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Abstract

These are lecture notes for a first year undergraduate course in Discrete Mathematics in the Computer
Science Department at Bar-Ilan University. These notes contain the technical material covered but do not
include much of the motivation and discussion that is given in the lectures. It is therefore not intended
for self study, and is not a replacement for what we cover in class.
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Course Aims and Syllabus

Course aims:
1. Develop mathematical language needed for entire degree

2. Learn how to prove: needed for many courses throughout the degree; understand the role that proofs
play in mathematics and theoretical computer science

3. Learn how to think in an exact and precise manner: needed for the degree and anything you will do
in the field

Course Topics:
1. Basic logic
2. Quantifiers and predicate logic

Proof methods

- W

Mathematical induction

ot

Basic set theory
Relations
Functions

Infinite sets and cardinality

© ® N o

Basic combinatorics
10. Recursion
11. Graph theory
Administrative issues: The course requirements, as described in the syllabus, are the exam and a

midterm test, passing at least 80% of the exercises, and passing at least 80% of the weekly tests in the
moodle system.






1 Basic Logic
1.1 Background
Examples — propositions or statements:
1. “Today is Thursday” is a proposition
2. “There are infinitely many numbers” is a proposition
3. “What is the time?” is not a proposition
4. “Don’t drive fast” is not a proposition

Any proposition is either true (T) or false (F) (for this reason, “what is the time?” is not a proposition).
We sometimes may not know whether or not a proposition is true or false, but this must be the case.

1. The proposition “there are infinitely many prime numbers” is true, but how do we know this?
2. The proposition “every set of numbers has a minimum” is false, but how do we know this?
3. We do not know whether or not the proposition “there are infinitely many twin primes (i.e., primes p
such that p and p + 2 are both prime)” is true or false.
Deductive reasoning: Deductive reasoning can be carried out on propositions only.
1. The following is an example of valid deductive reasoning (go through the analysis):

e It will either rain or snow tomorrow.
e It’s too warm for snow.

e Therefore, it will rain tomorrow.
2. The following is an example of invalid deductive reasoning:

e If I am sick tomorrow, I will not go to work.
e I will not be sick tomorrow.

e Therefore, I will go to work tomorrow.

The analysis of propositions is independent their content. Denote by p the proposition “It will rain tomor-
row”, by ¢ the proposition “it will snow tomorrow”. Then, the first series of propositions is:

eporg
e Not ¢
e Therefore p

As such, it can be analyzed logically. If correct, then the conclusion should hold whenever the premises hold.

1.2 Logical Connectives and Truth Tables

The proposition p above is a simple or atomic proposition since it makes a single statement; in contrast,
the proposition “p or ¢” is a compound proposition. We will look at operations for combining propositions;
these are called logical connectives. The truth of a compound proposition will depend only on the truth of
its component simple propositions, and on the connectives used. We will use truth tables to determine the
truth of a compound proposition.



Negation (—): For any proposition p we denote by —p its negation. The truth table is as follows:
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It is common to also denote negation by p, p’ and p.

Conjunction — AND (A): This connective is used to say that the compound proposition is true if both
components are true.
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It is also common to denote this connective by p&q or p - q.

Disjunction — OR (V): This connective is used to say that the compound proposition is true if at least
one of the components is true. This is called an inclusive OR since it is true also when both simple propositions
are true.
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It is also common to denote this connective by p + q.

Exclusive OR (): This connective is used to say that the compound proposition is true if exactly one
of the components is true. This is called an exclusive OR since it is not true when both simple propositions
are true, in contrast to the inclusive OR above. This is also a disjunction.
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It is also common to denote this connective by p VY ¢q. An exclusive OR makes sense in a proposition like
“Tomorrow I will either go to work or I will go to the beach”. The intention of such a sentence is clearly
that T will do only of the two, but not both.

Compound propositions — combining connectives: Truth tables are very effective for analyzing com-
pound propositions. Analyze the following sentence:

It is not true that (Paris is not the capital of France and the pope does not live in Rome)

Denote: p =Paris is the capital of France; ¢ =The Pope lives in Rome. Then, the compound proposition is
—(=p A =¢g). In order to analyze this proposition, we will construct a truth table:



pla|-p|-q|pA-g| ~(-pA—q)
T|T| F | F F T
TIF|F | T F T
F|T|T|F F T
F|F|T|T T F

Once we have this truth table, we can determine the truth of the proposition by plugging in the truth values
of p and ¢ and obtaining the result. The logical analysis thus becomes “mechanical”.

Observe that the original proposition is equivalent to “Paris is the capital of France or the Pope lives in
Rome” (look at the last column of the truth table). As we will see, it is possible to prove that the proposition
=(=p A —q) is always equivalent to p V g which is what we have seen.

It is important to note that the mathematical and logical use of connectives is not always the same
as used in common language. For example, consider the politician’s proposition: “It is not true that the
peace process is useless”. Logically, we analyze this by denoting p = the peace process is useful. Then, the
proposition is —(—p) which equals p (this can be easily seen by using the truth table method: double negation
returns to the original proposition). Thus, logically this is equivalent to saying that the peace process is
useful. However, clearly this is not what the politician meant (rather s/he means to say that s/he took no
position). Nevertheless, we do not accept such ambiguity in science, and certainly not in mathematics.

Question: how many rows are in a truth table with n simple (atomic) propositions?

Conditional proposition — implication (=-): This connective is used to say that if one proposition is
true then so is the other. The first proposition is called the premise and the second proposition is called the
conclusion. The basis for filling out the truth table here is that “if p then ¢” can only be false if p is true
and ¢ is false. This is because “if p then ¢” exactly means that “if p is true then ¢ is also true”. However,
it means nothing when p is false. Consider the following proposition: “if I pass my exams then I will have a
party”. The student making this proposition is saying nothing about what she will do if she does not pass
her exams. Thus, if the student fails she may or may not have a party, and this does not contradict the
proposition. In general, an implication of the form p = ¢ is only a claim about ¢ when p is true; when p is
false, nothing is claimed about ¢ and thus the proposition is always correct. We therefore have the following
truth table:

plalpr=4g
T | T T
T|F F
F|T T
F|F T

As a result of the fact that whenever a premise is false then the conclusion is always true, propositions like
“if pigs can fly then I am the smartest person in the world” are always true.

If p = q then p is a sufficient condition for ¢, and q is a necessary condition for p. An implication is often
denoted p — q.

Biconditional proposition (<>): This connective is used to show equivalence between two simple propo-
sitions; either both are true or both are false. Formally, we can define p < ¢ if (p = ¢) A (¢ = p). In
mathematical terminology, a biconditional proposition is expressed by saying if and only if (or iff).

plaglpreg
T|T| T
T|IF| F
F|T| F
F|F| T




Operator precedence: when given a compound proposition without parentheses, the order of precedence
is: negation, conjunction, disjunction, implication, biconditional implication. This can be very confusing
since p = g A ¢ = p is actually p = (¢ A ¢) = p. Thus, it is recommended to include all parentheses, with
the exception of negation before a simple proposition.

1.3 Tautologies and Contradictions

Definition 1.1 A tautology is a compound proposition which is true for all truth assignments of its simple
propositions. A contradiction is a compound proposition which is false for all truth assignments of its simple
propositions.

Examples:
1. pV —p is a tautology (it will either rain tomorrow or it won’t)
2. p A —p is a contradiction
3. (pAq)V—(pAgq) is a tautology (simply by appealing to (1))
Tautologies and contradictions are in some sense uninteresting propositions. For example, telling someone

that it will either rain tomorrow or will not provides no information whatsoever.

1.4 Logical Equivalence and Implication

Definition 1.2 Two proposition A and B are equivalent, denoted A = B, if they define the same truth table
on their atomic propositions. All tautologies are equivalent, and all contradictions are equivalent.

We remark that A < B and A = B are not the same; the former is a new compound proposition, whereas
the latter is a mathematical claim about A and B. The connection between them is that the compound
proposition A < B is a tautology if and only if A = B.

Example 1.3 We claim that p < q is equivalent to =(p Y q). The most straightforward way to prove such
a proposition is to write out the truth table:

pla|lpreq|pYe| (Y
T T T F T
T|F| F T F
FlT| F T F
FI|F| T F T

Example 1.4 Our aim is to find a simple equivalent proposition to —p = (q¢V (r A—p)). This is complicated,
so we first construct a truth table:

rA-p | qV(rA-p) | -p=(qV(rA-p))
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It is now easy to see that this proposition is equivalent to pV q V r, which is much easier to understand.
Nevertheless, saying “you must do all exercises or pass the midterm test or pass the exam” is exactly the
same as saying “if you don’t do all the exercises then either you must pass the midterm test or (you must
pass the exam and not do all exercises)”.

Definition 1.5 Proposition A logically implies proposition B, denoted A+ B or A .. B, if whenever A is
true then B is true.

Similarly to equivalence and tautologies, we have that A - B if and only if A = B is a tautology.

Example 1.6 Show that q logically implies pV q. This is shown easily via the truth table:

pvyg
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It follows that whenever p is true, then p V q is also true. Consider another truth table, including the
proposition (q = (pV q)):

pla|pVg|lqg=>({Vyg
T(T[ T T
T|F| T T
FlT| T T
F|F| F T

Thus, (g = (pV q)) is a tautology, as required.

Example 1.7 Show that p = q is equivalent to —~q = —p. We construct the truth table:

Plqg|pP=q|9q="P
T|T T T
T|F F F
F| T T T
F|F T T

This equivalence is of particular importance since it tells us that instead of proving p = q we can prove
—q = —p. This proof technique is often used and is called proving using the contrapositive.

1.5 Equivalence Laws

There are a number of important equivalence laws. We begin with replacement laws:

Idempotent laws:

pPApP = p
pVp = p
Absorption laws:
pV(pAg) = p
pA(pVe = p



Commutative laws:

PAG = qAp
pVgqg = qVp
p¥Yq = q¥p
peq = q&p
Associative laws:
A Ar = pA(gAT)
(pvqgVr = pVi(gVr)
(pYq)Vr = pY(qV¥r)
peqger = pe@ern)
Distributive laws:
pA(gvr) = (pA (pAT)
pVignr) = (VgA(pVr
Involution law:
=(-p) =p
De Morgan’s laws:
-(pV —p A g
-(pAqg) = —pV—q

Identity laws: Denote by f a contradiction and by ¢ a tautology.

pVf = p
pAt = p
pVt = ¢
pNf o= f
Complement laws:
pA-p = f
-f =t
-t = f
Transposition law:
p=q = —q="DP



Material implication law:

p=q = "pVgq
Material equivalence laws:
peq = (p=>qNg=p)
peq = (pAgV(pA—q)
Exportation law:
prhg)=r = p=(¢=r)

We remark that the associative laws are important since they mean that parentheses are of no importance
in a series of ANDs or in a series of ORs. That is, pA (gA (rAS)At) =pAgAT AsSAtL

The substitution rule: Let A and B be two propositions such that A = B. Let C' be a proposition that
contains A, and let D be the proposition obtained by replaced A with B in C. Then, the substitution rule
states that C' = D.

Example 1.8 Our aim is to prove that (—-p A q)V —(pV q) = —p. Instead of using the truth table method,
we now use the above equivalence rules:

(pAQV=(pVag)=(=pAq)V(=pA~g) (De Morgan)
=-pA(qV—q) (Distributive)
=-pAt (Complement)
=P (Identity)

1.6 Arguments and Formal Proofs of Validition

Definition 1.9 An argument is a set of propositions, called premises, together with another proposition
called the conclusion. An argument is valid if the conjunction of the premises logically implies the conclusion;
otherwise it is invalid.

Based on what we have seen, an argument is of the form (Py A P, A--- A P,) F @ and it is valid if and
only if the proposition (Py A Po A -+ A P,) = @ is a tautology. (We use capital P; and @ here in order to
stress that each of the premises and conclusion can itself be a compound proposition, and not just a simple
one.)

Formal proofs: In order to verify the validity of an argument, one can construct a truth table. However,
this is a tedious and long process, especially if the number of premises is large. An alternative method is
therefore to construct a sequence of propositions, starting from the premises and leading to the conclusion.
In more detail, we begin with the premises and add propositions; a proposition can be added to the list of
premises as long as it is logically implied by the premises derived so far. The proof of validity is complete
when the conclusion is guaranteed by the premises (or, equivalently, if it can be added to the list of premises).

As we have mentioned, in order to add a proposition to the list of premises, it must be logically implied.
There are common rules of inference, which are very useful in constructing formal proofs. We list these now:



Name of rule Premises Conclusion

Simplification PAQ P
Addition P PVvQ@
Conjunction P, Q PAQ
Disjunctive syllogism PvQ,-P Q
Modus ponens P, P=Q Q
Modus tollens P=Q, Q -P
Hypothetical syllogism P=Q, Q=R P=R
Absorption P=Q P=(PAQ)
Constructive dilemma P=Q,R=S,PVR QVS

We give two examples of formal proofs using the above rules of inference:

Example 1.10 We construct a proof that (p = q) A (p Ar) b q. The premises are p = q, p Ar, and the
conclusion is q.

1. Premises: p = q, p A r; using simplification we add p
2. Premises: p = q, p Ar, p; using Modus ponens we add q
3. q is the conclusion, and thus this completes the proof.

Example 1.11 We construct a proof that the premises (p = q), (r = s),~q,r imply the conclusion —p A s.
Before we begin, we work out a strategy. Since we wish to prove —p A s, it will suffice to add both —p and s
to our list of premises and then apply the conjunction rule.

