, . . . , Yn} = XnE{Yn+1/p} = Xn .

This is an example of a positive martingale with common expectation one, which converges
to zero with probability one. (Since p < 1, one of the Yn will eventually vanish, and Xn = 0
from then on.)

6◦ There are numerous examples of martingales in statistics. Here is one which arises in
sequential analysis.

Let X1, X2, . . . be a sequence of random variables, not necessarily independent. Assume
that there are two candidates for their joint densities, which we call H1 and H2. The
statistical problem is to observe some of the random variables, and then decide whether
H1 or H2 is correct.

(H1) The joint density of the first n random variables X1, . . . , Xn is qn(x1, . . . , xn) for
n = 1, 2, . . .

(H2) The joint density of the first n random variables X1, . . . , Xn is pn(x1, . . . , xn) for
n = 1, 2, . . .
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In either case, we have a sequence of joint densities; in (H1) they are given by
q1(x1), q2(x1, x2), . . . and in (H2) they are a different sequence, p1(x1), p2(x1, x2), . . .. Let
Fn = σ{X1, . . . , Xn} be the natural sigma fields of the Xj, and define

Zn =











qn(X1, . . . , Xn)

pn(X1, . . . , Xn)
if pn(X1, . . . , Xn) 6= 0

0 if pn(X1, . . . , Xn) = 0 .
(15)

Then if (H2) is actually the correct series of densities, {Zn,Fn, n = 1, 2, . . .} is a positive
super-martingale, and it is a martingale if pn(x1, . . . , xn) never vanishes.

To see this, note that Zn is certainly Fn-measurable, and let Λ ∈ Fn, so that Λ =
{(X1, . . . , Xn) ∈ B} for some Borel set B in RI n. We are supposing that the the pn are
the correct densities, so

∫

Λ
Zn+1 dP =

∫

B×RI
. . .
∫

qn+1(x1, . . . , xn+1)

pn+1(x1, . . . , xn+1)
I{pn+1(x1,...,xn+1)6=0} dx1 . . . dxn+1

=
∫

B×RI
. . .
∫

qn+1(x1, . . . , xn+1)I{pn+1(x1,...,xn+1)6=0} dx1 . . . dxn+1

≤
∫

B×RI
. . .
∫

qn+1(x1, . . . , xn+1)I{pn(x1,...,xn)6=0} dx1 . . . dxn+1

since pn(x1, . . . , xn) = 0 =⇒ pn+1(x1, . . . , xn, ·) = 0 a.e., so I{pn+1>0} ≤ I{pn>0}. Now
integrate out xn+1 and use the properties of joint densities to see that this is

=
∫

B
. . .

∫

qn(x1, . . . xn)I{pn(x1,...,xn)6=0} dx1 . . . dxn

=
∫

B
. . .

∫

qn(x1, . . . , xn)

pn(x1, . . . , xn)
pn(x1, . . . , xn)I{pn(x1,...,xn)6=0} dx1 . . . dxn

=
∫

Λ
Xn dP .

There is equality if the pn never vanish.

2.2 Exercises

1◦ Find the probabilities for the three-coin game which make it fair if we bet after the
first coin is tossed.

2◦ Show that the maximum of two submartingales (relative to the same filtration) is a
submartingale.

3◦ Let (Yn) be a sequence of positive independent r.v. with E{Yj } = 1 for all j. Set
X0 = 1, and Xn =

∏n
1 Yj for n ≥ 1. Show that X0, X1, X2, . . . is a martingale relative to

its natural filtration.
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2.3 The Doob Decomposition

Submartingales turn out to satisfy many of the same theorems as martingales. This is
initially surprising, since a martingale is a rather special case of a submartingale, but the
following result indicates why this might be true. In fact, any submartingale is the sum
of a martingale plus an increasing process.

Theorem 2.6 (Doob Decomposition) Let X = {Xn, n ≥ 0} be a submartingale relative
to the filtration (Fn). Then there exists a martingale M = {Mn, n ≥ 0} and a process
A = {An, n ≥ 0} such that

(i) M is a martingale relative to (Fn);
(ii) A is an increasing process: An ≤ An+1 a.e.;
(iii) An is Fn−1-measurable ∀ n;
(iv) Xn = Mn + An.

Proof. Let dn ≡ E{Xn+1 − Xn | Fn}. By the submartingale inequality, dn is positive
and Fn-measurable. Set A0 = 0, An =

∑n−1
j=1 dj and Mn = Xn − An. Then (ii), (iii), and

(iv) hold. To see (i), write

E{Mn+1 | Fn} = E{Xn+1 − An+1 | Fn}
= E{Xn+1 | Fn} − An+1

= Xn + dn −
n
∑

j=1

dj

= Xn −
n−1
∑

j=1

dj

= Mn .

This finishes the proof. ♣

2.4 Stopping Times

Consider a random instant of time, such as the first time heads comes up in a series of
coin tosses, the first time the Dow-Jones takes a one-day fall of more than five hundred
points, or the moment we stopped believing in Santa Claus. There are two fundamental
types of random times: the first class consists of those we can determine in “real time”—
that is, times which we can recognize when they arrive—times which can be determined
without reference to the future. The second class consists of those we can’t. The three
examples above are in the first class, but something like the time when the Dow Jones
reaches its maximum in the month of February is not: in general, we must wait until the
end of the month to determine the maximum, and by then the time has passed. The first
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class of times can be used for strategies of investing and other forms of gambling. We can
recognize them when they arrive, and make decisions based on them.

We will give a general characterization of such times. Let I be a subset of the integers
and let {Fn, n ∈ I} be a filtration.

Definition 2.6 A random variable T taking values in I ∪ {∞} is a stopping time (or
optional time) if for each n ∈ I, {ω : T (ω) = n} ∈ Fn.

Definition 2.7 Let T be a stopping time. The sigma field FT , sometimes called “the past
before T” is

FT = {Λ ∈ F : Λ ∩ {T = n} ∈ Fn, ∀n} .

Remark 2.7 Fn represents the information available at time n, so {T = n} ∈ Fn, ∀n
is exactly the condition which says we can recognize T when it arrives.

T may take on the value ∞. This is interpreted to mean that “T never happens.” This
is all too often the case with times such as “the time I broke the bank at Monte Carlo.”

Remark 2.8 The the definition of FT may require reflection to understand. If the Fn

are the natural sigma fields, then FT should just be σ{X1, . . .XT}. The problem with
this is that the length of the sequence X1, . . .XT is random—that is, the sequence itself
can contain differing numbers of elements, so we must be careful to say exactly what we
mean by σ{X1, . . .XT}. To handle it, we have to consider the sets on which T takes a
specific value. An example may help to clarify this. Suppose T is the first time that there
is a multicar chain collision on a new interstate highway. One event of interest would be
whether there was a fog which caused the collision. Let Λ be the event “there was fog
just before the collision.” This event is certainly in the past of T . To determine whether
Λ happened, one could go to the newspaper every day, and see if there is an article about
such an accident—if it is the newspaper of day n, this tells us if T = n. If the accident did
happen, read further in the article to find if there was fog—this is the event {T = n}∩Λ.
For “newspaper of day n,” read Fn.

It is easy to see that a constant time is a stopping time. A more interesting example
is the first hitting time:

Proposition 2.9 Let {Xn, n = 0, 1, 2, . . .} be a stochastic process adapted to the filtration
(Fn). Let B ∈ RI be a Borel set and define

TB(ω) =

{

inf{n ≥ 0 : Xn(ω) ∈ B}
∞ if there is no such n.

Then TB is a stopping time, called the first hitting time of B.
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Proof. {TB = 0}{X0 ∈ B} ∈ F0 and for n ≥ 1, {TB = n} = {X0 ∈ BC , . . .Xn−1 ∈
Bc, Xn ∈ B}. Since X0, . . . , Xn are all Fn-measurable (why?) this set is in Fn, showing
that TB is a stopping time. ♣

One can extend this: if S is a stopping time, then T = inf{n ≥ S : Xn ∈ B} is also a
stopping time, which shows that second hitting times, etc. are stopping times.

Here are some elementary properties of stopping times.

Proposition 2.10 (i) If T is a stopping time, the sets {T < n}, {T ≤ n}, {T = n}
{T ≥ n} and {T > n} are in Fn.

(ii) A random variable T with values in I ∪ {∞} is a stopping time if and only if
{T ≤ n} ∈ Fn for all n ∈ I.

(iii) A constant random variable T taking its value in I ∪ {∞} is a stopping time.
(iv) If T1 and T2 are stopping times, so are T1 ∧ T2 and T1 ∨ T2.

Proof. (i) {T ≤ n} = ∪{j∈I,j≤n}{T = j}. But if j ≤ n, {T = j} ∈ F j ⊂ Fn, so the
union is in Fn. {T < n} = {T ≤ n} − {T = n}, which is also in Fn, and the remaining
two sets are complements of these two.

We leave (ii) as an exercise. To see (iii), note that {T = n} is either the empty set or
the whole space, and both are in Fn.