1. Premises: (p = q), (r = s),q,r; applying modus tollens to p = q and —q we can add —p
2. Premises: (p = q), (r = s),q,r,p; applying modus ponens to r and r = s we can add s
3. Premises: (p = q), (r = s),—q,r,—p,s; applying conjunction to —p and s, we can add —p A s

4. This completes the proof.

1.7 Quantifiers and Predicate Logic

Assume that we wish to write a proposition expressing the fact that both Alice and Bob are computer science
students. We could denote by p that Alice is a computer science student, and by ¢ that Bob is a computer
science student, and then write p A q. However, this misses the main point that both Alice and Bob study
the same subject. A predicate describes a property of objects. We can therefore define the predicate C'S(x)
to mean that the object x studies computer science. Then, denote Alice by x and Bob by y, we can express
our proposition by writing C'S(xz) A CS(y). The letters x and y are variables, and the predicate CS is called
a propositional function. As with simple statements, we can negate predicates ~C'S(z) means that x is not a
computer science student.

Sets and quantifiers: We often wish to express statements like “all computer science students work hard”
or “some computer science students work hard”. In order to express this type of statements we first need to
to be able to express the concept of the set of all computer science students. A set is a collection of objects,
each object in the collection is called an element of the set. For example, let A = {1,2,5,7}. Then, 2 is an
element of A, and 3 is not an element of A. We denote this by 2 € A and 3 ¢ A. We can now define A to
be the set of all computer science students. However, this is still not enough to make statements about all
or some of these students (or, elements in the set). In order to do this, we need quantifiers.

e The universal quantifier: The universal quantifier is used to refer to all elements in a set, and is
denoted V. Thus, we can refer to all computer science students by writing Vz € A. Now, let W be a
predicate such that W (z) is true if  works hard. Then, the proposition “all computer science students
work hard” can be expressed by Vo € A : W(x).

10



e The existential quantifier: The existential quantifier is used to refer to some elements in a set, and
is denoted 3. Thus, we can refer to some computer science students by writing 3z € A. Using this
notation, the proposition “some computer science students work hard” can be expressed by Jz € A :
The statement Jz € A : W(x) is true as long as there is at least one computer science student that
works hard. However, we often wish to say that there exists exactly one member of the set for which
the predicate holds. We denote this by 3!. Thus, 3la € A : W(z) means that there is exactly one
computer science student that works hard; if there are two or more then the proposition will be false.

We remark that it is possible to write propositional functions with more than one variable. For example,
P(z,y) can express the fact that y > 2. Denoting the set of natural numbers by N, we can make statements
like Vo € N3y € N : P(z,y), which means that every natural number has a number larger than it.

We stress that the order of the quantifiers is crucial. For example, if we were to write 3z € NVy € N :
P(z,y) then this would mean that there exists a natural number that is smaller than all the natural numbers.
This is a very different statement (note that it is incorrect since there is no requirement that « # y and thus
the smallest number must also be smaller than itself). Note also that the statement 3y € NVz € N : P(z,y)
is false since this states that the set of natural numbers has a number larger than all natural numbers.
Finally, we remark that when the same quantifier is repeated then the order is inconsequential. Thus
Vo € NVy € N : P(z,y) is equivalent to Vy € NVz € N : P(x,y) and likewise with the existential quantifier.

Negation of quantified propositions: What is the negation of “there exists a computer science student
who works hard”? The answer is: “no computer science students work hard”, or equivalently “every computer
science student doesn’t work hard”. Likewise, the negation of “every computer science student works hard”
is “there exists a computer science student that doesn’t work hard”. Thus, we have the following negation
rules:

e The negation of Vz : P(z) is 3z : = P(x)
e The negation of 3z : P(x) is Vz : =P (x)

What about multiple variables? The same rules hold. Specifically, the negation of “every natural numbers
has a number larger than it” is “there exists a natural number which has no number larger than it” (i.e.,
the set has a maximum). Likewise, the negation of “there exists a natural number that is smaller than all
natural numbers”? The answer is “every natural number has a number larger than it”. That is,

e The negation of Vz3y : P(x,y) is JaVy : = P(x,y)
e The negation of JxVy : P(x,y) is Vady : ~P(x,y)
This is actually derived from the basic negation rules as follows:
~(Vedy : P(z,y)) = ~Va(Jy : P(z,y)) = Jz—(Jy : P(z,y)) = JaVy : ~P(z,y)
Arguments in predicate logic: The rules of inference that we saw above are all valid in the case of

predicate logic as well. However, we need to extend them to deal with quantified propositions. There are
four rules of relevance here; we let A denote the set of all elements under discussion:

e Universal specification: If Vo F(x) is true, then F(a) is true for every a € A
e Universal generalization: If F'(a) is true for every a € A, then the proposition VzF(x) is true
o Existential specification: If 3z F(z) is true, then F(a) is true for some a € A

e Existential generalization: If F(a) is true for some a € A, then the proposition JzF () is true

11



These rules may seem trivial, but are actually the way most mathematical theorems are proven. For example,
we often begin by saying “let ¢ > 0”, and we then work with this specific e. This is an example of universal
specification.

Example 1.12 We show that the following argument is valid: “All students go to parties and some students
drink too much. Therefore, some people who drink too much go to parties.” Let A be the set of all people.
We define the following predicates:

e S(x): x is a student
e D(x): x drinks too much
e P(x): x goes to parties

We now construct the proof. The premises are Vx(S(z) = P(z)) and 3z(S(z) A D(z)); the conclusion is
Jz(D(z) A P(x)).

1. Premises: Vx(S(z) = P(x)), 3z(S(x) A D(x))

2. Using existential specification, we add S(a) A D(a) [This is like saying: let a be a student that drinks too much]
Using universal specification, we add S(a) = P(a)

Using simplification, we add S(a)

Using modus ponens, we add P(a)

Using the commutative law and simplification to S(a) A D(a), we add D(a)

Using conjunction, we add D(a) A P(a)

Using existential generalization, we add 3x(D(z) A P(x))

© RS & e

This completes the proof.

In this example, it is crucial that we first add S(a) A D(a), and only then claim that S(a) = P(a). This
is because in the first step, we use the existence of such a student in order to consider the student explicitly.
We are then able to claim that S(a) = P(a) because this holds for every x € A, and in particular for a. In
contrast, were we to first add S(a) = P(a), we would not be able to claim that S(a) A D(a) because there
is no basis for a being a student for which S(a) A D(a) holds.

1.8 Normal Forms and Complete Sets of Logical Connectives

Definition 1.13 A literal is a simple proposition or its negation. A conjunctive clause is the conjunction of
some set of literals; a disjunctive clause is the disjunction of some set of literals.

e A proposition is in disjunctive normal form (DNF) if it is a disjunction of conjunctive clauses. A
proposition is in full disjunctive normal form if each of its variables appears exactly once in every clause.

e A proposition is in conjunctive normal form (CNF) if it is a conjunction of disjunctive clauses.
Example 1.14

1. The propositions p A q, p, (p A—q) V (r A's) are in DNF.

2. The propositions =(pV q), pV (g A (rV s)) are not in DNF.

3. The propositions p A (—gV 1), (pVq)A(—pVr), and pV q are in CNF.

12



4. The propositions ~(pV q), (p A q) V1 are not in CNF.
5. The propositions p A q and pV q are in both DNF and CNF.

Theorem 1.15 For every proposition P, there exists a proposition @ in disjunctive normal form that is
logically equivalent to P.

Proof: If P is a contradiction, then we take @ to be p A —p as the equivalent DNF proposition. Else, let T
be the truth table of P and let pq,...,p, be the simple propositions in P. First, remove all rows of 7 that
have truth value F. Then, for every other row, construct a conjunctive clause by taking p; if its truth value is
T in that row and by taking —p; if its truth value is F in that row. Finally, let @ be the disjunction of all of
these conjunctions. It is clear that @ is in DNF. In addition, it is equivalent to P since any assignment that
results in T in 7 will satisfy a conjunctive clause in () which will in turn satisfy the entire Q. Furthermore,
any assignment that results in T in () must satisfy at least one conjunctive clause in @) and thus will provide
T in the associated row left in T after removing all the “F rows”. Since T only has T-rows at this point,
this means that the assignment satisfies P. Thus, the propositions are equivalent. This completes the proof.

Example 1.16 Find the equivalent DNF to the proposition p = (¢ Ar). What is the size of the DNF
proposition and why is this important?

Observe that if P is not a contradiction, the DNF proposition constructed is in full disjunctive normal
form. Thus, we have:

Theorem 1.17 For every proposition P that is not a contradiction, there exists a proposition @ in full
disjunctive normal form that is logically equivalent to P.

It is also possible to show that there is exactly one @ in full DNF (ignoring the order of the clauses and
literals) that is logically equivalent to P; we will not prove this here.

We remark that although the above demonstrates that an equivalent DNF exists, it may be exponentially
bigger than the original P. This is of important computationally; you will encounter these questions next
year in your studies.

Theorem 1.18 For every proposition P, there exists a proposition ) in conjunctive normal form that is
logically equivalent to P.

Proof: Let S be a proposition in DNF that is equivalent to = P; such a proposition is guaranteed to exist
by Theorem [1.15] Then, negate S and apply and De Morgan’s law. Observe that by De Morgan’s law all
conjunctions become disjunctions and vice versa; thus the result is =5 in CNF. Since S is equivalent to =P
we have that =5 is equivalent to P, and it is in CNF, thus completing the proof. [ |

Example 1.19 Find the equivalent CNF to the proposition p = (g A T).

Complete sets of logical connectives. There are many types of logical connectives. We have seen a few
of the most common ones, but in principle every different truth tables on two simple propositions defines a
(binary) logical connective. Thus, there are 2* = 16 binary logical connectives. However, as we have seen,
all propositions can be written in DNF and CNF'. Thus, it is possible to express every proposition using only
the logical connectives {—,V, A}. Thus, this set is “complete”. Formally:

Definition 1.20 A set S of logical connectives is complete if every proposition has an equivalent proposition
that is comprised only of connectives from S.

As we have seen, {—,V,A} is a complete set, and the proof of this is Theorem m There are also
individual connectives that are complete; these are the NAND (1) and NOR () connectives, defined as

follows: ptg=—(pAg)andplg=-(pVq).
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Theorem 1.21 The following sets of logical connectives are complete:
1. {—,Vv}
2. {—, N}
3. {~,=}
4. {1}
5. {4}

Proof: In order to prove this theorem, it suffices to show that the connectives {—,V, A} can be derived
from each of the proposed sets. Regarding {—, V}, in order to express p A ¢ it is possible to write =(—pV —q)
and by De Morgan’s laws this is equivalent. Thus, any proposition written using {—,V, A} can be rewritten
using {—, V}. Using De Morgan again, we can obtain that {—, A} is also complete. Next, observe that —-p = ¢
is equivalent to p V ¢; thus {—, =} is also complete.

Regarding NAND: observe that p 1 p is equivalent to —p, and (p 1 q) 1 (p 1 q) is equivalent to —=(p 1 q)
which is equivalent to p A g. Thus, {—, A} can be expressed using 1 alone, proving that 1 is complete. We
leave the proof of | (which is very similar) for an exercise.
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2 Basic Set Theory

2.1 Basic Definitions

A set is a well-defined collection of objects; every member of a set is called an element. We assume that given
a set and an element, it is possible to determine whether or not the element is a member of the set (if the
set is finite, then this is certainly the case; if not, then it can be determined by the definition of the set). We
denote a € A to mean that a is an element of the set A, and a ¢ A to mean that a is not an element of A.
A set cannot contain multiple identical elements; thus {a,a} = {a} (when considering the fact that the only
thing that we know about a set is membership or non-membership, this makes sense since the same element
appearing multiple times makes no difference to membership). We denote the empty set {} containing no
elements by @ (equivalently @ is the set with the property that Vo : z ¢ ).

Sets can be defined by using a single-variable propositional function: A = {z | P(z)} is the set of all
values x for which P(x) is true. Observe that there is some ambiguity as to the universe from which z
can come from to start with. This ambiguity can be solved by explicitly writing A = {# € N | P(x)}, for
example, and is sometimes understood from the context. We denote by U the universal set, or the set of all
elements. Observe that we can also write A = {z € U | x € NA P(z)}. When we refer to z without denoting
which set it comes from, by default we refer to U.

Definition 2.1 Let A and B be sets.
1. A is a subset of B, denoted A C B, if for every x, x € A= = € B.
2. A is equal to B, denoted A = B, if for every x, x € A<= x € B.

3. A is a proper subset of B, denoted A C B if AC B and A # B.

Basic properties:
1. For every set A, it holds that A C Aand A=A
2. If A=Bthen B=A
3. f A=B and B=C then A=C
4. A=Bifandonlyif AC Band BC A
5. If AC B and B C C then A C C (this is called transitivity)
6. For every set A, @ C A

The above properties should be formally proven. We will give one proof as an example of how to do this,
and leave the rest for an exercise.

Theorem 2.2 [f AC B and B C C then A C C.