(iv) {T1 ∧ T2 = n} = ({T1 = n} ∩ {T2 ≥ n}) ∪ ({T2 = n} ∩ {T1 ≥ n}) ∈ Fn by (i).
Similarly, {T1 ∨ T2 = n} = ({T1 = n} ∩ {T2 ≥ n}) ∪ ({T2 = n} ∩ {T1 ≤ n}) ∈ Fn by (i).
♣

Proposition 2.11 (i) Let T be a stopping time. Then FT is a sigma field, and T is
FT -measurable.

(ii) If T1 ≤ T2 are stopping times, then FT1
⊂ FT2

, and {T1 = T2} ∈ FT1
.

(iii) If T1, T2, T3, . . . are stopping times and if T ≡ limn Tn exists, then T is a stopping
time.

Proof. (i) To show FT is a sigma field, we verify the properties of the definition.
Clearly φ ∈ FT . Suppose Λ ∈ FT . Then Λc ∩ {T = n} = {T = n} − Λ ∩ {T = n}. But
{T = n} ∈ Fn by the definition of a stopping time, and Λ∩ {T = n} ∈ Fn since Λ ∈ FT .
Thus their difference is in Fn, so Λc ∈ FT . If Λj, j = 1, 2, . . . is a sequence of sets in FT ,
then (∪jΛj) ∩ {T = n} = ∪j(Λj ∩ {T = n}) ∈ Fn, so ∪jΛj ∈ FT . Thus FT is a sigma
field.

To see T is FT -measurable, it is enough to show that {T = j} ∈ FT for each j. But
{T = j} ∩ {T = n} is either empty or equal to {T = n}, and in either case is in Fn.

To see (ii), let Λ in FT1
. We claim Λ ∈ FT2

. Indeed, Λ ∩ {T2 = n} = ∪j≤nΛ ∩
{T1 = j} ∩ {T2 = n}. But Λ ∩ {T1 = j} ∈ F j ⊂ Fn and {T2 = n} ∈ Fn, hence
Λ ∩ {T2 = n} ∈ Fn =⇒ Λ ∈ FT2

=⇒ FT1
⊂ FT2

.
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Consider {T1 = T2} ∩ {T1 = n} = {T1 = n} ∩ {T2 = n}. This is in Fn since both sets
in the intersection are, proving (ii).

(iii) Because the Tn take values in a discrete parameter set, limn Tn(ω) = T (ω) =⇒
Tn(ω) = T (ω) for all large enough n. Thus, {T = n} = lim infj{Tj = n} ∈ Fn, hence T
is a stopping time.

2.5 Exercises

1◦ Let S and T be stopping times, and a > 0 an integer. Show that S + T and S + a are
stopping times, providing they take values in the parameter set.

2◦ Let {Xn,Fn, n = 1, 2, . . .} be a submartingale, and let (Gn) be a filtration with the
property that Xn is Gn-measurable for all n, and Gn ⊂ Fn for all n. Then {Xn,Gn, n =
1, 2, . . .} is a submartingale.

3◦ Let S be a stopping time and B ⊂ RI a Borel set. Show that T ≡ inf{n > S : Xn ∈ B}
is a stopping time. (By convention, the inf of the empty set is ∞.)

4◦ Prove Proposition 2.10 (ii).

5◦ Let T be a stopping time. Prove that

FT = {λ ∈ F : Λ ∩ {T ≤ n } ∈ Fn, ∀n} .

6◦ Let T be a stopping time, Λ ∈ FT and m ≤ n Show that Λ ∩ {T = m} ∈ FT∧n.
7◦ Let T1 ≥ T2 ≥ T3 ≥ . . . be a sequence of stopping times with limit T . Show that
FT = ∩nFTn

. Show that if the sequence of stopping times is increasing, i.e. if T1 ≤ T2 ≤
. . . and if the limit T is finite, that FT = σ{∪nFTn

. (Hint: if Tn ↓ T are all stopping
times, they are integer-valued (or infinite), so that for large enough n, Tn(ω) = T (ω).)
8◦ Find an example of a filtration and a sequence of stopping times T1 ≤ T2 ≤ T3 . . .
with limit T for which the sigma-field generated by ∪nFTn

is strictly smaller than FT .
(Hint: this is a rather technical point, having to do with the way the field FT is defined
when T has infinite values. Show that if T ≡ ∞, then FT = F .)

2.6 System Theorems

Martingale system theorems get their name from the fact they are often invoked to show
that gambling systems don’t work. They are also known as martingale stopping theorems
for the good reason that they involve martingales at stopping times. Many gambling
systems involve the use of random times, and martingale system theorems show that if
one starts with a (super) martingale—i.e. a fair or unfavorable game—then applying
one of these systems to it won’t change it into a favorable game. Consider for example
the system whereby one observes the roulette wheel until there is a run of ten reds or
ten blacks, and then one bets on the other color the next spin. This is often justified
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by the law of averages, but the justification is spurious: if the results of the spins are
independent, then the probabilities of the wheel at this random time are exactly the same
as they are at a fixed time. The system neither increases nor decreases the odds. This
is true, but surprisingly subtle to prove. Try it! (In fact, it might be more reasonable to
turn things around and bet on the same color after the run, on the grounds that such a
long run might be evidence that something was fishy with the roulette wheel. But that’s
a fundamentally different system.)

The system theorems we will prove have the form: “a submartingale remains a sub-
martingale under optional stopping” and “a submartingale remains a submartingale under
optional sampling.”

Definition 2.8 Let {Xn, n = 0, 1, 2, . . .} be a stochastic process and T a positive-integer-
valued random variable. Then

XT (ω) =
∞
∑

n=0

Xn(ω)I{ω:T (ω)=n} .

Remark 2.12 In other words, XT = Xn on the set {T = n}. Note that if X is adapted
and T is a stopping time, XT is FT -measurable. Indeed, if B is Borel, {XT ∈ B} ∩ {T =
n} = {Xm = B} ∩ {T = m} ∈ Fm.

Definition 2.9 Let {Xn, n = 0, 1, 2, . . .} be a stochastic process and let T be a random
variable taking values in NI ∪ {∞}. Then the process X stopped at T is the process
{Xn∧T , n = 0, 1, 2 . . .}.

If T ≡ 3, the stopped process is X0, X1, X2, X3, X3, X3 . . .. The gambling interpreta-
tion of the process stopped at T is that the gambler stops playing the game at time T .
Thereafter, his fortune remains unchanged.

Theorem 2.13 Let {Xn,Fn, n = 0, 1, 2, . . .} be a submartingale, and let T be a stopping
time, finite or infinite. Then {Xn∧T ,Fn, n = 0, 1, 2, . . .} is also a submartingale, as is
{Xn∧T ,Fn∧T , n = 0, 1, 2, . . .}.

Proof. Xn∧T is Fn∧T -measurable and, as n ∧ T ≤ n, Fn∧T ≤ Fn, so Xn∧T is also
Fn-measurable. Let Λ ∈ Fn.
∫

Λ
E{X(n+1)∧T | Fn} dP =

∫

Λ
X(n+1)∧T dP =

∫

Λ∩{T≤n}
X(n+1)∧T dP +

∫

Λ∩{T>n}
Xn+1 dP.

Λ ∩ {T > n} ∈ Fn, so by the submartingale inequality this is

≥
∫

Λ∩{T≤n}
Xn∧T dP +

∫

Λ∩{T>n}
Xn dP =

∫

Λ
Xn∧T dP.

Thus
∫

Λ Xn∧T dP ≤ ∫

Λ E{X(n+1)∧T | Fn} dP for each Λ ∈ Fn. As Xn∧T is Fn-measurable,
this implies that Xn∧T ≤ E{X(n+1)∧T | Fn} a.e., showing the first process is a submartin-
gale. The fact that the second is also a submartingale follows from Exercise 2.5 2◦. ♣
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Remark 2.14 The usefulness of this theorem lies in the fact that it has so few hypotheses
on X and T . Stronger theorems require extra hypotheses. In effect there is a trade-off:
we may either assume the process is bounded in some way, in which case we the stopping
times can be arbitrary, or we may assume the stopping times are bounded, in which case
no further hypotheses on the process are needed.

Theorem 2.15 Let {Xn,Fn, n = 0, 1, 2, . . .} be a sub-martingale and let S ≤ T be
bounded stopping times. Then XS, XT is a submartingale relative to the filtration FS,FT .

Proof. T is bounded, so let N be an integer such that T ≤ N . S ≤ T =⇒ FS ⊂ FT ,
so the pair constitutes a filtration, and we know XS is FS-measurable and XT is FT -
measurable.

E{|XT |} =
N
∑

j=0

E{|Xj|; T = j} ≤
N
∑

j=0

E{|Xj|} < ∞ ,

so that XT and XS are integrable. Suppose Λ ∈ FS.

∫

Λ
XT − XS dP =

N
∑

j=0

∫

Λ∩{S=j}
XT − Xj dP

=
N
∑

j=0

N
∑

k=j

∫

Λ∩{S=j}
XT∧(k+1) − XT∧k dP

=
N
∑

j=0

N
∑

k=j

∫

Λ∩{S=j}
E{XT∧(k+1) − XT∧k | F j} .