Proof: Let x be an element. Then, A C B implies that z € A = x € B. In addition, Since B C C, this
implies that x € B = x € C. By hypothetical syllogism, we have that x € A = x € C. We have proven
this for every arbitrary x, and thus by universal generalization, we have that Vz : (x € A = x € C) and so
ACC. [ |

The cardinality of a set A, denoted |A|, is the number of (distinct) elements which it contains. If A is an
infinite set, then we write |A| = co.
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2.2 Operations on Sets

Definition 2.3

1. Union: The union of two sets A and B, denoted AU B, is defined by {x e U | x € AV z € B}
Intersection: The intersection of two sets A and B, denoted ANB, is defined by {v € U | x € ANz € B}
Complement: The complement of a set A, denoted A, is defined by {x €U | x ¢ A}

Difference: The set difference of A and B, denoted A\ B, is defined by {x eU | x € ANz ¢ B}

SRS S

Symmetric difference: The symmetric difference of A and B, denoted AAB, is defined by (A\B)U(B\ A)
Basic property of union/intersection: For all sets A and B, AC AU B and AN B C A.

Equivalence rules of sets:

Idempotent laws:

ANA = A
AUA = A
Commutative laws:
ANB = BNA
AUuB = BUA
Absorption laws:
AN(AuB) = A
AU(AnNB) = A

Associative laws:

Distributive laws:

AN(BUC) = (ANB)U(ANCQC)
AU(BNC) AUB)N(AUC)
Involution law:
A =4
De Morgan’s laws:
(AuUB) = AnB
(AnB) = AUB
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Identity laws:

AU = A
AnU = A
Auld = U
AN = 0
Complement laws:

AUA = U
ANA = O

0 =U

u 0}

We will prove one of the rules as an example.
Theorem 2.4 AN(BUC)=(ANB)U(ANC)
Proof: We write the proof as a logical progression. Let x be an arbitrary value. Then,

reAN(BUC) & xz€ANzeBUC
& zeAN(zxeBvzel)
& (reAnzeB)V(zeArzel)
& ze€eAnNBvze AnC
< ze(ANB)U(ANC)
where the third equivalence is obtained by applying the distributive law of logic (Section . We have
proven the above for an arbitrary z, and thus it holds for all z (by universal generalisation). Thus, we

conclude that for every z, z € AN(BUC) &z € (ANB)U(ANC), and so AN(BUC) = (ANB)U(ANC).
|

We prove another claim, in order to demonstrate the use of basic logic inference in order to prove
statements about set theory.

Theorem 2.5 AAB = (AUB)\ (AN B).
Proof: By definition, AAB = (A\ B) U (B\ A). Let x be an arbitrary value. We have:
x e (A\B)U(B\A) (xe A\B)V(z e B\A)
(re ANz ¢ B)V(zxeBAxz¢A)
(xeAnz¢B)VeeB)AN((x e ANz ¢ B)Va¢A)
(xeAvzeB)AN(zxeBVa¢B)A(zxeBVag¢ B)A(x ¢ AVae ¢ B)
(re AVzeB)A(z ¢ AVa ¢ B)
( A (=
(
(
(

3

x €AV € B) (x € A)V —~(x € B))
r€AVz e B)AN-(x € ANz € B)

re AUB)A—-(x € ANB)

r€ AUB)A (x ¢ ANB)
x€(AUB)\ (AN B)

SR

(3

We have proven the above for an arbitrary a and thus it holds for every z, proving that (A\ B)U (B\ A) =
(AUB)\ (AN B). We note that the 3rd and 4th equivalence are due to distributivity. In addition, we stress
that when using ¢ one must be careful. Specifically, it is not true that x ¢ AVz ¢ B implies that z ¢ AU B;
see abovel! [ |
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Operations on many sets: It is possible to define operations on more than sets as well. We define:

(A = Aindyn--NA,={z|Vien]:ze A}
=1

U4 = Audu---UA, ={z|3icn]:zec A}
1=1

where [n] denotes the set {1,...,n}. It is possible to also define this for an arbitrary indexing set I, in which
case we have ();c; A; ={z |Vie l: 2 € A}

The above can also be defined on families of sets (i.e., sets of sets). Specifically, let F be a set of sets.
Then, we denote by NF the intersection of all sets in F, and by UF the union of all sets in F. For example,
letting F = {{1, 2}, {2}, {2, 3,4}}, we have that N\F = {2} and UF = {1, 2,3, 4}.

The power set: The power set of a set A is the set of all subsets of A. Formally, P(A) = {B | B C A}.
Note that P(0) = {@}, which is not the same as @ itself (P(0) is a set with one element, whereas () has
no elements).

Theorem 2.6 For all sets A and B:
1. AC B if and only if P(A) C P(B)
2. P(A)NP(B) =P(ANB)
3. P(A)UP(B) CP(AUB)
Proof: We begin with the first statement. First assume that A C B. Assume X € P(A4). We have:
XeP(A) &« XCA = XCB & XeP(B),

where the implication “X C A = X C B” follows from the fact that A C B (and transitivity of C).
Thus, X € P(B), and by universal generalization we conclude that VX : X € P(4) = X € P(B) and so
P(A) C P(B). For the other direction, we assume that P(A) C P(B) and wish to prove that A C B. Now,
by the definition of the power set we have that A € P(A). Since P(A) C P(B) and by transitivity we have
that A € P(B). Again, by the definition of the power set, this implies that A C B, as required.

The second statement is proven as follows:

XePANPB) & XePAAXEeP(B)
& XCAANXCB
& XCANB

& XePANB)

where the third equivalence is proven as follows. Let X be a set and assume that X C A and X C B. This
means that (Vo :z € X =2 € A)A(Vz: 2z € X = = € B). Let a be an arbitrary element. If a € X then
by the above we have that a € A and a € B, and thus a € AN B. By universal generalization, we have
that Ve : 2 € X = z € AN B. Thus, X C AN B. For the other direction, let X be a set and assume
X CANB. Since ANB C A and AN B C B (and using the transitivity of intersection; basic property of
union/intersection above), we conclude that X C A and X C B. Thus, P(A)NP(B) = P(ANB). We stress
that it is necessary to prove all unproven claims, including the third equivalence even though it may seem
trivial. This will become apparent below since an analogous claim about the union is not true.
Regarding the third statement:

XePAUPB) & XePAVXeP(B)
& XCAVXCB
= XCAUB
& XeP(AUB)
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where the implications in third step follows from the fact that A C AU B and B C AU B (prove as exercise)
and then apply transitivity (basic property of union/intersection above). Thus, P(4) UP(B) C P(AU B).
Observe that one has to be very careful here. It is an “easy mistake” to write all of the steps as “if and only
if”. However, if X C A U B this does not imply that X is a subset of either A or B. For example, take
A={1,2}, B=1{3,4} and X = {2,3}. [ |

It is instructive to look at the lower logic level in an attempt to prove the statement
XCAVXCB&s XCAUB.

In the = direction, we have X C AV X C B implies that (Vz: 2 € X =2 € A)vV(Vz:2 € X = z € B).
Since A C AU B and B C AU B, this implies that (Vz: 2 € X =2 € AUB)V (Vx:2 € X =z € AUB),
which implies Vz : x € X = € AU B or equivalently X C AU B.

Now, in an attempt to prove the opposite direction, we start with the assumption that X C AU B which
implies that Vx : x € X = © € AU B, which is equivalent toVz : z € X = x € AV z € B. We would like
to write that this implies (Ve :z € X =2 € A)V (Vx: 2 € X = 2z € B) and so X C AU B. However, it is
not true that:

Ve : P(z)V Q(z) = (Vx: P(z)) VvV (Vo : Q(x)).

This becomes clear if we consider the natural numbers N and the predicate P(x) to mean that P is even, and
Q(z) to mean that P is odd. Since all numbers are either even or odd, we have that Vo € N : P(x) V Q(x).
However, it is clearly not true that all numbers are even or all numbers are odd which would be the equivalent
of (Vz: P(z)) vV (Vz : Q(x)).

This explains why in our proofs on sets using logical equivalence, we first fix x to be an
arbitrary value (and did not work with a V quantifier).

We now continue with the material.

Theorem 2.7 If |A| =n then |P(A)| = 2".

Proof: Let A= {ai,...,a,}. A subset of A is obtained by taking or not taking each a;. For every element
there are two choices, and each choice is independent of all others. Thus, there are 2™ choices overall. The
formal proof of this is by induction (to be shown later). [ |

Definition 2.8
e Sets A and B are disjoint if AN B = Q.

o A set (or family) of sets {S;}ier is pairwise disjoint if for every i,j € I with i # j it holds that S; and
S; are disjoint.

e A partition of a set A is a family {S; | i € I} of non-empty pairwise disjoint subsets of A such that
Uier Si = A.

2.3 Basic Counting Methods
We study some basic methods for counting the cardinality of sets.
Theorem 2.9 If Aq,..., A, are pairwise disjoint finite sets, then | J;_; A;| =Y i |4

There is nothing to prove here. If a family of sets is pairwise disjoint then each element appears exactly
once. Thus, the cardinality of the union of the sets is exactly the sum of the cardinalities of the original sets.

Theorem 2.10 (inclusion-exclusion): If A and B are finite sets, then |AU B| = |A| + |B| — |AN B|.
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Proof: = We partition A U B into the following pairwise disjoint sets: A\ B, AN B and B\ A (to be
exact, this is not necessarily a partition since some of the sets may actually be empty). In order to see
that this is a “partition”, observe first that all pairs are disjoint (exercise), and that the union equals AU B
(exercise). Thus, by Theorem we have that |[AU B| = |A\ B| + |[AN B|+ |B\ A|. Next, observe that
A can be partitioned into A\ B and A N B; likewise B can be partitioned into B \ A and A N B. Thus,
|A| =|A\ B|+|ANB| and |B| =|B\ A| + |AN B|. Combining the above, we have that

|[AUB|=|A\B|+|ANB|+|B\ Al =|A|+|B\A|=|A|+|B| - |ANB].

This can be extended to 3 or more sets. The inclusion-exclusion principle for 3 sets is as follows:
[AUBUC| = |A|+|B|+|C|—|ANB|—|BNC|—|CNAl+]|ANnBNC|.

The general case for n sets will be studied later on in the course.

2.4 Russell’s Paradox

Although seemingly rigorous, our treatment here is actually not very formal at all. For example, we did not
formally define the axiomatic system necessary for working with sets, and we did not prove our theorems
relative to those axioms. But, does this make a difference? In this section, we show that it does. In
addition to it being interesting in its own right, this serves as a warning that a lack of exact definitions and
formulations can lead to real problems.

As we have stated it, a set can be a collection of anything. In particular, a set can be infinite (like the
set of natural numbers IN) and it can contain sets (like the power set of any set). Thus, we can also define
the set B to be the set of all sets; i.e., B = {S | S C U}. Although this may seem strange, it is perfectly
legitimate by our treatment so far. Note that B € B since B contains all sets, and is itself a set. This is
fine. In contrast, N ¢ N, since IN contains only numbers and N is a set.

Let us consider now the set of all sets that do not contain themselves. That is:

A={S|S¢ S}

We now ask whether A € A or A ¢ A. Clearly, one of these must hold (A is either an element of A or it is
not). Let us analyze these two possible cases:

e Case 1 - A € A: since A contains only sets S for which S ¢ S, this implies that A ¢ A; a contradiction.

e Case 2 — A ¢ A: since A contains all sets S for which S ¢ S it also contains A by the assumption;
thus A € A; a contradiction.

Stated differently, we have proven that A € A < A ¢ A, which is a contradiction.
There are solutions to Russell’s paradox, which involve changing the axioms. We will not deal with them
in this course.

Ramifications of Russell’s paradox. Define the proposition p to be the statement that A € A (for the
set A above). We have actually proven that p is true and that —p is true. The proof that p is true is given in
“Case 2”7 (assuming A ¢ A yields a contradiction, thus A € A and so p is true). In addition, the proof that
p is not true is given in “Case 1”7 (assuming A € A yields a contradiction, thus A ¢ A and so p is not true).

Beyond being a contradiction (since it is not possible that p and —p are both simultaneously true), this
shows that naive set theory, which is what we have used until now, is inconsistent (where a theory is
consistent if it does not contain a contradiction).

Clearly, the fact that a theory contains a contradiction means that it is flawed as a basis for proving
mathematical theorems. However, the ramifications are actually far greater than this, and it results in
something called the principle of explosion which means that everything can be proven true. In order to see
this, assume that we have proven both p and —p, and let ¢ be any statement. Then, consider the following
proof:
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1. Tt is a given that p is true and —p is true.
2. By addition to p, it follows that p V ¢ is true.
3. We have p V ¢ and —p, and thus by disjunctive syllogism we have that ¢ is true.

The above is a prove that for every ¢, p A —pF gq.

This is devastating and means that everything is true within this theory. Stated differently, even if we
have a fully rigorous proof of a statement that uses all of the exact rules of logical inference, it actually
means nothing about whether the statement is actually true since technically “everything is true” within the
theory. Thus, proofs in naive set theory are actually meaningless (you can prove that 0 = 1 and anything
else). This explains why Russell’s paradox is so devastating.

One of the major goals of mathematics (set out by Hilbert in 1900) was to prove the consistency of
the axioms of arithmetic (stated differently, to prove that the logic theory used to prove mathematics is
consistent). Unfortunately, in the 1930s Godel proved two incompleteness theorems that showed this to be
impossible. Specifically, Godel proved two theorems (which we state very very informally). First, he proved
that no theory that is rich enough to prove theorems about the natural numbers can be both complete
(meaning that all true statements can be proven) and consistent (that no statement along with its converse
can be proven true). Second, he proved that no theory that is “rich enough” can prove that it itself is
consistent (to be a little more exact: if the theory can prove itself consistent then it is inconsistent). More
about these fascinating results can be studied in the course on logic given in the department.
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3 Proof Methods

As we have explained, one of the primary aims of this course is to teach students how to prove. In the past,
students were supposed to learn how to prove by example: take enough math or computer science theory
courses and you will get the idea. Today, there is more of a trend to explicitly teach proof methods. We
will adopt this trend in this course. I highly recommend reading Chapter 3 of “How to Prove It” by Daniel
Velleman for the material we cover in this portion of the course. We will follow his treatment; however there
are many more details in the book than we will cover here.