But XT∧k is a submartingale relative to the F k by Theorem 2.13, so E{XT∧(k+1)−XT∧k |
F j} = E{E{XT∧(k+1) − XT∧k | Fk} | F j} ≥ 0, so the above is positive. Thus

∫

Λ XT −
XS dP ≥ 0 for all Λ ∈ FS, and XS, XT is a martingale, as claimed. ♣

Corollary 2.16 Let {Xn,Fn, n = 0, 1, 2, . . .} be a bounded sub-martingale and let S ≤ T
be finite stopping times. Then XS, XT is a submartingale relative to the filtration FS,FT .

Proof. XS and XT are bounded, hence integrable. To show that the pair XS, XT is
a submartingale, it is enough to show that XS ≤ E{XT | FS}. Fix n for the moment.
Then, as S ∧ n ≤ T ∧ n are bounded stopping times, XS∧n, XT∧n is a submartingale. Fix
m. If n ≥ m, and Λ ∈ FS, Λ ∩ {S = m } ∈ FS∧n (see the exercises) so that

∫

Λ∩{S=m }
XS∧n dP ≤

∫

Λ∩{S=m }
XT∧n dP(16)

for all n ≥ m. Let n → ∞. XS∧n → XS and XT∧n → XT boundedly, so we can go to
both the limit on both sides of (16) by the bounded convergence theorem to get

∫

Λ∩{S=m }
XS dP ≤

∫

Λ∩{S=m }
XT dP
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Add over m to see ∫

Λ
XS dP ≤

∫

Λ
XT dP

which shows that XS ≤ E{XT | FS} a.s. ♣

Notice that the above results are symmetric: they also apply, with the obvious changes,
if the initial processes are supermartingales or martingales. We can extend Corollary 2.16
to processes which are bounded on one side only.

Corollary 2.17 Let {Xn,Fn n = 0, 1, 2, . . .} be a negative sub-martingale (resp. positive
supermartingale) and let S ≤ T be finite stopping times. Then XS, XT is a submartingale
(resp. supermartingale) relative to the filtration FS,FT .

Proof. Let φN(x) = max(x,−N). Then φN(Xn) is a submartingale by Proposition 2.5
(ii), and, since X is negative, it is bounded. Note that as N → ∞, φN(x) decreases to
x. Let us first show that XS and XT are integrable. (This is not obvious, since X is not
bounded below.) However, the Xn are all integrable, so that

−∞ < E{X0} ≤ E{φN(X0)} ≤ E{φN(XS)} ,

where we have used the submartingale inequality. Now let N ↑ ∞. φN(XS) ↓ XS, so by
the Monotone Convergence Theorem, the last term decreases to E{XS} > −∞, implying
XS is integrable. The same argument works for XT .

Apply Corollary 2.16 to the bounded submartingale φN(Xn): φN(XS), φN(XT ) is a
submartingale relative to FS,FT , so for Λ ∈ FS,

∫

Λ
φN(XS) dP ≤

∫

Λ
φN(XT ) dP .(17)

Now let N ↑ ∞. φN(x) ↓ x, so we can go to the limit on both sides of (17) to get

∫

Λ
XS dP ≤

∫

Λ
XT dP .

proving that XS, XT is a submartingale as claimed. ♣

Remark 2.18 Corollary 2.17 says that a negative submartingale remains a submartingale
under optional sampling and that a positive supermartingale remains a supermartingale
under optional sampling. But it does not imply that a positive martingale remains a mar-
tingale under optional sampling. In fact, this is not necessarily true. Take, for instance,
the martingale Xn of Example 5◦. This is a positive martingale of expectation one, such
that the stopping time T ≡ inf{n : Xn = 0} is almost surely finite. Take S ≡ 1. Then
XS ≡ 1 while XT ≡ 0, and XS, XT is not a martingale. In fact, all one can conclude
from the corollary is that a positive martingale becomes a supermartingale under optional
sampling, and a negative martingale becomes a submartingale.
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2.7 Applications

Let Y1, Y2, . . . be a sequence of independent random variables, with P{Yj = 1} = P{Yj =
−1} = 1/2 for all j. Let X0 = x0, for some integer x0, and Xn = x0 +

∑n
j=1 Yj. Then X is

a symmetric random walk. One can use it to model one’s fortune at gambling (the initial
fortune is x0 and the gambler bets one dollar at even odds each time) or the price of a
stock (the stock starts at price x0, and at each trade its value goes up or down by one
unit.) In either case, one might be interested in the following problem: let a < x0 < b be
integers. What is the probability p that Xn reaches b before a? This problem is called
the gamblers ruin: a gambler starts with x0 dollars, and decides to gamble until he makes
b dollars or goes broke. if one takes a = 0, then we are asking “What is the probability
that the gamblers fortune reaches b before he is ruined?” The probability of his ruin is
1 − p.

Let us assume that Xn eventually hits either a or b—it does, as we will see later as an
easy consequence of the martingale convergence theorem.

Let Fn be the natural filtration generated by the Xn (or, equivalently, by the Yn).
Note that {Xn,Fn, n ≥ 0} is a martingale—it was one of the examples we gave. Now
define a stopping time

T = inf{n ≥ 0 : Xn = b or a} .

Then T is a finite stopping time. Now (Xn) is a martingale, so the stopped process Xn∧T

is also a martingale. Moreover, it never leaves the interval [a, b], so it is bounded, and
we can apply the stopping theorem to the stopping times S ≡ 0 and T : X0, XT is a
martingale. Thus E{XT} = E{X0} = x0. But if p is the probability of hitting b before
a—which is exactly the probability that XT = b—then x0 = E{XT} = pb+(1− p)a from
which we see

p =
x0 − a

b − a
.

We might ask how long it takes to hit a or b. Let us compute the expectation of T .
First, we claim that Zn ≡ X2

n − n is a martingale. The measurability properties and
integrability properties are clear, so we need only check

E{Zn+1 − Zn | Fn} = E{X2
n+1 − n − 1 − X2

n + n | Fn}
= E{(Xn+1 − Xn)2 − 2Xn(Xn+1 − Xn) − 1 | Fn}

Now (Xn+1 − Xn)2 ≡ 1, so this is

= E{Xn(Xn+1 − Xn) | Fn} = XnE{Xn+1 − Xn | Fn} = 0
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since X is a martingale. This verifies the claim.
Once again we apply the system theorem to the bounded stopping times S ≡ 0 and

T ∧ N for a (large) integer N . Thus

x2
0 = E{ZT∧N} = E{X2

T∧N − T ∧ N}
so that for each N

E{T ∧ N} = E{X2
T∧N} − x2

0.(18)

As N → ∞, T ∧N ↑ T and XT∧N → XT boundedly, since a ≤ XT∧N ≤ b, so we can go
to the limit on both sides of (18), using monotone convergence on the left and bounded
convergence on the right. Thus E{T} = E{X2

T} − x2
0. We found the distribution of XT

above, so we see this is

=
x0 − a

b − a
b2 +

b − x0

b − a
a2 − x2

0 = (b − x0)(x0 − a).

Thus E{T} = (b − x0)(x0 − a).
Let’s go a little further. Suppose the gambler keeps on gambling until he goes broke–

that is, he does not stop if his fortune reaches b.
This is almost immediate: let b → ∞ in the above. Note that the stopping time must

increase with b, and so as b ↑ ∞, T ↑ Ta ≡ inf{n : Xt = a}, so by monotone convergence

E{Ta} = lim
b→∞

(b − x0)(x0 − a) = ∞.

There is hope for the gambler! Yes, he will go broke in the end, but it will take him
an (expected) infinite time! (Of course, by symmetry, the expected time to reach his goal
of b is also infinite.)

2.8 The Maximal Inequality

According to Chebyshev’s inequality, if X is a random variable and λ > 0, λP{|X| ≥
λ} ≤ E{|X|}. It turns out that martingales satisfy a similar, but much more powerful
inequality, which bounds the maximum of the process.

Theorem 2.19 Let {Xn, n = 0, 1, 2, . . . , N} be a positive submartingale. Then

λP{max
n≤N

Xn ≥ λ } ≤ E{XN } .(19)

Remark 2.20 If (Xn) is a martingale, (|Xn|) is a positive submartingale, and we have
λP{maxn≤N |Xn| ≥ λ } ≤ E{ |XN | }, which is the extension of Chebyshev inequality we
mentioned above.
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Proof. Define a bounded stopping time T by

T =

{

inf{n ≤ N : Xn ≥ λ }
N if there is no such n .

Note that max Xn ≥ λ if and only if XT ≥ λ. The system theorem implies that XT , XN

is a submartingale. Since X is positive, XT ≥ 0, so

λP{max
n

Xn ≥ λ } = λP{XT ≥ λ } ≤ E{XT } ≤ E{XN } .

♣

2.9 The Upcrossing Inequality

The inequality of this section is one of the most satisfying kind of results: it is elegant,
unexpected, powerful, and its proof may even teach us more about something we thought
we understood quite well.

Let us define the number of upcrossings of an interval [a, b] by the finite sequence of
real variables x0, x1, . . . , xN . This is the number of times the sequence goes from below a
to above b.

Set α0 = 0,

α1 =

{

inf{n ≤ N : xn ≤ a }
N + 1 if there is no such n .

and for k ≥ 1

βk =

{

inf{n ≥ αk : xn ≥ b }
N + 1 if there is no such n .

αk+1 =

{

inf{n ≥ βk : xn ≥ b }
N + 1 if there is no such n .