3.1 Basic Proof Strategies

It is important to note that there is no recipe book for writing a proof. In general, you have to look at what
you need to prove and just think until “the proof comes out”. This takes time and experience, and you
will need to spend considerable time in this course in order to gain the experience you need to learn how to
prove. Despite this, there are general strategies that are helpful to know and we will present them here.

Incorrect statements and counterexamples: In order to formally prove that a statement is incorrect,
it suffices to find a single counterexample. This is due to the fact that unlike in English where “every rule
has an exception to the rule”, in mathematics an exception means that the rule is invalid. Thus, if you are
asked to prove that a statement is incorrect, all you need to do is specify the counterexample. For example,
consider the statement:

Let p and ¢q be prime numbers. Then, |p — ¢| > 2.

This statement is incorrect and in order to prove it I just need to say “11 and 13 are prime numbers and
13-11=2". In fact, a pair of primes of this type is called a twin prime, and we have the following conjecture:

Conjecture: There are infinitely many twin primes.

We have many examples of twin primes, and have found huge positive examples. For example, 3756801695685-
2066669 + 1 i5 a twin prime that was found in 2011; the numbers have over 200,000 digits. It has been shown
that there are 808, 675, 888, 577, 436 twin prime pairs below 10'8. Thus, we have strong reason to believe that
the conjecture is correct. Nevertheless, a single or many positive example is not a proof of a conjecture, and
the twin prime theorem remains open. We thus have the following rule: A single counterexample is enough
to disprove a conjecture, but a theorem cannot be proven by giving positive examples (unless, of course, the
theorem states the existence of something and no more).

Proving a theorem: In order to prove a theorem, you have to begin with the assertions in the hypothesis
and rigorously draw inferences, essentially adding to the premises, until you reach the conclusion. We saw
this idea in a formal way in Section [1.6] In essence, all theorems should be proven in this way. However,
in reality it is tedious to write and tedious to read theorems that are proven at this level of detail. Rather,
proofs are written using spoken language. However, a proof is only valid if it follows the same rules of
rigor: each statement made in the process of the proof must be fully justified (by proving it or referring to
a theorem already proven). We stress that even if you are sure that a statement is correct, if it hasn’t been
proven rigorously from the hypothesis then you cannot use it in your proof.

Proof strategy 1: To prove a conclusion of the form P = @Q, assume that P is true and then prove Q.

This strategy may sound trivial, but it needs to be explained. Assume that you are trying to prove a theorem
of the form “Assume A and B; then P implies Q).” It is important to understand that you are not asked
to prove here that @ is true. Rather, you only need to prove that if P is true then @ is true. Thus, the
strategy works by adding P to the premises A and B, and then using all three premises A, B and P in order
to derive Q.
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Example 3.1 Let a and b be real numbers. Prove that if 0 < a < b then a? < b2,

Our initial hypothesis in this example are that a and b are real numbers. The conclusion is that P = @
where P is the statement that 0 < a < b and @ is the statement that a?> < b%2. Thus, we begin our proof
with two hypotheses: a and b are real numbers, and 0 < a < b. We can write this as follows.

The initial state is:

Givens Goal
a and b are real numbers 0<a<b=a?<b?

Using strategy 1, we can change the above to:

Givens Goal
a and b are real numbers a? < b?
O0<a<bd

We can now compare the inequalities a < b and a? < b%. Multiplying the first inequality by a or b does not
change the inequality direction since a and b are positive. Thus, a < b = a? < ab and a < b = ab < b.
Combining these together we have that a? < ab < b. This can now be written as a proof as follows:

Theorem 3.2 Let a and b be real numbers. If 0 < a < b then a® < b>.

Proof: Let a and b be real numbers and assume that 0 < a < b. We multiply a < b by a in order to derive

that a? < ab; this holds since a > 0 and so the inequality direction does not change. Next, we multiply a < b

by b in order to derive that ab < b?; recall that b > 0 as well. We therefore conclude that a? < ab < b? and
2 2

so a® < b°. |

We summarize proof strategy 1 as follows:

Givens Goal
— P=Q
1
Givens Goal
— Q
P

Proof strategy 2: 7To prove a conclusion of the form P = @, assume that Q is false and then prove that
P is false.

The basis behind this strategy is the equivalence that we have seen between the statements P = ) and
=@ = —P. Note that the statement () = —P is called the contrapositive of P = . Using the outline
above, this strategy works as follows.

Givens Goal
— P=qQ
N
Givens Goal
- P
-Q
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Example 3.3 Let a, b and ¢ be real numbers and assume that a > b. Prove that if ac < bc then ¢ < 0.

In order to prove this theorem using the contrapositive, we will assume that ¢ > 0 and then will show
that this implies that ac > bc which is “—P”.

Theorem 3.4 Let a, b and c be real numbers and assume that a > b. If ac < be then ¢ < 0.

Proof: We use the strategy and prove the contrapositive. Assume that ¢ > 0. Then, ¢ is positive and
so we can multiply a and b by ¢ and conclude that ac > be (based on the assumption that a > b). Thus, if
ac < be then ¢ < 0.

3.2 Proofs Involving Negations and Conditionals

Proof strategy 3: To prove a goal of the form —P, reexpress the goal in another form and use a strategy
for that form.

This is best demonstrated by an example.

Example 3.5 Assume that ANC C B and a € C. Prove thata ¢ A\ B.

Looking at this example, it is not clear at all how to proceed. All we are given is that a € C and
ANC C B. We thus begin by changing the form of the goal which is a negation (i.e., currently the goal is
that @ is not in A\ B).

Now a ¢ A\ B is equivalent to ~(a € A Aa ¢ B) which is equivalent to a ¢ AV a € B (De Morgan)
which is equivalent to @ € A = a € B (conditional law). We therefore have:

Givens Goal
ANCCB a€cA=a€B
aeC
Applying proof strategy 1 we have:
Givens Goal
ANCCB a€B
aeC
acA

Looking at the above the proof is now trivial. This is because a € A and a € C implies that a € AN C.
Next, since AN C C B this implies that a € B, as required.

Theorem 3.6 Assume that ANC C B anda € C. Then, a ¢ A\ B.

Proof: Assume that a € A. Then, since a € C it follows that a € AN C. This in turn implies that a € B
because ANC C B. Thus, it cannot be the case that a € A and a ¢ B, implying that a ¢ A\ B. [ |

It is not always possible, or natural, to reframe a goal =P in a positive form. A common proof strategy
to use in such a case is proof by contradiction. According to this strategy, you assume that P holds and
show that this implies something that is known to be false. Thus, it must be that your initial assumption
was incorrect, and so =P holds.
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Proof strategy 4: To prove a goal of the form —P, assume P is true and derive a contradiction.

Givens Goal
I ﬁP
N
Givens Goal
— Contradiction
P

Example 3.7 Prove that if 2% +y = 13 and y # 4 then x # 3.

Proof: Using the above strategy, we have givens: 22 +y = 13, y # 4 and x = 3. Plugging = 3 into
22 +y = 13 we have that 9 +y = 13 and so y = 4, which is a contradiction to the assumption that y # 4.

Thus, x # 3.

We remark that many people overuse the proof by contradiction strategy. It is preferable not to use it
when a direct proof can be made to work. We now proceed to a strategy that is useful when proving by

contradiction.

Proof strategy 5: To use a given of the form —Q in order to carry out a proof by contradiction, try to
make QQ your goal and prove it. This yields a contradiction since @ contradicts the given —Q.

Givens Goal
-Q Contradiction
1
Givens Goal
-Q Q

This strategy is exactly what we used in the previous example. Essentially, we made it our goal to prove
that y = 4, which contradicts the given that y £ 4. We now present another example of this.

Example 3.8 Let A, B and C be sets, and let x be anything. Assume that A\ B C C. Prove that if
x € A\ C then z € B.

Proof: Our proof proceeds by showing that if ¢ B then z € C. This contradicts the given that x € A\ C
which in particular implies that z ¢ C.

Let 2 be an arbitrary element and assume that x € A\ C; this implies that x € A and x ¢ C. Assume
that ¢ B. It follows that z € A and « ¢ B which implies that x € A\ B. Applying the given that
A\ B C C we have that = € C. This contradicts the given that ¢ C, and so we conclude that z € B. |l

We stress that the above proof is facilitated by our familiarity with the exact definitions of set difference.
It is impossible to prove theorems without a complete understanding of the material being studied.
Next, we present a strategy for using a given of the form —@Q in a proof that is not a proof by contradiction.

Proof strategy 6: To use a given of the form —P, reexpress the given in a different form.

This strategy can be used in the same way as strategy 3, except that here it relates to a given and not a
goal. We therefore do not give another example of how to use this. We now proceed to strategies that relate
to givens of the form P = @ (so far we have only see strategies for goals of this form).
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Proof strategy 7: To use a given of the form P = Q: prove that P is true and conclude that Q is true,
or prove that @ is false and conclude that P is false.

The first part of the above strategy is the “modus ponens” rule of inference that we saw in Section [1.6
the second part is the “modus tollens” rule of inference.

Example 3.9 Assume that P = (Q = R). Prove that -R = (P = =Q).

We prove this using the proof strategies, although it would be more easily proven by just constructing
a truth table. Observe, that it is not immediately obvious how to proceed with this proof. According to
modus ponens, if we knew P then we could add @) = R to our givens; likewise, according to modus tollens,
if we knew —(QQ = R) then we could add —P to our givens. However, neither of these is known. Thus, we
make our first goal to prove either P or =(Q) = R). We begin by writing our givens and goal, and proceeding
step by step using our strategies:

Givens Goal
P= (Q=R) -R= (P =-Q)
J Using strategy 1
Givens Goal
P=(Q=R) P=-Q
-R

J Using strategy 1

Givens Goal
P=(Q=R) -Q
-R
P

J Using modus ponens

Givens Goal
P=(Q=R) -Q
=R
P
Q=R

Observe now that we have -R and Q = R as givens. Thus, by modus tollens it holds that =@, and so the
proof is complete. The above is an example of strategy 7 since although we are applying strategy 1 and
modus ponens, the overall aim is to use the given implication, and in order to do so we have to somehow
“prove” the premise of it. This “proof” is actually achieved by applying strategy 1 (essentially, assuming
that P is true is a proof of it within the context of what we need to prove; beware, however, that you can
only do this if you are asked to prove an implication and so can apply strategy 1).

Theorem 3.10 Assume that P = (Q = R). Then, R = (P = —Q).

Proof: Assume —R, and assume P. Since P = (@ = R), we have that Q@ = R. However, by —R, it
follows that =@Q. Thus, P = —Q. We conclude that =R = (P = —Q).

Example 3.11 Assume that AC B, a € A anda ¢ B\ C. Prove that a € C.

Givens Goal
ACB aeC
a€A

a¢ B\C
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J Using strategy 6

Givens Goal
ACB aeC
ac A

a¢ BVael

J Material implication law

Givens Goal
ACB aeC
ac A

a€B=ac(C

J Change goal using modus ponens (strategy 7)

Givens Goal
ACB a€B
ac A

Now, since A C B and a € A, it follows that a € B. Thus, our goal can be reached.
Theorem 3.12 I[f AC B,a€ A anda ¢ B\ C, thena € C.

Proof: Since a € A and A C B it follows that a € B. But a ¢ B\ C and thus a € C, as required. [ |

3.3 Proofs Involving Quantifiers
Proof strategy 8: To prove a goal of the form VxP(x), let x stand for an arbitrary object and prove P(x).

We have seen this proof strategy multiple times; one case is in Example[3.8] The idea behind this strategy
is that specifying x gives you something concrete to analyze. We will present the next example briefly.

Example 3.13 Assume that A, B and C are sets. If A\ B C C then A\ C C B.
Proof: Let x be an arbitrary value, and assume that z € A\ C. This implies that z € A and z ¢ C. If

x ¢ B, then z € A\ B and by the fact that A\ B C C' it follows that € C, which is a contradiction. We
have shown that for every arbitrary z, if z € A\ C then z € B, and thus A\ C C B. [ ]

Proof strategy 9: To prove a goal of the form JxP(x), find a value x for which P(x) is true and prove
this. Make sure that x is a new variable.

Example 3.14 Prove that for every real number xz, if x > 0 then there exists a real number y such that
yly+1) =

In order to find such a y, we can work backwards. Specifically:

—1++v1+4x
5 .

yy+r) ==y’ +y-—as=0=y=
According to the strategy, this work need not appear in the proof.

Theorem 3.15 Prove that for every real number xz, if x > 0 then there exists a real number y such that
y(y+1) ==z
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Proof: Let  be an arbitrary real number and assume that 2 > 0. Let y, = =1z V21"H‘T First observe that

since x is positive, v/1 4 4z is a real number and so yg is a real number. Next,

—14++V1+42 14144z (1+4x)-1
. = =X
2 2 4

vo(yo +1) =

This completes the proof. [ |

The above strategy relates to a goal of the form JzP(x). We will now consider how to work with a
given of the form JxP(x). Note that in this case we don’t necessarily know of any concrete example for
which P(x) holds; we just know that such an = does exist. The next strategy states that in such a case it is
helpful to give the = that is guaranteed to exist a concrete name, like zy. This strategy is called existential
instantiation in logic.

Proof strategy 10: To use a given of the form JxzP(x), introduce a new variable xo and assume that
P(xg) is true.

In the case of a given of the form VzP(x), it is possible to plug in any value in place of . The next
strategy says exactly this. However, we stress that it is typically only useful when you have a concrete value
a for which it is useful to claim that P(a) is true. This strategy is called universal instantiation in logic.

Proof strategy 11: To use a given of the form YxP(z), plug in any a you wish and conclude that P(a)
s true.

We have actually already used this strategy. Specifically, in Example we start by saying that
since a € A and A C B it follows that a € B. Observe that A C B is actually a given of the form
Vr:x € A= x € B. Then, once we take a € A, we can plug it into the given and conclude that a € B.

In the next example, we will refer to families of sets. We remark that these are just sets of sets, and so
operations like intersection and union are well defined. For a family of sets F, we denote

mf:ﬂA and U]-':UA
AEF AEeF

Example 3.16 Assume that F and G are families of sets, and F NG # @. Prove that NF C UG.

This example is a bit confusing and the first step is understand the intuition behind the statement. This
can be achieved by first writing the statement in its logical form: Va(x € NF = x € UG). Now, intuitively,
if NG # O then there exist some sets in their intersection. Any value x € NF is in all of the sets of F.
Thus, it is in all the sets in the intersection F N G. This suffices since we can conclude that x is in some set
in G and so it is in UG. Having understood the intuition, we can proceed to constructing a rigorous proof.

Givens Goal
FNG#O r € UG
Tz € NF

J Rewrite in the logical forms

Givens Goal
JA(Ae FNG) JAeG(x e A)
VAe F(z € A)

J Using strategy 10

Givens Goal

Ay e F JAeG(x e A)

Ay eg
VAe F(z € A)
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J Using strategy 11

Givens Goal

Ay e F JAeG(x e A)
Apeg

r € Ay

This suffices to prove the theorem since Ay € G and =z € Ayg. We now write out the actual proof.
Theorem 3.17 Assume that F and G are families of sets, and F NG # @. Then, NF C UG.

Proof: Let x be an arbitrary element and assume that x € NF. Since F NG # @ there exists a set Ag that
is an element of F NG, implying that Ag € F and Ay € G. Since x € NF it follows that z € Ay. However,
since Ap € G as well, we have that € UG. We have shown that Va(z € NF = x € UG) and so NF C UG.

In the previous proof, there are three types of objects: families of sets (F and G), sets (Ap), and elements
(z). It is important to always be explicit regarding the type of entity introduced. In addition, it is important
to be explicit as to whether a value x is quantified so that it refers to a specific object, or quantified
universally. We present another example.

Example 3.18 Assume that B is a set and that F is a family of sets. Prove that if UF C B then F C P(B).

As before, it is important to first obtain intuition. This case is actually quite easy. If UF C B then all
of the elements in UF appear in B and so the power set of B contains all of the possible subsets containing
these elements. Since F contains some family of sets of these elements, it is a subset of P(B). We now
proceed to the construct the proof.

Givens Goal
UFCB F CP(B)

J Rewrite in the logical form

Givens Goal
UFCB Ve(r € F = x € P(B))
J Using strategies 1 and 8
Givens Goal
UFCB x € P(B)
zeF

1 Using logical form of z € P(B): Yy(y € x = y € B)

Givens Goal
UFCB y€EB

reF

yezx

J Change notation to prevent confusion
between elements and sets

Givens Goal
UFCB y€E€B
AeF

yeA

l Using strategy 7
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Givens Goal
UFCB y e UF
AeF

yeA

This completes the proof since y € A and A € F; thus y € UF. (We note that the last step is by strategy
7 since UF C B is actually y € UF = y € B and so we use this given to replace the goal of y € B with
y € UF).

Theorem 3.19 Assume that B is a set and F is a family of sets. If UF C B then F C P(B).

Proof: Assume that UF C B. Let A be an arbitrary element (set) and assume that A € F, and let y be
an arbitrary element and assume that y € A. Since y € A and A € F it follows that y € UF. By the fact
that UF C B, it follows that y € B. Thus, Vy(y € A = y € B) and so A C B. By the definition of P(B)
this implies that A € P(B). We have proven that VA(A € F = A € P(B)) and so F C P(B). [ |

3.4 Proofs Involving Conjunctions and Biconditionals

The first two strategies for conjunctions are trivial.
Proof strategy 12: To prove a goal of the form P A Q, prove P and Q separately.

Proof strategy 13: To use a given of the form P A\ Q, treat P and @ as two separate givens.

We have seen this strategy in the past. For example, in Example we take the fact that z € A\ C and
use the two given € A and ¢ C. Observe that in that proof, we use the fact that x € A in a completely
separate place from the fact that ¢ C. The next two strategies are also very straightforward.

Proof strategy 14: To prove a goal of the form P < @Q, prove P = @ and @ = P separately.

Proof strategy 15: To use a given of the form P < Q, treat P = @ and QQ = P as two separate givens.

In order to illustrate these strategies, we provide a very simple example. Specifically, we wish to prove
that z is even if and only if 22 is even. According to strategy 14, we prove each direction separately. The
direction that if z is even then z? is even is very easy, as long as you use existential instantiation (strategy 10)
to give you a handle on the values. Specifically, using strategy 10, if x is even then x = 2k for some k. It is
then trivial to see that x? = 4k? is also even. For the other direction, we can start by assuming that z2 is
even and prove that z is even. However, here all we are given is that 22 = 2k’ for some %k’ and this doesn’t
seem to be too helpful. Nevertheless, the problem is solved by using strategy 2 (proving the contrapositive).
Specifically, if we assume that x is odd, then it is again easy to show that 2?2 is odd.

Example 3.20 Let x be an integer. Then, x is even if and only if 2% is even.

Proof: Assume that x is even. Then, x = 2k for some k € Z. Thus z? = 4k and is even. For the reverse
direction, assume that z is odd. This implies that z = 2k’ + 1 for some k' € Z, and thus 22 = 4k'> + 4k’ + 1
which is odd. Thus, if 22 is even then x is even. [ |

Additional examples: We finish this section by proving two theorems that demonstrate what we have
seen so far. In Section we explained intuitively that the negation of VzP(z) is Jx—P(x), and that
the negation of JxP(z) is Vz—P(x). We will now prove this formally. We begin with the direction that
Va—P(z) = -3z P(x).

Example 3.21 Prove that Ve—P(z) if and only if -3z P(x).
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Givens Goal
Vz—P(x) -3z P(x)

J Using strategy 4

Givens Goal
Vz—P(x) Contradiction
JxP(x)

J Using strategy 10

Givens Goal
P(x0) Contradiction
Va—P(z)

J Using strategy 11

Givens Goal
P(zo) Contradiction
—P(x0)

The reverse direction is similar and so we’ll proceed to the actual proof.
Theorem 3.22 (Vz—P(x)) < (-3zP(z)).

Proof:  (=): Assume that VYz—P(x) and that JzP(x). This implies that for some z it holds that
P(z) is true. However, since Vz—P(z) it holds that P(x) is false. This is a contradiction, and thus
Ve—P(z) = -3z P(x).

(«<): Assume that =3z P(x), and let « be an arbitrary value. If P(x) is true, then JxP(z) which is a
contradiction. Thus, =P(x). Since x is arbitrary we have shown that Vz—P(z). Thus, ~3zP(x) = Vz—-P(z).

There are some cases where it is possible to prove both directions at the same time. This occurs when
each step of the proof is an “if and only if”. We used this proof technique in order to prove Theorem
In the next example, we will use the technique to prove that AN (B\ C) = (AN B)\ C. The first step of
the proof is to write each expression in its logical form. We write:

reAN(B\C) & z€ANzeB\C & xz€eANxeBAx¢C
re€(ANB)\C & z€ANBAz¢(C & zcANzeBAx¢C
and it is immediately clear that they are equivalent.
Theorem 3.23 Let A, B and C be sets. Then AN(B\C)=(ANB)\C.

Proof: Let x be an arbitrary value. Then:

reAN(B\C) & ze€AAzeB\C
& zeANzeBAz¢C
& ze€ANBAxz¢C
< ze(AnB)\C

Since z is arbitrary, we have proven that Vz(x € AN(B\C)) & Vz(z € (ANB)\ C) and thus AN (B\C) =
(AnB)\ C. [ |
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Multiple equivalences: In some cases, you need to prove that P < @) < R and possibly even more. It is
possible to apply strategy 14 four different times in order to prove P < @ and @Q < R. However, it suffices
to prove that P = @, @ = R and R = P, which requires proving only three implications.

Proof strategy 16: To prove a goal of the form P < Q < R, separately prove P = @, Q = R and
R= P.

Observe also that if you are asked to prove the equivalence of P, @}, R and S, then repeated application
of strategy 14 requires proving 6 implications, in contrast to 4 using this strategy.

3.5 Proofs Involving Disjunctions
In some instances, a given or a goal contains a disjunction of the form P V Q. In this section, we discuss

proof strategies for dealing with this situation.

Proof strategy 17: 7o use a given of the form PV @Q, break the proof into cases. For case 1, assume that
P is true and prove the goal; for case 2, assume that Q is true and prove the goal.

Givens Goal
PVvQ@ —
1
Case 1: Givens Goal
P _
Case 2: Glivens Goal
Q _

We now give an example of this strategy. Specifically, we prove that A C C' And B C C then AUB C C.
This looks like a case where the givens are a conjunction. However, we first rewrite the goal in its logical
form as: x € AUB = x € C, which is equivalent to (x € AVz € B) = x € C. Now, by proof strategy 1, we
can add x € AV z € B to the givens and modify our goal to x € C. We now have a situation where proof
strategy 17 is appropriate.

Theorem 3.24 Assume that A, B and C are sets. If AC C and B C C then AUB C C.

Proof: Assume that A C C and B C C. Let x be an arbitrary element. If x € AU B then this implies
that z € A or x € B. There are two cases:

e Case 1 —x € A: Since A C C it follows that x € C.
e Case 2 —x € B: Since B C C it follows that x € C.

Since x € A or x € B, these cases cover all possibilities and so we can conclude that x € C. We have proven
that for every z, if £ € AU B then x € C, and thus we conclude that AU B C C. [ |

There are two important comments to make regarding this proof. First, it is crucial that the cases indeed
cover all possibilities; otherwise the proof is not valid. Second, it is not necessary that the cases be exclusive.
For example, it is possible that an element z is in both A and B. This does not matter. We now proceed to
the strategy when the goal is P V Q.
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Proof strategy 18: To prove a goal of the form PV Q, either prove P or prove Q.

Example 3.25 Assume that A, B and C are sets. Prove that A\ (B\C) C (A\ B)UC.

Goal
re A\ (B\C)=ze(A\B)UC

Givens

J Using strategy 1

Givens

zeA\(B\C)

Goal
ze(A\B)UuC

J Writing in logical form

Givens
re€AN-(zxeBAx¢C)

Goal
(xe ANz ¢ B)vz el

J Using De Morgan

Givens
r€AN(x ¢ BVzel)

Goal
(xe Az ¢ B)Vz el

J Using strategy 17

Case 1: Givens
re A
¢ B

Case 2: Givens
reA
rzeC

Goal
(re ANz ¢ B)vael

Goal
(xe Ahnz ¢ B)Vz el

1 Using strategy 18 (and choosing wisely)

Case 1: Givens Goal
reA re€ANz ¢ B
x ¢ B

Case 2: Givens Goal
reA relC
zeC

Theorem 3.26 Assume that A, B and C are sets. Then, A\ (B\C)C (A\ B)UC.

Proof: Let z be be an arbitrary element and assume that x € A\ (B\ C). Then, v € Aand z ¢ B\ C.
Since = ¢ B\ C, it follows that either x ¢ B or x € C. We will consider these cases separately:

e Case I —x ¢ B: Since x € A it follows that x € A\ B and € (A\ B)UC.
o Case 2 —~x € (C: Clearly z € (A\ B)UC.
Since x was an arbitrary element of A\ (B \ C), we conclude that A\ (B\ C) C (A\ B)UC. [ |
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Proof strategy 19: To prove a goal of the form PV Q, if P is true then clearly PV Q is true; thus, it
suffices to prove that Q is true in the case that P is false.

Givens Goal
— PVvQ
1
Case 1: Givens Goal
— Q
-P —

Example 3.27 Assume that m and n are integers. Prove that if mn is even, then either m is even or n is
even.

Givens Goal
mn is even m is even or n is even

J Using strategy 19

Case 1: Givens Goal
mn is even n is even
m is odd

Theorem 3.28 Assume that m and n are integers. If mn is even, then either m is even or n is even.