If βk ≤ N , xβk
≥ b and xαk

≤ a, so the sequence makes an upcrossing of [a, b] between
αk and βk. It makes its downcrossings of the interval during the complementary intervals
[βk, αk+1].

Definition 2.10 The number of upcrossings of the interval [a, b] by the sequence

x0, x1, . . . , xN is νN(a, b) ≡ sup{ k : βk ≤ N }.

Now let {Fn, n = 0, 1, . . . N } be a filtration and {Xn, n = 0, 1, . . . } a stochastic
process adapted to (Fn). Replace the sequence x0, . . . , xn by X0(ω), . . .XN(ω). Then
the αk and βk defined above are stopping times (see Exercise 2.5 3◦) and νN (a, b) is the
number of upcrossings of [a, b] by the process X0, . . .XN .
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Theorem 2.21 (Upcrossing Inequality) Let {Xn,Fn, n = 0, 1, . . . , N } be a submartin-
gale and let a < b be real numbers. Then the number of upcrossings νN(a, b) of [a, b] by
(Xn) satisfies

E{ νN(a, b) } ≤ E{ (XN − a)+ }
b − a

(20)

Proof. Let X̂n = Xn ∨ a for n ≥ 0. Then (X̂n) is again a submartingale, and it has the
same number of upcrossings of [a, b] as does the original process X. Define the process
for n = N + 1 by setting X̂N+1 = X̂N . The process remains a submartingale. Now write

X̂N − X̂0 = X̂α1
− X̂0 +

N
∑

n=1

(X̂βn
− X̂αn

) +
N
∑

n=1

(X̂αn+1
− X̂βn

)

(Notice that if αn ≤ N , then X̂n ≤ a, hence βn ≥ 1+αn, so that αn = n, and in particular,
αN+1 = N + 1 in the above sum.) Take the expectation of this:

E{ X̂N − X̂0 } = E{ X̂α1
− X̂0 } + E

{

N
∑

n=1

(X̂βn
− X̂αn

)

}

+ E

{

N
∑

n=1

(X̂αn+1
− X̂βn

)

}

.

But now, X̂ is a submartingale and the αn and βn are stopping times. By the system
theorem, X̂N − X̂0, X̂α1

− X̂0, and X̂αn+1
− X̂βn

all have positive expectations, so that the
above is

≥ E

{

N
∑

n=1

(X̂βn
− X̂αn

)

}

If βn ≤ N , it marks the end of an upcrossing of [a, b], so X̂βn
− X̂αn

≥ b − a. Thus, there
are at least νN(a, b) terms of the first sum which exceed b− a, and the expectation of any
remaining terms is positive, so that this is

≥ (b − a)E{ νN(a, b) } .

Thus E{ νN(a, b) } ≤ E{ X̂N − X̂0 }/(b − a). But now, in terms of the original process,
X̂N − X̂0 ≤ XN ∨ a − a = (XN − a)+, which implies (20). ♣

Remark 2.22 In the proof, we threw away E
{

∑N
n=1(X̂αn+1

− X̂βn
)
}

because it was

positive. However, the downcrossings of [a, b] occur between the βn and αn+1: we expect
Xαn+1

≤ a and Xβn
≥ b so that each of these terms would seem to be negative . . . ? Why

is this not a contradiction?

The above result extends to an infinite parameter set. If X = {Xn, n = 0, 1, 2, . . . } is
a process, define the number of upcrossings ν∞(a, b) by X as ν∞(a, b) = limN→∞ νN(a, b).
Then the upcrossing inequality extends to the following.
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Corollary 2.23 Let {Xn,Fn, n = 0, 1, . . . } be a submartingale and let a < b be real
numbers. Then the number of upcrossings ν∞(a, b) of [a, b] by (Xn) satisfies

E{ ν∞(a, b) } ≤ supN E{ (XN − a)+ }
b − a

(21)

Proof. The proof is almost immediate. As N → ∞, the number νN(a, b) of upcrossings
of [a, b] by X0, . . . , XN increases to ν∞(a, b), so E{ ν∞(a, b) } = limN→∞ E{ νN(a, b) }. By
the theorem, this is bounded by sup E{ (XN − a)+ }/(b − a). ♣

2.10 Martingale Convergence

One of the basic facts about martingales is this: if you give it half a chance, a martin-
gale will converge. There are several nuances, but here is the most basic form of the
convergence theorem.

Theorem 2.24 (Martingale Convergence Theorem) Let {Xn,Fn, n = 0, 1, . . . } be a
submartingale and suppose that E{ |Xn| } is bounded. Then with probability one, there
exists a finite integrable r.v. X∞ such that

lim
n→∞

Xn = X∞ a.e.

Proof. First, let us show that lim inf Xn(ω) = lim sup Xn(ω). This is where the up-
crossing inequality enters.

Suppose the sequence does not converge. Then there exist rational numbers a and
b such that lim inf Xn(ω) < a < b < lim sup Xn(ω). It follows that there exists a sub-
sequence nk such that Xnk

(ω) → lim inf Xn(ω) and another subsequence nj such that
Xnj

(ω) → lim sup Xn(ω), and in particular, Xnk
(ω) < a for infinitely many k, and

Xnj
(ω) > b for infinitely many j. This implies that there are infinitely many upcrossings

of [a, b]. Thus, if lim sup Xn(ω) > lim inf Xn(ω), there exist rational a < b such that the
number of upcrossings of [a, b] is infinite.

Now for every pair r1 < r2 of rationals, E{ ν∞(r1, r2) } ≤ supn E{ (XN−a)+ }/(b−a) ≤
supN(E{ |XN | } + a)/(b − a) < ∞. It follows that P{ ν∞(r1, r2) = ∞} = 0. This is true
for each of the countable number of pairs (r1, r2) of rationals, hence P{ ∃ r1 < r2 ∈ QI :
ν∞(r1, r2) = ∞} = 0. Thus for a.e. ω, lim sup Xn(ω) = lim inf Xn(ω).

Thus the limit exists a.e. but, a priori, it might be infinite. To see it is finite, note
that lim |Xn| exists a.s. and by Fatou’s Lemma, E{ lim |Xn| } ≤ lim inf E{ |Xn| } < ∞.
In particular, lim |Xn| < ∞ a.e. ♣

Thus, to show convergence of a martingale, submartingale, or supermartingale, it is
enough to show that its absolute expectation is bounded.
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Corollary 2.25 A positive supermartingale and a negative submartingale each converge
with probability one.

Proof. If {Xn,Fn, n = 0, 1, . . . } is a positive supermartingale, then E{ |Xn| } =
E{Xn } ≤ E{X0 }, so the process converges a.e. by Theorem 2.24.

Remark 2.26 For a very quick application of this, recall the random walk (Xn) intro-
duced in the Gambler’s Ruin. We stated, but did not show, that (Xn) eventually reached
the complement of any finite interval. Let us show that for any a, there exists n such that
Xn ≤ a.

Let T = inf{n : Xn < a }. Now Xn is a martingale, X0 = x0, and |Xn+1 − Xn| = 1
for all n. Then X̂n ≡ Xn∧T is a martingale which is bounded below by the minimum of
x0 and a− 1, so it converges a.e. by the Martingale Convergence Theorem. But the only
way such a process can converge is to have T < ∞. Indeed, n < T =⇒ |X̂n+1 − X̂n| = 1,
so convergence is impossible on the set {T = ∞}. But if T < ∞, XT < a, so the process
does eventually go below a.

It is a rather easy consequence of this to see that Xn must visit all integers, positive
or negative. In fact, it must visit each integer infinitely often, and with probability one,
both lim inf Xn = −∞ and lim sup Xn = ∞. We leave the details to the reader as an
exercise.

2.11 Exercises

1◦ Suppose {Xn,Fn, n = 0, 1, 2, . . . } is a submartingale and T1 ≤ T2,≤ . . . is an increas-
ing sequence of stopping times. Suppose that either X is bounded, or that each of the stop-
ping times is bounded. Let Zn = XTn

and Gn = FTn
. Show that {Zn,Gn, n = 0, 1, 2, . . . }

is a submartingale.

2◦ Find the probability of the gambler’s ruin if the random walk is not symmetric, i.e. if
P{Yj = 1 } = p and P{Yj = −1 } = 1 − p for 0 < p < 1, p 6= 1/2. (Hint: look for a
martingale of the form Zn = rXn.)

3◦ Suppose that X1, X2, . . . is a sequence of i.i.d. random variables and that T is a finite
stopping time relative to the natural filtration Fn = σ{X1, . . . , Xn }. Show that XT+1

has the same distribution as X1, and is independent of FT . Apply this to roulette: if T
is the first time that a string of ten reds in a row comes up, what is the probability of red
on the T + 1st spin?

3◦ Let x = x1, . . . , xn be a sequence of real numbers and let x′ def
= xn1

, . . . , xnk
be a

subsequence. Show that if a < b, the number of upcrossings of [a, b] by x′ is less than or
equal to the number of upcrossings of [a, b] by x.