Proof: Assume that mn is even; let k € Z be such that mn = 2k. If m is even, then the theorem clearly
holds. Thus, assume that m is odd. This implies that m = 2j 4+ 1 for some j € Z. Plugging this into the
equation mn = 2k we have that 2k = (25 + 1) - n = 2jn +n, and so n = 2k — 2jn = 2(k — jn). Since k — jn
is an integer we conclude that n is even. [ |

3.6 Existence and Uniqueness Proofs

In this section, we consider proofs in which the goal is the existence of a unique value; that is 3lzP(z). In
logical form, this can be written as Jx(P(z) A -Jy(P(y) Ay # 33))E| By strategy 9, it suffices to find a value
x such that P(x) is true and —3y(P(y) A —x). This latter statement is a negation, and so by strategy 3 we
find an alternate form:

ﬂEly(P(y) Ny # 517) = Vyﬁ(P(y) Ny # :IJ) (quantiﬁer negation)
=Vy(-P(y) Vy =) (De Morgan)
=Vy(P(y) = y==x) (conditional law)

Thus 3lzP(z) is equivalent to Jz(P(x) A Vy(P(y) = y = z)). This final form is actually very intuitive.
There exists a unique x if there exists some x such that P(z) is true and for every y for which P(y) is true it
holds that y = x. This may seem a roundabout way of saying that there exists a unique x, but it is actually
very useful in proving theorems.

We can even further manipulate this and write 3xP(z) A VyVz((P(y) A P(z)) = y = z). This is a better
form for writing proofs since there is no common quantifier between the two statements in the conjunction.

1By the way, observe the difference between what we wrote and (3zP(x)) A =Jy(P(y) Ay # x). Can you see why the form
written here is not valid?

35



Proof strategy 20: To prove a goal of the form JlxzP(x), separately prove JxP(x) (existence), and
VYyVz((P(y) A P(z)) = y = z) (uniqueness).

Example 3.29 Prove that there exists a unique set A such that for every set B, AU B = B.

As in all such proofs, the first step is to understand the statement and work out which set is the unique
set we are looking for. Clearly A cannot add anything new to B, but in fact it cannot add anything new to
any set. Thus A must be the empty set. Once we have understood this, we already have our existence part
of the proof since indeed VB(® U B = B). For uniqueness, we need to prove that for arbitrary C' and D it
holds that VB(CUB = BADUB = B) = C = D. Specifically,

Givens Goal
VB(CUB = B) C=D
VB(DUB = B)

In order to use these givens, we have to instantiate B in both cases. Instantiating B with D in the first
given gives that C U D = D, and instantiating B with C' in the second given gives that D U C = C. Thus,
D=CUD=DUC =C and so C = D. This proof therefore uses universal instantiation (proof strategy
11).

Theorem 3.30 There exists a unique set A such that for every set B, AUB = B.

Proof: We first prove existence. Take A = . Then, for every set B, @ U B = B, as required. We next
prove uniqueness. Let C' and D be such that VB(C U B = B) and VB(D U B = B). Applying the first
assumption to D we have that C U D = D; applying the second assumption to C' we have that DU C = C.
Thus, D =CUD = DUC = C, as required. [ ]

We conclude with one last proof strategy; the way to use it is similar to the previous strategy.

Proof strategy 21: To use a given of the form IxP(z), add the two givens JxP(x), and VyVz((P(y) A
P(z)) = y = z) (uniqueness).

3.7 One Summary Proof

Theorem 3.31 There an infinite number of prime numbers.

Proof: Assume, by contradiction, that there only a finite number of primes. Let p1, ..., p, be a list of all
of the prime number, and let m = py - p2 - - - p,, + 1. Observe that for every ¢« = 1,...,n it holds that p; does
not divide m. This is due to the fact that such a division gives a remainder of 1 always.

Now, every integer larger than 1 is either prime or a product of primes (we will prove this later in the
course). Since m is larger than 1, it must be either prime or a product of primes. However, we have already
seen that m is not a product of primes since none of the primes in the exhaustive list of primes divides m.
Thus m must be prime. However, m # p; for all i; thus m is not one of the primes in the list of all primes.
We thus derive a contradiction and we conclude that there must be an infinite number of primes. [ |

Let us analyze the proof steps. First, we apply strategy 4 (“infinite” is actually a negation), and then
strategy 10 (existential instantiation) in order to obtain the list p1,...,p,. From this point on, we work to
derive a contradiction by proving that there exists a value g such that ¢ ¢ {p1,...,pn} and ¢ is prime. In
order to prove this existential claim, we pinpoint an actual value m and prove that it holds for m.
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4

4.1

Relations

Ordered Pairs and Cartesian Products

So far we have considered sets, in which the order makes no difference (i.e., {a,b} = {b,a}) and the same
element cannot appear twice (i.e., {a,a} is not defined). We now wish to define an ordered pair where
(a,b) # (b,a) and where (a,a) is allowed.

Definition 4.1 An ordered pair (a,b) is the set {{a}, {a,b}}.

We remark that formally one needs to show that (a,a) exists and that (a,b) = (¢,d) if and only if a = ¢

and
mapt

b = d. In order to do this, one needs to work formally from the axioms of set theory. We omit this
erial in this course.

Definition 4.2 Let A and B be sets. The cartesian product of A and B, denoted A x B, is defined by

Ax B={(a,b)|a€e ANbeE B}.

Theorem 4.3 Let A, B, C and D be sets. Then,

~

2
3
4
5

L Ax(BNC)=(AxB)N(AxC)
CAX(BUC) = (Ax B)U(AxC)

. (AxB)N(CxD)=(ANC) x (BN D)
. (Ax B)U(C x D) C (AUC) x (BUD)
CAXO=0xA=0

Proof: We will prove the 1st, 4th and 5th items (the 2nd and 3rd can be easily derived from the 1st and

4th,
1

proofs).

. Assume that there exists a p € A x (B N C); by the definition of the cartesian product p = (z,y)
for some x € A and y € BNC. Thus, y € B and y € C, implying that p = (z,y) € Ax B
and p = (z,y) = Ax C, and so p € (A x B)N (A x C). Since p was an arbitrary element, we
have that A x (BN C) C (A x B)N (A x C). For the other direction, assume that there exists a
p € (A x B)N (A x C); this implies that p = (z,y) for some (x,y) € A x B and (z,y) € A x C. Thus,
x € A. In addition, y € B and y € C and so y € BN C. We conclude that p = (z,y) € A x (BN C)
and so (Ax B)N(AxC)C Ax (BNCQC).

Remark: from now on, we will immediately refer to an element of a Cartesian product as an ordered
pair, rather than deriving it as part of the proof.

Assume that there exists a (z,y) € (A x B)U(C x D). Then, (x,y) € Ax Bor (z,y) € C x D. There
are two cases:

(a) Case 1 — (z,y) € A x B: this implies that t € Aand y € B,andsoz € AUC and y € BUD,
implying that (z,y) € (AUC) x (BU D).

(b) Case 2 — (x,y) € C x D: this implies that x € C and y € D, and so x € AUC and y € BU D,
implying that (z,y) € (AUC) x (BU D).

Since (z,y) is any element, we have that (A x B)U(C' x D) C (AUC) x (BU D).

Assume that A x @ # @. Then it has an element (z,y) implying that y € @, which is a contradiction.
The proof that @ x A = @ is similar (you are not allowed to say this in your proofs!).
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A shorter proof of the first item of Theorem is as follows:

(x,y) e Ax (BNCQC) re€AANyeBNC
reANye BAyeC
reEANyEBANz e ANyeC
(r,y) e AX BA(z,y) € AxC

(x,y) e (Ax B)N(AxC)

S A

Ttem (4) of Theorem does not state equivalence. In an attempt to understand what happens in the
reverse direction, let us start with some (z,y) € (AU C) x (BU D). This implies that z € AU C and
ye€ BUD. Thus, z € Aorxz € Cand y € Bory € D. It is very possible that x € A and y € D in
which case (z,y) ¢ A x B or C' x D. Given this analysis, we can come up with a concrete counterexample.
Specifically, let A = {a}, D = {d} and let B = C = Q. It follows that (AUC) x (BUD) = {(a,d)}. However,
Ax B =0 and C x D = (by applying item (5)), and thus (A x B)U (C x D) # (AUC) x (BUD,).
This is an example of a case where it sometimes helps to try to prove a incorrect statement in order to find
a counterexample.

Example 4.4 Prove or disprove: Let A and B be sets. Then, Ax B = B x A if and only if A = B.

Proof: = We begin by proving that if A x B = B x A then A = B. Let x € A and let y € B. Then,
(z,y) € Ax B = B x A. This implies that € B and y € A. Since x is an arbitrary element of A we have
that A C B, and since y is an arbitrary element of B we have that B C A. Thus, A = B.

For the other direction, if A = B then syntactically A x B is the same as B x A. [ |

Disproof: Let A be any set (e.g., A = {1,2,3}) and let B = @. Then, by Theorem we have that
AxXxB=BxA=0. But, A+# B.

How do we have a counterexample and a proof at the same time? The answer is that we don’t; the proof
is incorrect. This is an excellent example of why one must be very careful not to assume anything when
writing a proof. Specifically, our “proof” began with the statement: let + € A and let y € B. This is an
assumption that neither A nor B are empty. The counterexample holds exactly where this omission lies.
Observe that when we wish to prove A C B then we typically begin with “assume that x € A” and then
proceed. This is fine since a proof that A C B is a proof that “x € A = x € B” and so we only need to
prove the statement for values x for which € A. In contrast, in the proof above, we can only assume that
A x B =B x A and cannot assume that there is any element in this set.

This discussion leads us to the correct version of this theorem:

Theorem 4.5 Let A and B be sets. Then, A x B =B x A if and only if either A=0, B=0 or A= B.

We leave the proof of this theorem for an exercise; after what we have seen above it is not difficult.

Extensions: It is possible to define an n-tuple (ay,...,a,) as an ordered vector, based on an order pair,
as follows:

_f (a1, (az,...;a,)) n>2
(al,...,an){ (a1, an) hy

The cartesian product of n sets is defined in the natural way using the notion of an n-tuple.
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4.2 Relations Basics

Definition 4.6 Let A and B be sets. A set R C A X B is called a binary relation, and is also called a relation
from A to B. For (a,b) € R, we denote R(a,b) or aRb, and for (a,b) ¢ R we denote =R(a,b) or —aRb. If
R C A x A then we say that R is a relation on A.

1. The relation {(a,b) | a,b e NAJe e N\ {0}(b=a+ c)} is called the “less than” relation.
2. A={1,...,10}, B={1,...,4}, R={(1,1),(2,4), (4,2)} is a relation

3. {(m,n) | m,n € N Am|n}

4. {(m,m) | m € R} is the “equals” relation

Definition 4.7 Let R be a relation from A to B. Then, the domain of R is the set
Dom(R) ={a € A|3b € B((a,b) € R)}

and the range is the set
Ran(R) = {b€ B|3a € A((a,b) € R)}.

The inverse of R is the relation R~ from B to A is defined as
R™' = {(b,a) € B x A| (a,b) € R}.

Let R be a relation from A to B and S a relation from B to C. The composition of S and R, denoted So R,
is a relation from A to C defined by

SoR={(a,c) e AxC|3be B((a,b) € RA(b,c) € S}

Note that the composition of S and R is only defined if R is defined to a set B, and S is defined from
that same set B. Observe that we write S o R even though R “comes first”. The reason for this notation is
that if you view a relation as a mapping from the first set to the second, then you first apply the mapping
of R to some a and then the mapping of S to the result. This notation will make more sense when we study
functions.

Example 4.8 Prove or disprove: Let R be a relation from A to B and let S be a relation from B to C.
Then, SoR=0Q if and only if A=QDQ or B=0O orC =0 or S=0 or R=0.

We provide a counterexample: consider A= B =C =N; R =5 = {(1,2)}. In general, when searching
for counterexample, try to find simple and concise counterexamples.

Theorem 4.9 Let R be a relation from A to B, S be a relation from B to C, and T be a relation from C
to D. Then:

1. (RFYH =R

2. Dom(R™') = Ran(R)

3. Ran(R~!) = Dom(R)

4. To(SoR)=(ToS)oR

5. (SoR)"'=R1'oS!
Proof:

1. First, by definition, R~! is a relation from B to A and thus (R~!)~! is a relation from A to B. Now,
(a,b) € (R7Y)7Viff (b,a) € R71 iff (a,b) € R.
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2. First, Ran(R) C B and Dom(R~!) C B. Next, let b be an arbitrary element. Then,

beDom(R™') & 3Jac A((ba) e R™') & Ja€ A((a,b) € R) & be Ran(R).

3. By item (2) we have Ran(R~!) = Dom((R~!)~!) and by item (1) we have that (R=!)~! = R. Thus,
Ran(R™!) = Dom(R).

Remark: This proof illustrates an important methodology in mathematics. It is better to prove a theorem
or claim by relying on previously proven claims, when possible, than by proving it from scratch.

We leave the last two for an exercise. [ |

We are often interested in relations that connect two items of the same type; i.e., relations R C A x A.
In such a case, we say that R is a relation on the set A.

Definition 4.10 Let A be a set, and let R be a relation on A.
e R is called reflexive if for every x € A it holds that (x,z) € R
e R is called symmetric if for every x,y € A it holds that (z,y) € R < (y,z) € R

e R is called transitive if for every x,y,z € A it holds that (x,y) € R N (y,2) € R = (z,2) € R

Example 4.11 1. Define the identity relation ia on a set A by {(x,x) | = € A}. Then, i4 is reflezive,
symmetric and transitive.

2. The empty set ¢ is a relation by definition. Furthermore, it is always symmetric and transitive. If we
consider ¢ as a relation over A, then ¢ is reflexive if and only if A = ¢.

Theorem 4.12 Let R be a relation on A. Then,
1. R is reflexive if and only if iq4 C R, where i is the identity relation.
2. R is symmetric if and only if R = R™1.
3. R is transitive if and only if Ro R C R.

Proof: We prove the second item, and we assume that R # @ (otherwise, it is trivial). Assume that R is
symmetric, and let (z,y) € R and so zRy. Since R is symmetric we have that yRz and thus (y,z) € R. By
the definition of R~! we have that (z,y) € R~!. This implies that R C R~!. Likewise, for any (z,y) € R~!
we have that (y,z) € R and then by the fact that R is symmetric (z,y) € R. Thus, R~! C R and we
conclude that R = R~1.

Next, assume that R = R~'. We have:

(zy)eR & (yo)eR' & (y2)eR
where the first “&” is by the definition of R~! and the second “&” is due to the fact that R = R~!. We

therefore have that R is symmetric. [ |

4.3 Ordering Relations

Observe that the < relation is reflexive and transitive, but is not symmetric in a very strong way. Specifically,
symmetry only holds for elements that are the same (i.e., <y and y < z if and only if z = y).

Definition 4.13 Let R be a relation on a set A. Then, R is antisymmetric if for every x,y € A, if xRy and
yRx then x = y.
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Example 4.14 Let A be a set, and let B = P(A). Define R = {(X,Y) € Bx B| X CY}. Then, R is
reflexive, transitive, and antisymmetric. Likewise, consider the “divisible” relation.

Both the < relation, and R in the previous example, actually define an ordering on the sets (they compare
“sizes” in an intuitive sense). The reason for this is that we can place elements in order z,y, z by Ry and
yRz (where by transitivity we know that xRz as well). This is not enough since it may also hold that zRx
and so we have a “cycle” and no ordering. However, this would then contradict antisymmetry. Thus, the
combination of the above provides an ordering (sometimes reflexivity is replaced with irreflexivity in the case
of a strict ordering, as in the < relation).

However, there is a difference in that for all numbers x and y it holds that either z < y or y < x, but
there exist sets X,Y € B such that X Y and Y € X.

Definition 4.15 Let R be a relation on a set A. Then, R is a partial order on A if it is reflexive, transitive
and antisymmetric. It is called a total order on A if it is a partial order, and in addition for every x,y € A
it holds that either xRy or yRx.

Based on the above, the < relation is a total order, and the relation R in Example is a partial order
but not a total order.

Once we consider ordering, we can talk about a smallest or largest element in the set. However, in the
case of a partial order, it is possible that there are two elements that are “smallest”.

Definition 4.16 Let R be a partial order on a set A, let B C A, and let b € B. Then, b is an R-smallest
element of B if for every x € B it holds that bRx. The value b is called an R-minimal element if there exists
no x € B with x # b such that xRb.

Observe that a minimal element is one that has no element smaller than it, whereas a smallest element
is smaller than all other elements in B. Considering Example @ is a smallest element. However, if we
redefine B to be P(A) \ @, then all singletons are minimal elements.

Theorem 4.17 Let R be a partial order on a set A and let B C A.
1. If B has a smallest element, then it is unique (thus it is the smallest element).

2. Assume that b is the smallest element of B. Then, b is also a minimal element of B, and is the only
minimal element.

3. If R is a total order and b is a minimal element of B, then b is the smallest element of B.

Proof:

1. Assume that b and c are smallest elements of B. Since b is a smallest element, it holds that Vo € B(bRx)
and in particular bRe. Likewise, since c¢ is a smallest element Vo € B(cRx) and in particular ¢Rb. Since
R is a partial order it is antisymmetric and thus from bRc and c¢Rb we have that b = ¢, as required.

2. Assume that b is the smallest element of B. We begin by showing that b is a minimal element. Our
proof works by showing that Vz € B(zRb = = = b)E| Let z € B and assume that xRb. Since b is the
smallest element of B it holds that bRz. Thus, by antisymmetry we have that = b.

Next we prove that b is the only minimal element. Let ¢ be a minimal element. Since b is the smallest
element, we have that bRc. However, since c is minimal, we have that there does not exist any =z € B
such that x # ¢ and xRc. Since bRc and b € B it must be that ¢ = b.

2We need to prove -3z € B(xRb A x # b) which is logically equivalent to =3z € B—(—xRbV = = b) which is turn logically
equivalent to Vo € B(xRb = = = b).
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3. Let R be a total order and b a minimal element of B. We show that Vo € B(bRz). Let x € B. If
x = b then bRx by reflexivity. Else, x # b. Since R is a total order, we have that either xRb or bRzx.
However, xRb cannot be true since b is minimal (and = # b). Thus, bRz and so b is the smallest
element of B.

|

Not all sets have a minimum, even they are bounded. For example, consider @ and the subset I =
{%}n@N, and the < relation. Then, I C @ is bounded since all values are between 0 and 1. However, I
has no minimal or smallest element; for every x € I we have that z = % for some ¢ and then - € I and

+1
H% < % This yields the following definition:

Definition 4.18 Let R be a partial order on A, let B C A and let a € A. Then, a is called a lower bound
for B if for every x € B it holds that aRx. Similarly, a is an upper bound for B if Vo € B(xzRa).

Observe that 0 is a lower bound for the set I defined above, but it is not a member of 1.

Definition 4.19 Let R be a partial order on A and let B C A. Let U be the set of all upper bounds for B,
and let L be the set of all lower bounds. If U has a smallest element, then this smallest element is called the

least upper bound (L.u.b.) of B. If L has a largest element, then this largest element is called the greatest
lower bound (g.l.b.) of B.

For every positive number = > 0, there exists an n such that % < x. Thus, the set L of all lower bounds
of I defined above is L = {z € R | z < 0}. Since L has a largest element, the number 0, it follows that I has
a greatest lower bound. Note that 1 is the largest element of I and that this is also an upper bound, and
the least upper bound.

Theorem 4.20 Let A be a set, and let FF C P(A) with F # Q. Let R={(X,Y) € Fx F| X CY}. Then,
the least upper bound of F' is UF' and the greatest lower bound of F is NF.

Proof: DefineU ={Y C A|VX € F(X CY)} to be the set of all upper bounds. Clearly, UF' € U since
UF C A and by definition of UF it holds that VX € F(X C UF). Next, we claim that UF' is the smallest
element of U. In order to see this, let Y € U. By the definition of U, it holds that VX € F(X CY). Now,
let © € UF'. Then, there exists a set X € F such that x € X. Since VX € F(X CY) we have that z € Y.
Thus, UF C Y. This implies that UF' is the smallest element of U and so is the least upper bound of F'.
We leave the proof that NF' is the greatest lower bound as an exercise. [ |

4.4 Closures

The only difference between the < and < relations is that the latter also contains elements that are equal.
Thus, one can view < as being obtained from < by adding all pairs (z, z). In fact, < is the smallest set that
is obtained from < and is reflexive. Observe that by “smallest” here, we mean in the formal sense, based on
the subset relation defined previously.

Definition 4.21 Let R be a relation on a set A. Then, S C A x A is the reflexive closure of R if it has the
following three properties:

1. RCS
2. S is reflexive

3. For every relation T C A X A, if RC T and T is reflexive, then S CT.

Another way of stating Definition [4.21]is that the reflexive closure of R is the smallest set S C A x A such
that R C S and S is reflexive (if there is such a smallest set). As we have seen, not all sets have a smallest
element. Thus, we need to prove that every relation has a reflexive closure.
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Theorem 4.22 Let R be a relation on a set A. Then, R has a reflexive closure.

Proof: Let S = RUiga, where iy is the identity relation on A (i.e., i4 = {(a,a) | a € A}). We claim
that S is the reflexive closure of R. Clearly, R C S. In addition, S is reflexive since i4 C S and this
implies reflexivity by Theorem Finally, assume that T C A x A, R C T and T is reflexive. Since T is
reflexive we have that i4 C T (again by Theorem . Since we also have that R C T we can conclude
that S =RUis CT. [ |

Not all orders are reflexive, as we have seen with the < relation.
Definition 4.23 Let R be a relation on A. Then, R is irreflexive if Vo € A((z,z) ¢ R). R is a strict partial

order if it is irreflexive and transitive. R is a strict total order if it is a strict partial order and for every
x,y € A either xRy or yRx or x =y (this property is called trichotomy ).

We stress that a strict partial order is not a partial order. In addition, observe that antisymmetry is
not required in Definition This is because if xRy and yRx then xRz by transitivity, which contradicts
irreflexibility. Thus, for no two elements does it hold that zRy and yRx.

We can define symmetric and transitive closures in the same way.

Definition 4.24 Let R be a relation on A. A relation S C A x A is the symmetric closure of R if it has the
following three properties:

1. RCS

2. S is symmetric

3. For every relation T C Ax A, if RC T and T is symmetric, then S CT.
A relation S C A x A is the transitive closure of R if it has the following three properties:

1.RCS

2. S is transitive

3. For every relation T C A X A, if RCT and T is transitive, then S CT.
Theorem 4.25 Let R be a relation on a set A. Then, R has a symmetric closure.

Proof: Let S = RUR™' It is immediate that R C S. In addition, S"' = R"'UR=RUR ' =9 and
thus by Theorem S is symmetric. Finally, let T C A x A such that R C T and T is symmetric. We
show that S C T. Let (z,y) € S. If (z,y) € R then since R C T we have that (x,y) € T. If (z,y) € R~!
then (y,z) € R and so (y,z) € T. However, since T is symmetric, this implies that (x,y) € T as well. Thus,
SCT. [ |

Theorem 4.26 Let R be a relation on a set A. Then, R has a transitive closure.

Proof: Let F ={T C Ax A | R C T and T is transitive}; i.e., F is the set of all transitive relations
containing R. Now, since R C A x A and A x A is transitive, we have that A x A € F' and so F # .
Thus, we can define S = NF. We will prove that S is the transitive closure of R. We prove each of the three
properties:
1. Let (z,y) € R, and let T € F. Then, since R C T we have that (x,y) € T. Thus, VT € F((z,y) € T)
and so (z,y) € NF = S.

2. Let (z,y) € S, let (y,z) € S, and let T € F. Since (z,y) € S=NF CT and (y,2) € S=NF CT we
have that (z,y) € T and (y, z) € T. Now, by the definition of F', the relation T is transitive and thus
(x,2) € T. Thus, VT € F((x,2) € T), and thus (z,z) e NF = S.

3. Let T C Ax A, R C T such that T is transitive. By the definition of F', T' € F. Since S = NF it
follows immediately that S C T.
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4.5 Equivalence Relations

An equivalence relation is a relation that expresses equality. In terms of the properties of relations that we
have seen so far, equality should be reflexive (since x = x always), symmetric (since if = y then y = x),
and transitive (since if x = y and y = z then = = z). This yields the following definition:

Definition 4.27 Let R be a relation on a set A. Then, R is an equivalence relation on A if it is reflexive,
symmetric and transitive.

Example 4.28 Consider the relation of “congruence mod n”, defined on Z as follows: ¥ = y mod n if x
and y have the same remainder when divided by n (equivalently, if n | (x —y)). We claim that this relation
is an equivalence relation. In order to see this, observe that it is trivially reflexive and symmetric. Regarding
transitivity, assume that x = ymodn and y = zmodn. Write x = q-n +r. Then, since x = y mod n
we have that y = ¢' - n+r (i.e., it has the same remainder). Likewise, since y = z mod n we have that
z=¢q" -n+r. Thus, z and z have the same remainder when divided by n.

It is important to note that congruence mod n is not at all the same as equality of numbers. For example,
taking n = 7, we have that 1 =8 and 1 = 15 mod 7. Newvertheless, within the context of mod 7 they are the
same.

Definition 4.29 Let R be an equivalence relation on A and let x € A. Then, the equivalence class of x with
respect to R is the set [z]g = {y € A | yRz}.

The set of all equivalence classes of elements of A is called A modulo R and is denoted A/R. Formally,
A/R={lz]lr |z e A} ={X C A[Trc A(X = [z]r)}.
Where it is clear from the context, we use the notation [z] instead of [z]g.

Example 4.30 Continuing the previous ezample with n = 7, we have that [1] = {1,8,15,22,29,...}. More
formally, 0] = {7i | i € Z}, 1) ={1+7i | i € Z}, [2] = {2+ 7i | i« € Z}, and so on. In addition,
Z/R = {[0], 1], [2], [3], [4], [5], [6]}, where R is congruence mod 7.

We now prove a helpful lemma.

Lemma 4.31 Let R be an equivalence relation on A. Then, for every x € A, x € [z]. Furthermore, for
every x,y € A we have that y € [z] if and only if [y] = [z].

Proof: Let z € A. Since R is reflexive xRz and thus x € [z].

Regarding the “furthermore” part, let x,y € A. Assume first that y € [x]. This implies that yRx. Now,
let z € [y]; this implies that zRy and by transitivity that zRz and thus z € [z]. Thus [y] C [z]. Next, let
z € [z] and so zRx. We already have that y Rz and so by symmetry we have that zRy. Thus, by transitivity
we have that zRy implying that z € [y]. Thus [z] C [y] and so [z] = [y].

Next, assume that [y] = [z]. From the first claim in the theorem we know that y € [y]. But since [y] = [z]
we have that y € [z], as required.

Theorem 4.32 Let R be an equivalence relation on A. Then A/R is a partition of A.

Proof: = We begin by proving that U(A/R) = A, or stated differently that U,calz] = A. For every
equivalence class [z] € A/R it holds that [x] C A. Thus, Ugzealz] C A (the proof that the union of a family
of subsets of A is a subset of A, is left for an exercise). Next, let x € A. Then, by Lemma it follows
that = € [z]. In addition, [z] € A/R and thus z € U(A/R). Therefore, U(A/R) = A.