5◦ Show that with probability one, the simple symmetric random walk visits all integers
infinitely often.
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2.12 Uniform Integrability

If X is an integrable random variable, and if Λn is a sequence of sets with P{Λn } → 0,
then

∫

Λn
X dP → 0. (This is a consequence of the dominated convergence theorem: |X| is

integrable, |XIΛn
| ≤ |X|, and XIΛn

converges to zero in probability.) This is often called
uniform integrability. We will extend it to arbitrary sets of random variables. In what
follows, I is an arbitrary index set.

Definition 2.11 A family {Xα, α ∈ I } of random variables is uniformly integrable

if

lim
N→∞

∫

{ |Xα|≥N }
|Xα| dP = 0(22)

uniformly in α.

In other words, the family is uniformly integrable if the supremum over α of the integral
in (22) tends to zero as N → ∞. There are two reasons why this property is important:

(i) uniform integrability is a necessary and sufficient condition for going to the limit
under an expectation; and

(ii) it is often easy to verify in the context of martingale theory.

Property (i) would seem to be enough to guarantee that uniform integrability is inter-
esting, but it isn’t: the property is not often used in analysis; when one wants to justify
the interchange of integration and limits, one usually uses the dominated or monotone
convergence theorems. It is only in probability where one takes this property seriously,
and that is because of (ii).

Example 2.1 1◦ Any finite family of integrable r.v. is uniformly integrable. More gen-
erally, if each of a finite number of families is uniformly integrable, so is their union.

2◦ If there exists a r.v. Y such that |Xα| ≤ Y a.e. for all α ∈ I, and if E{Y } < ∞, then
{Xα, α ∈ I } is uniformly integrable.

3◦ If there exists K < ∞ for which E{ |Xα|2 } ≤ K for all α, then the family {Xα, α ∈ I }
is uniformly integrable.

To see 1◦, if (X i
αi

) are uniformly integrable families for i = 1, . . . , n, then for each i,
supαi

∫

{ |Xi
αi

|≥N } X i
αi

dP tends to zero as N → ∞, hence so does the maximum over i. But

this is the supremum of the integrals over the union of the families for i = 1, . . . , n.

To see 2◦, note that P{ |Xα| ≥ N } ≤ E{ |Xα| }/N ≤ E{Y }/N → 0 as N → ∞. Thus
∫

{ |Xα|>N } |Xα| dP ≤ ∫

{ |Xα|>N } Y dP , which tends to zero as N → ∞ since the probability
of the set over which we integrate goes to zero. We leave 3◦ as an exercise for the reader.

Note that the second example shows that the hypotheses of the Dominated Conver-
gence Theorem imply uniform integrability. The definition of uniform integrability looks
different from the property of uniform integrability of a single random variable we gave
above. Here is the connection.
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Proposition 2.27 Suppose {Xα, α ∈ I } is uniformly integrable. Then
(i) sup

α
E{ |Xα| } < ∞.

(ii) lim
N→∞

P{ |Xα| > N } = 0 uniformly in α.

(iii) lim
P{Λ }→0

∫

Λ
|Xα| dP = 0 uniformly in α.

Conversely, either (i) and (iii) or (ii) and (iii) imply uniform integrability.

Proof. (i): There exists N0 such that for all α,
∫

{ |Xα|≥N0 }
|Xα| dP ≤ 1. Then for all α,

E{ |Xα| } =
∫

{ |Xα|<N0 }
|Xα| dP +

∫

{ |Xα|≥N0 }
|Xα| dP ≤ N0 + 1.

Note that (i) =⇒ (ii), for P{ |Xα| > N } ≤ (1/N) supα E{ |Xα| } −→ 0.

To see (iii), let ε > 0 and choose Nε such that
∫

{ |Xα|>Nε } |Xα| dP < ε/2 for all α, which
we can do since the Xα are uniformly integrable. Then

∫

Λ
|Xα| dP =

∫

Λ∩{ |Xα|≤Nε }
|Xα| dP +

∫

Λ∩{ |Xα|>Nε }
|Xα| dP

≤ NεP{Λ }+
∫

{ |Xα|>Nε }
|Xα| dP

=
ε

2
+

ε

2

if P{Λ } is small enough.

Conversely, (i) =⇒ (ii), so suppose (ii) and (iii) hold. Choose ε > 0. By (iii) there
exists δ > 0 such that P{Λ } < δ =⇒ ∫

Λ |Xα| dP < ε for all α. Then by (ii) there exists
N0 such that N ≥ N0 =⇒ P{ |Xα| > N } < δ for all α. This implies in turn that

∫

{ |Xα|>N }
|Xα| dP < ε .

This is true for all α, which implies uniform integrability. ♣
As we said before, uniform integrability is a necessary and sufficient condition for going

to the limit under the integral. Another way of saying this is this. Recall that a process
{Xn, n = 0, 1, 2 . . . } is said to converge in L1 or converge in the mean to an integrable
r.v. X∞ if limn→∞ E{ |Xn − X∞| } = 0.

If Xn converges to X∞ in L1, it is easy to see that E{Xn } → E{X∞ } and that for
any set Λ,

∫

Λ Xn dP −→ ∫

Λ X∞ dP , so that L1 convergence implies that we can go to
the limit under the integral sign. So in fact, we are really talking about L1 convergence
here, and the point is that while L1 convergence implies convergence in probability, the
converse is not necessarily true, and conditions implying L1 convergence are important.

Theorem 2.28 Let {Xn, n = 0, 1, . . . } be a sequence of integrable r.v. which converge
in probability to a r.v. X. Then the following are equivalent.
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(i) {Xn, n = 0, 1, . . . } is uniformly integrable.
(ii) E{ |Xn − X| } −→ 0.
(iii) E{ |Xn| } −→ E{ |X| }.

Proof. (i) =⇒ (ii): |Xn| converges to |X| in probability, so that some subsequence
(Xnk

) converges a.e.. By Fatou’s Lemma, E{ |X| } ≤ lim inf E{ |Xnk
| }, which is finite by

Proposition 2.27 (i). Therefore X is integrable. Let ε > 0.

E{ |X − Xn| } =
∫

{ |X−Xn|≤ε/3 }
|X − Xn| dP +

∫

{ |X−Xn|>ε/3 }
|X − Xn| dP

≤ ε

3
+
∫

{ |X−Xn|>ε/3 }
|X| dP +

∫

{ |X−Xn|>ε/3 }
|Xn| dP .

Now P{ |X − Xn| > ε/3 } → 0 as n → ∞ by convergence in probability, so each of the
last two integrals tend to zero as n → ∞, the first because X is integrable, and the second
by Proposition 2.27 (iii). This implies (ii).

It is clear that (ii) =⇒ (iii). To see that (iii) =⇒ (i), suppose E{ |Xn| } → E{ |X| }.
Choose a real number M such that P{ |X| = M } = 0, and truncate X at M :

X(M) =

{

X if |X| ≤ M
0 if |X| > M .

Now, using the same notation for X (M)
n ,

∫

{ |Xn|>M }
|Xn| dP = E{ |Xn| } − E{ |X (M)

n | } −→ E{ |X| } − E{ |X (M)| }

since E{ |Xn| } converges by hypothesis and E{ |X (M)
n | } converges by the Bounded Con-

vergence Theorem. Let ε > 0 and choose Mε large enough so that E{ |X| }−E{ |X (M)| } <
ε/3. There exists N0 such that for n ≥ N0, we have both

|E{ |Xn| } − E{ |X| }| <
ε

3

|E{ |X (Mε)
n | } − E{ |X (Mε)| }| <

ε

3
.

Thus if n ≥ N0, we have
∫

{ |Xn|>Mε }
|Xn| dP <

ε

3
+

ε

3
+

ε

3
= ε .

But there are only finitely many n < N0, so there exist M ′
ε > Mε such that

∫

{ |Xn|>M ′

ε }
|Xn| dP < ε
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for all n. This implies (i). ♣

The second reason that uniform integrability is important is that it is readily verified
for martingales and submartingales.

Theorem 2.29 Let {Fα, α ∈ I } be a family of sub sigma fields of F and let X be an
integrable random variable. Define Xα = E{X | Fα }. Then {Xα, α ∈ I } is uniformly
integrable.

Proof. P{ |Xα| > N } ≤ 1
N

E{ |Xα| } ≤ 1
N

E{ |X| }, which clearly goes to 0 as N → ∞,
uniformly α. Now Xα, X is a martingale, so |Xα|, |X| is a submartingale, and

∫

{ |Xα|>N }
|Xα| dP ≤

∫

{ |Xα|>N }
|X| dP .

We have just seen that P{ |Xα| > N } tends to zero uniformly in α, so the last integral
tends to zero, uniformly in α by the uniform integrability of X itself. ♣

Corollary 2.30 Let I ⊂ R̄I be a set with a largest element, and suppose {Xt,F t, t ∈ I }
is a positive submartingale. Then {Xt, t ∈ I } is uniformly integrable.

Proof. Let t0 be the largest element of I. Then 0 ≤ Xt ≤ E{Xt0 | F t }. But the
conditional expectations of Xt0 are uniformly integrable by Theorem 2.29, hence so are
the Xt. ♣

Corollary 2.31 A martingale with a last element is uniformly integrable.

Proof. If (Xt) is a martingale, (|Xt|) is a positive submartingale, and the result follows
from Corollary 2.30. ♣

Let us now use this idea to refine the martingale system theorems.

Theorem 2.32 Let {Xn,Fn, n = 0, 1, 2, . . .} be a uniformly integrable submartingale,
and let S ≤ T be finite stopping times. Then XS, XT is a submartingale relative to
FS,FT .

Proof. First, XS and XT are integrable. Indeed, by Fatou’s Lemma,

E{ |XT | } ≤ lim inf E{ |XT∧n| }
= lim inf

(

2E{X+
T∧n } − E{XT∧n }

)

≤ 2 lim inf E{ |Xn| } − E{X0 } .
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where we have used the fact that X0, XT∧n and X+
T∧n, X+

n are submartingales. But
E{ |Xn| } is bounded in n since (Xn) is uniformly integrable, so this is finite. The same
calculation holds for XS.

S ∧ n ≤ T ∧ n are bounded stopping times, so XS∧n, XT∧n is a submartingale relative
to FS∧n,FT∧n. Let Λ ∈ FS. If m < n, Λ ∩ {S = m } ∈ FS∧n (why?) so

∫

Λ∩{S=m }
XS∧n dP ≤

∫

Λ∩{S=m }
XT∧n dP

The processes (|XS∧n|) and (|XT∧n|) are uniformly integrable: for example the latter
is bounded above by |XT | + |Xn|, which is uniformly integrable by hypothesis. Thus we
can let n → ∞ above: XS∧n → XS and XT∧n → XT , so by Theorem 2.28 we can go to
the limit to see that

∫

Λ∩{S=m }
XS dP ≤

∫

Λ∩{S=m }
XT dP .

Now add over m to get
∫

Λ
XS dP ≤

∫

Λ
XT dP, ∀Λ ∈ FS ,

which shows that XS ≤ E{XT | FS }. ♣

2.13 Martingale Convergence, Part Two

A submartingale with a bounded absolute expectation converges a.e., but there is no
guarantee that it converges in L1. Indeed, it may not. Example 5◦ of Section 2.1 concerned
a martingale (Xn) with E{Xn } = 1 for all n, whose limit X∞ ≡ 0. Thus lim E{Xn } =
1 6= E{X∞ } = 0. We need an extra condition on the martingale or submartingale to
ensure that it converges in L1. This extra condition is uniform integrability.

We will look at two different kinds of convergence. First, when the parameter set is
0, 1, 2, . . ., we ask whether the sequence Xn converges to a limit X∞ as n → ∞. In the
second case, when the parameter set is . . . ,−2,−1, we ask whether Xn converges to a limit
X−∞ as n → −∞. These two are equivalent if we are just talking about the convergence
of a sequence of r.v.—just replace the parameter n by −n—but if we are talking about
martingales, a filtration (Fn) is involved. The filtration increases with n, which fixes the
direction of time. So as n → ∞, we are looking at at the behavior as the filtrations get
larger and larger, but when n → −∞, the filtrations are getting smaller and smaller. For
n represents time, and the far, far future may not be the same as the far, far past. As it
happens, the results are similar but not identical in the two cases. A martingale of the
form {Xn, n = . . . − 2,−1 } is sometimes called a backwards martingale.

A closely related question is this: suppose a martingale Xn converges to X∞ as n →
∞. Can we add X∞ to the martingale as a final element? That is, is {Xn,Fn, n =
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1, 2, . . . ,∞} a martingale? This is equivalent to asking if Xn = E{X∞ | Fn } for each
n. We speak of closing the martingale with X∞, to get a martingale with parameter
set 0, 1 . . . ,∞ in the extended reals. Similarly, if n → −∞ in a backward martingale,
can we add X−∞ as an initial element of the martingale? This is equivalent to setting
F−∞ = ∩nFn and asking if X−∞ = E{Xn | F−∞ }. This time the closed process has the
parameter set −∞, . . . ,−1.

Theorem 2.33 Let {Xn,Fn, n = 0, 1, 2, . . . } be a uniformly integrable submartingale.
Then X∞ ≡ limn→∞ Xn exists a.e. and in L1, and {Xn, n = 0, 1, . . . ,∞} is a submartin-
gale, where F∞ = σ{∪nFn }.

Proof. If (Xn) is uniformly integrable, E{ |Xn| } is bounded (Proposition 2.27), so Xn

converges a.e. by the Martingale Convergence Theorem to an integrable r.v. X∞. It
follows by uniform integrability that the sequence also converges in L1. X∞ is clearly
F∞-measurable, so we need only check the submartingale inequality. Let Λ ∈ Fm. Then
for all n ≥ m

∫

Λ Xm dP ≤ ∫

Λ Xn dP . Let n → ∞. Since Xn → X∞ in L1, we can go
to the limit:

∫

Λ Xn dP −→ ∫

Λ X∞ dP , implying that
∫

Λ Xm dP ≤ ∫

Λ X∞ dP , which is the
desired inequality. ♣

The theorem for backward submartingales is somewhat easier: the limits always exist,
and uniform integrability, for martingales, at least, comes for free.

Theorem 2.34 Let {Xn,Fn, n = . . . ,−2,−1 } be a submartingale. Then
(i) lim

n→−∞
E{Xn } ≡ L exists, and X−∞ ≡ lim

n→−∞
Xn exists a.e., where −∞ ≤ L < ∞

and −∞ ≤ X−∞ < ∞ a.e.;

(ii) If L 6= −∞, then the submartingale (Xn) is uniformly integrable, and if we
put F−∞ = ∩nFn, then Xn converges a.e. and in L1 to X−∞, and {Xn,Fn, n =-
∞, . . . ,−2,−1 } is a submartingale.

(iii) If {Xn,Fn, n = . . . ,−2,−1 } is a martingale, it is uniformly integrable and
convergent a.e. and in L1; moreover, its limit satisfies X−∞ = E{X−1 | F−∞ }.

Proof. Let ν−N [a, b] be the number of upcrossings of [a, b] by the X−N , . . . , X−2, X−1.
Note that the upcrossing inequality only depends on the expectation of the last element
of the submartingale; the first elements don’t enter it. Thus we have

E{ ν−N [a, b] } ≤ E{ |X−1| } + |a|
b − a

< ∞,

independent of N . Next, notice that adding a term to the sequence won’t decrease the
number of upcrossings, so ν−N−1[a, b] ≥ ν−N [a, b]. Thus by the Monotone Convergence
Theorem, ν−∞[a, b] ≡ limN→∞ ν−N [a, b] exists and satisfies
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E{ ν−∞[a, b] } ≤ E{ |X−1| } + |a|
b − a

< ∞

Then the number of upcrossings of [a, b] by the entire sequence (Xn) is a.e. finite, and
consequently, with probability one, the number of upcrossings of each interval [a, b] is finite
simultaneously for all a < b. This implies that lim infn→−∞ Xn = lim supn→−∞ Xn ≡ X−∞

as in the Martingale Convergence Theorem.

Let M be a real number and consider Xn∨M . As Xn −→ X−∞, Xn∨M −→ X−∞∨M
a.e. Moreover, (Xn ∨ M) is a submartingale which is bounded below by M and has a
last element, namely X−1 ∨ M . Thus it is uniformly integrable by Corollary 2.30, so
it converges in L1 and its limit X−∞ ∨ M is integrable and consequently finite. Thus
X−∞ < ∞ a.e., regardless of whether or not L is finite.

Now suppose L > −∞. First note that (Xn) is bounded in L1. Indeed, L ≤ E{X+
n }−

E{X−
n }, so E{ |Xn| } = E{X+

n }+E{X−
n } ≤ 2E{X+

n }−L. As (X+
n ) is a submartingale,

this is bounded by 2E{X+
−1 }−L, which shows that (Xn) is L1-bounded. Thus for N > 0

P{ |Xn| > N } ≤ 1

N
(2E{X+

−1 } − L) .(23)

Choose ε > 0 and a negative integer k such that E{Xk } − L < ε/2. Then choose δ > 0
so that P{Λ } < δ =⇒ ∫

Λ |Xk| dP < ε/2. Consider

∫

{ |Xn|≥N }
|Xn| dP .

Any finite family is uniformly integrable, so we can choose N large enough so that this
is less that ε for n = k, k + 1, . . . ,−1. On the other hand, for n ≤ k, this is

≤
∫

{ |Xn|≥N }
Xn dP −

∫

{Xn≤−N }
Xn dP .

Apply the submartingale inequality to the first term and rewrite the second. This is then

≤
∫

{Xn≥N }
Xk dP − E{Xn } +

∫

{Xn>−N }
Xn dP

≤
∫

{Xn≥N }
Xk dP − E{Xn } + E{Xk } −

∫

{Xn≤−N }
Xk dP .

But E{Xk } − E{Xn } ≤ E{Xk } − L ≤ ε/2, so this is

≤ ε

2
+
∫

{ |Xn|≥N }
|Xk| dP ≤ ε ,

which proves that {Xn, n ≤ 0 } is uniformly integrable.
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Now the submartingale converges a.e. (by (i)) and in L1 (by uniform integrability.)
Clearly, n < m =⇒ Xn ∈ Fm, so limn→−∞ Xn is Fm-measurable for all m, and hence is
measurable with respect to F−∞ = ∩mFm.