Next, we prove that A/R is pairwise disjoint. Let X,Y € A/R; by the definition of A/R there exist
z,y € Asuch that X = [z] and Y = [y]. If X NY # O, then there exists a z € X NY = [z] N [y]. By
Lemma [£.31] it follows that [z] = [2] and [y] = [2] and thus [z] = [y], or equivalently X = Y. This implies
that the elements of A/R are all pairwise disjoint (for every X,Y such that X # Y we have that XNY = 0).
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Finally, we show that @ ¢ A/R. Let X € A/R; by the definition of A/R there exists an « € A such that
X = [z]. Then, by Lemma [4.31| we have that = € [z] = X and so X ¢ Q. [ |

In the above, we have shown that every equivalence relation defines a partition of A. We will now show
the converse which is that every partition defines an equivalence relation.

Theorem 4.33 Let A be a set and let F be a partition of A. Then, there exists an equivalence relation R
on A such that A/R = F.

Proof: We prove the theorem by finding an actual equivalence relation, based on the structure of 7. We
will do this by considering the relation made up of all pairs of elements in the same set of the partition. That
is, if  and y are in the same set in the partition of F, then we will define z Ry. This will ensure equivalence.
We begin by proving two lemmas.

Lemma 4.34 Let A be a set and let F be a partition of A. Let R = Uxer(X x X). Then, R is an
equivalence relation on A, and is called the equivalence relation determined by F.

Proof: We need to prove reflexivity, symmetry and transitivity. Let = € A. Since F is a partition of A,
there exists a set X € F such that x € X. Thus, (z,z) € X x X and so zRz. Regarding symmetry: let
x,y € A such that Ry (if no such z, y exist then symmetry holds trivially). This implies that (x,y) € X x X
for some X € F, and thus that z,y € X. However, this implies that (y,x) € X x X as well, and so yRz, as
required. We leave the proof of transitivity as an exercise. [ |

Lemma 4.35 Let A be a set, let F be a partition of A, and let R be the equivalence relation determined by
F.IfX eF andx € X, then [z] = X.

Proof: Assume that X € F and 2 € X. In order to prove that X = [z], we prove that y € [z] & y € X.
Let y € [z] and so (y,z) € R. By the definition of R this implies that there exists a set Y € F such that
(r,y) €Y xY,andsoz € Y and y € Y. We have that z € X and z € Y and thus X NY # . However, F
is pairwise disjoint and thus X =Y. We conclude that y € X and so [z] C X.

Next, assume that y € X. Then, (y,z) € X X X and so (y,z) € R (because by the assumption x € X).
This implies that y € [z] and thus X C [z], completing the proof that [z] = X. [ |

We are now ready to complete the proof of Theorem Let R = Uxer(X x X). We have already
proven that R is an equivalence relation and so it remains to prove that A/R = F. Let X € A/R. Then,
X = [z] for some z € A. Since F is a partition we have that UF = A and so x € UF. Thus, there exists a
set Y € F such that € Y. By Lemma [£.35] [z] =Y and thus X =Y, implying that X € F. We therefore
have that A/R C F.

Next, let X € F. Since F is a partition, X # J and so there exists an element z € X. By Lemma [4.35
X = [z] and [z] € A/R. Thus, X € A/R and so F C A/R, implying that A/R = F. [ |

Example 4.36 Let P be the set of all computer programs, and define the relation R so that (p,q) € R if p
and q always produce the same output (or do not halt at all) upon the same input. It is not hard to see that
R is an equivalence relation. An interesting question is whether or not one can write a computer program
that will determine for any two programs p and q if pRq or ~(pRq).
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5 Functions

A function is just a special type of relation with the property that for every x there exists a single y such
that (z,y) € R. Functions are typically denoted by y = f(z) since f(z) defines a single value. Of course, it
is possible that there be many values of x for which y = f(z), but for every x there can be just one y.

Definition 5.1 Let F' be a relation from A to B. Then, F is a function from A to B if for every a € A
there exists exactly one b € B such that (a,b) € F. That is:

Va € A3b € B((a,b) € F)
In this case, we write F' : A — B, and we denote b = F(a).

Observe that f must be defined for every a € A. Thus, the domain of f is always all of A (in contrast
to the way relations are defined which can be over a subset of A).

Theorem 5.2 Let f and g be functions from A to B. IfVa € A(f(a) = g(a)) then f =g.

Proof:  Assume that Va € A(f(a) = g(a)). Let (a,b) € f and so b = f(a). By the assumption, b = g(a)
and so (a,b) € g as well. Thus f C g. The opposite direction is similar. Thus, f = g. [ ]

We have already defined the domain and range of a relation, and this is the same. However, in the
context of functions the result is a bit different. First, as we have seen, Dom(f) = A always. Next, the range
of a function can equivalently be defined by:

Ran(f) = {f(a) | a € A}.

Theorem 5.3 Let f : A— B and g: B — C. Then, go f : A — C is a function, and for any a € A it
holds that g o f(a) = g(f(a)).

Proof: Let a € A be an arbitrary element. In order to prove the above, we have to show that there exists
a unique element ¢ € C such that g o f(a) = ¢ (this proves that g o f is a function), and we have to show
that g o f(a) = g(f(a)) for all a € A.

We begin by showing ezistence. Let b = f(a) € B, and let ¢ = g(b) € C (observe that these are defined
since the respective domains of f and g are all of A and B). This implies that (a,b) € f and (b,¢) € g and
so by the definition of composition of relations we have that (a,c) € go f.

We next show uniqueness. Assume that there exist ¢, co € C such that (a,¢1) € go f and (a,co € go f.
By the definition of composition, this implies that there exist by,bs € B such that (a,b1) € f, (b1,c1) € g,
(a,b2) € f and (ba,c2) € g. Since f is a function, there exists a single b such that (a,b) € f. Thus, by = bs.
Likewise, since g is a function, there exists a single ¢ such that (bi,c) = (ba,c) € g. Thus, ¢; = co, as
required.

It remains to show that the formula for computing g o f(a) is g(f(a)). This follows from the existence
proof where we showed that if we take b = f(a) and ¢ = g(b) then we obtain that (a,c¢) € go f. [ |

The above theorem explains the strange notation of g o f for composition of relations. Specifically, we
write g o f and not f o g because of the formula g(f(x)).

Inverses. Recall that for any relation R~' defines its inverse. Furthermore, its inverse always exists. In
the case of functions, the inverse is not necessarily a function. This is because the range of f : A — B may
not be the entire set B in which case f is not a function from B to A. Furthermore, if there exists aq,as,b
such that f(a1) = f(az) = b then f~1(b) does not define a single value. We now define what is required of
f so that its inverse is a function.

47



Definition 5.4 Let f : A — B be a function. f is one-to-one, and called an injection, if
—|(E|CL1 S AEIag € A(f(al) = f(CLQ) N a1 7é ag))

f is onto, and called a surjection, if
Vb € B3a € A(f(a) =b)

A function that is both one-to-one and onto is called a bijection.
We now prove a theorem that makes it easy to determine whether a function is one-to-one or onto.
Theorem 5.5 Let f: A — B be a function. Then, f is one-to-one if and only if
Vay € AVay € A(f(a1) = f(a2) = a1 = ag,
and f is onto if and only if Ran(f) = B.

Proof: We prove the first part of the theorem by applying the equivalence rules from logic. A function f
is one-to-one if and only if

—(3a1 € Aday € A(f(a1) = flaz) Nar # a2)) & Vay € AVay € A~(f(ar) = f(az) ANar # az)
& Vay € AVag € A(f(a1) # f(
= ValeAVa2€A(f( ):f(

We now proceed to part 2 of the theorem. f is onto if and only if Vb € B3a € A(f(a) = b), which is
equivalent to saying that Vb € B3a € A((a,b) € f). By the definition of the range, this is equivalent to
saying that Vb € B(b € Ran(f)) and thus B C Ran(f). This proves that f is onto if and only if B C Ran(f).

Now, if f is onto then we already have proven that B C Ran(f). However, by the definition of range,
it always holds that Ran(f) € B. Thus, Ran(f) = B. For the other direction, assume that Ran(f) = B.
Then, it immediately follows that B C Ran(f) and by what we have already shown this proves that f is
onto. [ |

az) Vai = az)

aq CLQ) = ai :ag).

Example 5.6 Let A =R\ {—1}, and define f : A - R by f(a) = aial. Prove that f is one-to-one by not
onto.

Proof: We prove that f is one-to-one using Theorem Let aj,as € A and assume that f(a;) = f(az).
Then, a21‘:_11 = ai‘fl, implying that 2a;(as +1) = 2az(a; + 1) and so 2a1as 4+ 2a1 = 2aza; + 2a2. We conclude
that 2a; = 2as and so a; = as.

In order to prove that f is not onto, we show that 2 ¢ Ran(f). Assume by contradiction that there exists

a € A such that f(a) = 2. This implies that % = 2 and so {7 = 1, implying that a = a + 1, which is

impossible. [ |

We now prove a theorem regarding when f has an inverse.

Theorem 5.7 Let f : A — B be a function. If f is one-to-one and onto, then f has an inverse function
(f1:B— A).

Proof:  Assume that f is one-to-one and onto, and let b € B be an arbitrary element. We prove that
there exists a unique a € A such that (b,a) € f~!. Regarding existence: since f is onto there exists some
a € A such that f(a) = b and so (b,a) € f~!. Regarding uniqueness: let aj,a; € A and b € B such that
(byar) € f~1 and (b,a2) € f~1. Then, f(a1) = b = f(az). However, f is one-to-one and thus a; = az. M

We will show that the converse of the above is also true; that is f has an inverse if and only if it is
one-to-one and onto. Before doing so, we will prove two other theorems that will imply this.
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Theorem 5.8 Let f : A — B be a function and assume that f~' : B — A is its inverse. Then, f~lof =1ix
and fo f~! =ip, where ix denotes that identity relation on set X.

Proof: Leta € Aandletb= f(a) € B. Then, (a,b) € f and (b,a) € f~1. Thus (f~1of)(a) = f~(f(a)) =
f71(b) = a = ia(a). This proves that for all a € A, (f~! o f)(a) = ia(a), and so by Theorem we have
that f~!'o f =i4. The proof for f o f~! is similar.

Theorem 5.9 Let f: A — B be a function.

1. If there exists a function g : B — A such that go f =i then f is one-to-one.
2. If there exists a function g : B — A such that f o g =ip then f is onto.

Proof: We begin with the first part. Let g : B — A and assume that go f = i4. Let a1,a2 € A and
assume that f(a1) = f(a2). Applying g, we have that g(f(a1)) = g(f(az)). However, since go f = iy we
have that g(f(a1)) =ia(a1) = a1 and g(f(az)) = ia(az) = ag, implying that a; = as. Thus, f is one-to-one.

Next, let g : B — A and assume that f o g =ip. We prove that Ran(f) = B. Let b € B be an arbitrary
element, and let @ € A such that g(b) = a. By the assumption, fog = ip and thus f(g(b)) = b. We conclude
that f(a) = b and thus b € Ran(f). We have proven that B C Ran(f). By the definition of the range of a
function, it follows that Ran(f) C B and thus Ran(f) = B. By Theorem we conclude that f is onto.
|

We are now ready to conclude:
Theorem 5.10 Let f: A — B be a function. The following statements are equivalent:
1. f is one-to-one and onto.
2. f~1: B — A is a function.
3. There exists a function g: B — A such that go f =i4 and fog=ip.
Proof:
(1 = 2): This is exactly what is stated in Theorem [5.7
(2 = 3): Assume that f~! exists, and let g = f~!. Then, (3) follows directly from Theorem 5.8
(3 = 1): This is exactly what is stated in Theorem [5.9

Observe that the above theorem proves that the existence of a function g : B — A such that go f =4
and f o g = ip implies the existence of an inverse of f. However, it does not state that for every such g it
holds that g = f~'. We now prove this stronger statement.

Theorem 5.11 Let f: A — B and g : B — A be functions such that go f = i4 and fog =ig. Then,
g=r""
Proof: By Theorem we have that the inverse function f~! : B — A exists. Thus, by Theorem [5.8| we
have that f~' o f =i4. In addition, for all functions h; : A — B and hy : B — A it holds that ig o hy = hy
and i4 o ho = hy (exercise). Therefore:

g=isog=(fToflog=f"o(fog)=f"oip=f"",
where the 3rd equality follows from item (4) of Theorem 4.9 [ |
Example 5.12 Define the function f : R — R (where RT = {x € R | x > 0}) by f(z) = 2. Does f have
an inverse?

It is easy to fall into the trap of defining f~!(y) = /. However, this is in fact not defined since every
y € RT has two square roots over the reals: x and —z. Indeed, f is not one-to-one since f(—x) = f(z) for
every x. Thus, it cannot have an inverse.
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The image and preimage of a set. We often wish to consider a function on a subset of inputs/outputs,
and in particular, to relate to its image and preimage on such subsets. Let f : A — B be a function, and let
X C Aand Y C B be subsets of the domain and range of f, respectively. We define:

fX)={f(@)|zeX} and fH(Y)={a|f(a) €Y}

For example, let f : N — Z be a function defined by f(z) = —2. Then, f(N) = Z~ and f~}(N) = ¢.
Observe that for every function f: A — B it holds that the function f: A — f(A) is onto.
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