Suppose m < n and Λ ⊂ F−m. Then
∫

Λ Xm dP ≤ ∫

Λ Xn dP . Let m → −∞. We can
go to the limit under the integral to get

∫

Λ
X−∞ dP ≤

∫

Λ
Xn dP .

This is true for all Λ ∈ Fm ⊃ F−∞, and in particular, it is true for all Λ ∈ F−∞. Thus
X−∞ ≤ E{Xn | F−∞ }, as claimed.

Finally, if {Xn,Fn, n = . . . ,−2,−1 } is a martingale, it has a last element and is
therefore uniformly integrable. Since it is both a sub- and supermartingale, by (ii),
X−∞ = E{Xn | F−∞ }, proving (iii). ♣

It follows immediately that:

Corollary 2.35 A martingale with a last element is uniformly integrable. A submartin-
gale or supermartingale with both a first and last element is uniformly integrable.

Remark 2.36 Notice that a backward submartingale always has a (possibly infinite)
limit. One might ask if the same is true for a forward martingale or submartingale. The
answer is “no”. Indeed, the gamblers fortune in the (unrestricted) gambler’s ruin problem
is a martingale, and it has its limsup equal to infinity, its liminf equal to negative infinity.
Thus there really is an asymmetry between backward and forward martingale limits.

A useful consequence of these theorems is Paul Lévy’s limit theorem on conditional
expectations. Conditional expectations with respect to sequences of sigma fields which
either increase or decrease monotonically, converge to the best possible limits. Before
proving this we will need a result from measure theory.

Definition 2.12 A class G of sets is a field (or countably additive class or algebra)
if it contains the empty set, and is closed under complementation and finite unions.

The difference between a field and a sigma field is that the sigma field is closed under
countable unions, not just finite unions. If (Fn) is a filtration, then ∪nFn is a field, but
not necessarily a sigma-field. The following extension lemma is a well-known result in
measure theory. We shall accept it without proof.

Lemma 2.37 Suppose P and Q are finite measures on (Ω,F) and that G ⊂ F is a field.
If P{Λ } = Q{Λ } for all Λ ∈ G, then P{Λ } = Q{Λ } for all Λ ∈ σ{ G }.
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Corollary 2.38 Let X be an integrable random variable. Let Gn be a sequence of sub-
sigma fields of F .

(i) If Gn ⊂ Gn+1 for all n, then

lim
n→∞

E{X | Gn } = E{X | σ(∪nGn) } .(24)

(ii) If Gn ⊃ Gn+1 for all n, then

lim
n→∞

E{X | Gn } = E{X | ∩nGn } .(25)

Proof. (i). Xn ≡ E{X | Gn } is a martingale. It is uniformly integrable by Theorem
2.29, so it converges to a limit X∞, and Xn = E{X∞ | Gn } by Theorem 2.33. We
must identify X∞ as the conditional expectation. First, X∞ is measurable with respect
to σ{∪nGn }. If Λ ∈ Gn,

∫

Λ Xn dP =
∫

Λ X∞ dP and, as Xn = E{X | Gn }, we also have
∫

Λ Xn dP =
∫

Λ X dP . Thus
∫

Λ
X∞ dP =

∫

Λ
X dP(26)

for all Λ ∈ Gn, and hence for all Λ ∈ ∪nGn. Now both sides of (26) define finite measures,
so by Lemma 2.37, there is equality for all Λ ∈ σ{∪nGn }, proving (i).

The proof of (ii) is direct from the convergence theorem. Set X−n = E{X | Gn },
F−n = Gn. Then {Xn,Fn, n = . . . ,−2,−1 } is a backwards martingale, so by Theorem
2.34 (iii), it has the limit X−∞ = E{X−1 | F−∞ }. But F−∞ = ∩nGn, so X−∞ =
E{E{X | G1 } | ∩nGn } = E{X | ∩nGn }. ♣

2.14 Conditional Expectations and the Radon-Nikodym Theo-

rem

Martingales have numerous applications. We will try to limit ourselves to those we will
actually need in the sequel. One, the Radon-Nikodym Theorem, is quite important, not
only because it is important in its own right (which it is), but because we have been
working without a good existence theorem for conditional expectations. We know they
exist when the conditioning field is finite, or more generally, generated by a partition,
but we don’t know about general sigma fields. And (now it can be revealed) we have
been playing a little game. If the basic filtrations are generated by partitions, everything
we have done is rigorous. In the general case, what we have proved is equally rigorous,
providing the conditional expectations exist. Effectively, we have been operating under the
assumption that the sigma fields Fn of the filtrations are generated by partitions. We
need a theorem guaranteeing the existence of conditional expectations to close the circle.
Once we have this, we can figuratively lift ourself by our own bootstraps: our previous
results and proofs will then go through without any assumptions on the filtrations. (One
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might object that we have dealt with large filtrations in the limit: even if all the Fn

are finite, the filtration F∞ ≡ σ{∪nFn } need not be generated by a partition. This is
true, but in fact we have never needed conditional expectations with respect to this sigma
field.) We will get the general existence from the Radon-Nikodym theorem: a conditional
expectation is really a Radon-Nikodym derivative. We will prove it using martingale
convergence theorems, but of course—and this is important if we are to play our game
fairly—we only will use finite filtrations in the proof.

Let (Ω,F , P ) be a probability space, and let Q be another measure on (Ω,F). We
say Q is absolutely continuous with respect to P , and we write Q � P , if Λ ∈ F
and P{Λ } = 0 =⇒ Q{Λ } = 0. We say the sigma field F is separable if there exists a
sequence Λn of sets such that F = σ{Λn, n = 1, 2, . . . }.

Lemma 2.39 Suppose Q � P is a finite measure. Then, given ε > 0 there exists δ > 0
such that Λ ∈ F and P{Λ } ≤ δ =⇒ Q{Λ } < ε.

Proof. If not, there exists a sequence Λn of events and ε > 0 such that P{Λ } ≤
2−n while Q{Λn } > ε. Set Γn = ∪j>nΛj. Then P{Γn } ≤ 2−n so P{∩nΓn } = 0
by the countable additivity of P . But as Q is finite and Γn decreasing, Q{∩nΓn } =
lim Q{∩nΓn } ≥ ε, which contradicts the absolute continuity of Q ♣

Theorem 2.40 (Radon-Nikodym Theorem) Let (Ω,F , P ) be a probability space and let
Q be a finite measure such that Q � P . Then there exists an integrable random variable
X such that for all Λ ∈ F , Q{Λ } =

∫

Λ X dP .

Remark 2.41 We call X the Radon-Nikodym derivative of Q with respect to P , and
write

X =
dQ

dP
.

The restriction to finite Q is not necessary: Q can be sigma-finite.

Proof. We will only prove this for the case where F is separable, generated by a sequence
of sets Λn, n = 1, 2, . . .. Once this is proved, it can be extended to the general case by
a measure-theoretical argument which is more standard than it is interesting, so we will
skip it.

Define sigma fields Fn by Fn = σ{Λ1, . . . , Λn }. Then Fn ⊂ Fn+1, so the (Fn) form
a filtration. Moreover, each Fn is generated by a finite partition: the elements of the
partition are sets of the form G1 ∩ . . . ∩ Gn, where each Gi is either Λi or Λc

i ; all sets in
Fn are finite unions of these sets. Let Γn

j , j = 1, 2, . . . , Nn be the partition generating
Fn. Define Xn by

Xn(ω) =







Q{Γn
j
}

P{Γn
j
}

if ω ∈ Γn
j and P{Γn

j } > 0

0 if ω ∈ Γn
j and P{Γn

j } = 0 .
(27)
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Xn is clearly positive and Fn-measurable. Notice that
∫

Γn
j
Xn dP = Q{Γn

j }. This is

immediate from (27) if P{Γn
j } 6= 0, and it also holds if P{Γn

j } = 0, since then the fact
that Q � P implies that Q{Γn

j } = 0 too, while X ≡ 0 on Γn
j so the integral also vanishes.

It follows that
∫

Λ Xn dP = Q{Λ } for all Λ ∈ Fn, since all such sets are finite unions of
the Γn

j .
We claim that {Xn,Fn, n = 0, 1, 2, . . .} is a martingale. Indeed, if m < n, and Λ ∈

Fm ⊂ Fn, then
∫

Λ Xm dP = Q{Λ } =
∫

Λ Xn dP which shows that Xm = E{Xn | Fm },
so (Xn) is a martingale as claimed. Furthermore, it is uniformly integrable. Indeed,
∫

{Xn≥N } Xn dP = Q{Xn ≥ N }, while P{Xn ≥ N } ≤ E{Xn }/N = Q{Ω }/N . As Q is
finite, this tends to zero, independent of n. Let ε > 0 and choose δ > 0 by the lemma
so that P{Λ } < δ =⇒ Q{Λ } < ε. Choose N large enough so that Q{Ω }/N < δ. It
follows that

∫

{Xn≥N } Xn dP < ε for all n, and (Xn) is uniformly integrable.

Thus the Xn converge a.e. and in L1 to an integrable limit X∞, and for all n, Xn =
E{X∞ | Fn }. For any Λ ∈ Fn,

∫

Λ X∞ dP =
∫

Λ Xn dP = Q{Λ }, which implies

∫

Λ
X∞ dP = Q{Λ }(28)

for all Λ ∈ ∪nFn. But both sides of (28) define finite measures on F , so by Lemma 2.37,
(28) holds for all Λ ∈ σ{∪nFn } = F , which completes the proof. ♣

Now we can show the existence of the conditional expectation of an arbitrary integrable
random variable with respect to an arbitrary sub-sigma field of F .

Corollary 2.42 (Existence of Conditional Expectations) Let (Ω,F , P ) be a probability
space and let X be an integrable random variable and let G ⊂ F be a sigma field. Then
the conditional expectation E{X | G } exists.

Proof. It is enough to prove this for the case where X ≥ 0, since otherwise we can
consider the positive and negative parts X+ and X− separately. Define a measure Q
on (Ω,F , P ) by Q{Λ } =

∫

Λ X dP , for Λ ∈ F . Note that, as G ⊂ F , Q is also a
measure on the probability space (Ω,G, P ). If P{Λ } = 0, then Q{Λ } =

∫

Λ X dP = 0,
so Q � P . Thus there exists a Radon-Nikodym density Z of Q with respect to P on
the probability space (Ω,G, P ). (We can apply the theorem on any probability space,
so we choose (Ω,G, P ) rather than (Ω,F , P ) .) Then Z = E{X | G }. Indeed, Z is
integrable and, being a r.v. on (Ω,G, P ), it is G-measurable. Moreover, if Λ ∈ G, then
∫

Λ Z dP = Q{Λ } =
∫

Λ X dP , which is exactly what we needed to show. ♣

2.15 Two Other Applications

Martingales offer a number of striking applications to various parts of probability. We
will concentrate on applications to mathematical finance below, so we will give just two
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here: the Borel Zero-One Law, and Kolmogorov’s Strong Law of Large Numbers. Both
of these have other proofs. Both fall easily to martingale methods.

Let X1, X2, . . . be a sequence of independent random variables. We want to look at
the limiting behavior of this sequence in a general way. Let F ?

n = σ{Xn, Xn+1, . . . }
be the sigma field generated by the sequence after n. Note that F ?

n ⊃ F?
n+1, so the

F?
n decrease with n. Let F ? = ∩nF?

n be the limiting field. This is called the tail
field or remote field and events in it are called tail or remote events. It contains in-
formation about the limiting behavior of the sequence. For instance, quantities like
lim sup Xn, lim inf Xn, and lim sup(X1+. . .+Xn)/n are all F ?-measurable, and events like
{ the sequence (X1 + . . . + Xn)/n converges } and {Xn = 0 for infinitely many n } are in
F?. It turns out that the structure of F ? is remarkable simple—trivial, even—according
to the Borel Zero-One Law.

Theorem 2.43 (Borel Zero-One Law) If Λ ∈ F ? then P{Λ } = 0 or 1.

Thus, F? is trivial in the sense that any F ?-measurable random variable is a.e. con-
stant, and any event in F? is either sure to happen, or sure not to happen; no tail event
has probability one half. Thus for example, a series such as

∑∞
1 Xn will either converge

with probability one, or diverge with probability one. Which of the two occurs depends
on the distributions of the Xn, but we know beforehand that one of the two alternatives
happens.

Proof. (Warning: this proof is short, but it turns in rather tight logical circles. Don’t get
twisted up!) Let Fn = σ{X1, . . . , Xn }. Note that Fn and F?

n+1 are independent, hence
Fn and F? are independent for all n (for F ? ⊂ F?

n+1.) Let Λ ∈ F?, and let Yn = E{ IΛ |
Fn }. Then Λ is independent of Fn, so that Yn = E{ IΛ } = P{Λ } a.e. On the other
hand, (Yn) is a uniformly integrable martingale, which converges to E{ IΛ | σ{∪nFn } }
by Theorem 2.33. But σ{∪nFn } = σ{X1, X2, . . . }, which in particular contains Λ, so
that E{ IΛ | σ{∪nFn } } = IΛ. This gives us two expressions for lim Yn. Putting them
together, we see

P{Λ } = IΛ a.e.

The left-hand side is a real number; the right-hand side is a r.v. which, being an indicator
function, can take on only the values zero and one. Thus P{Λ } has to equal either zero
or one! ♣

The Law of Large numbers states that if X1, X2, . . . is a sequence of iid random variables
with common expectation m, then limn→∞(1/n)(X1 + . . . + Xn) = m. The Xj have to
be integrable in order to even state the theorem, but most versions of the Law of Large
Numbers require extra integrability hypotheses. In fact, though, if the random variables
are i.i.s., only first moments are needed. Kolmogorov’s theorem is decidedly non-trivial,
but we will be able to prove it fairly easily once we have made one observation.
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Theorem 2.44 (Kolmogorov) Let X1, X2, . . . be a sequence of independent and identically
distributed random variables, with E{X1 } = m. Then

lim
n→∞

1

n

n
∑

j=1

Xj = m a.e.

Proof. Let

S−n =
1

n

n
∑

j=1

Xj ,

and let F−n = σ{S−n, S−n−1, . . . }. Notice that F−n ⊃ F−n−1, so that (Fn) is a filtration.
Moreover, we claim that {Sn,Fn, n = . . . ,−2,−1 } is a martingale. Indeed, notice that
F−n = σ{S−n, Xn+1, Xn+2, . . . } = σ{ (X1 + . . .Xn), Xn+1, Xn+2 . . . }. If j ≤ n, let Zj ≡
E{Xj | F−n } = E{Xj | (X1 + . . .Xn), Xn+1, Xn+2 . . . }. Since X1, . . .Xn is independent
of Xn+1, Xn+2 . . ., this is equal to E{Xj | X1 + . . . Xn }. But now, Z1 = . . . = Zn by
symmetry—the Xi are identically distributed—and X1 + . . . + Xn = E{X1 + . . . + Xn |
X1 + . . . + Xn } = Z1 + . . . + Zn = nZ1. Thus j ≤ n =⇒ E{Xj | F−n } = S−n.

Thus

E{S−n+1 | F−n } =
1

n − 1
E{X1 + . . . + Xn−1 | X1 + . . . + Xn }

=
1

n − 1
(n − 1)S−n

= S−n.

Thus (Sn) is a backward martingale. (This is surprising in itself!) By Theorem 2.34 it is
uniformly integrable and converges a.e. and in L1. Moreover, its limit S−∞ can be added
on as the initial element of the martingale, so E{S−∞ } = E{S−1 } = E{X1 } = m. It is
not hard to see that in fact S−∞ is measurable with respect to the tail field. (Prove it!)
Thus it is a.e. constant by the Borel Zero-One Law, so S−∞ = m a.e. ♣

2.16 Exercises

1◦ Prove that if X1, X2, . . . are iid and integrable, that limn→∞ 1/n)
∑n

j=1 Xj is measurable
with respect to the tail field.

2◦ Show that every sequence of integrable random variables is the sum of a submartingale
and a supermartingale.

3◦ Give an example of a martingale Xn with the property that Xn → −∞ a.s. as n → ∞.
(Hint: consider sums of independent but not identically-distributed random variables.)

4◦ Let (Xn) be a positive supermartingale. Show that for a.e. ω, if Xk(ω) = 0, then
Xn(ω) = 0 for all n > k.
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5◦ (Krickeberg decomposition) Let {Xn,Fn, n ≥ 0 } be a sub martingale with E{ |Xn| }
bounded. Put X+

n = max(Xn, 0). Show there exists a positive martingale {Yn,Fn, n ≥
0 } such that X+

n ≤ Yn and E{Yn } = lim E{Xn+ }. Deduce from this that every
L1-bounded martingale is the difference of two positive martingales. (Hint: try Yn =
limk→∞ E{X+

k | Fn }, and show the limit exists a.e.)

6◦ Suppose, in the set-up of the proof of the Radon-Nikodym theorem, that instead of
being absolutely continuous with respect to P , Q is singular with respect to P , i.e. there
exist a set Λ ∈ F such that P{Λ } = 0 and Q{Λc } = 0. Show that in that case the
process Xn defined in the proof converges a.e. to zero. (Note that Xn may not be a
martingale, but only a supermartingale. The calculation in Example 6 of Section 2.1 may
help.)

7◦ Consider the martingale Zn of Example 6 of Section 2.1. (Assume that the densities
p and q never vanish, so that it is in fact a martingale, not a supermartingale.) Suppose
that the statistician decides to use the following criterion to decide between the two
hypotheses (H1) and (H2): choose two numbers, 0 < a < 1 < b. Continue sampling as
long as a < Zn < b. Let T = inf{n : Zn ≤ a or Zn ≥ b }. Assume that T < ∞ a.e. and
that, at time T , Zt = a or ZT = b. (That is, we ignore the possible overshoot.) If ZT = a,
the statistician will decide that (H2) is correct, and if ZT = b, that (H1) is correct. How
can one choose a and b to make both P{ statistician makes error | (H1) is correct } and
P{ statistician makes error | (H2) is correct } equal to a fixed number 0 < α < 1/2?

8◦ A family {Xα, α ∈ I } of random variables is uniformly integrable if and only if
there exists a function φ on [0,∞) which is increasing, satisfies limx→∞ φ(x)/x = ∞, and
supα E{φ(Xα) } < ∞.
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