Limits

[reset():
| 1imit ((1 - cos(x))/sin(x)"2, x)
1

L2
limit((1 + 1/n)*n, n = i
e

[limit(1/sin(x), x

limit(1/x, x = 0,
limit(1/x, x = 0,
undefined

-

@©

The function sin(x) oscillates for x — « between —1 and 1; no accumulation points outside that interval exist:
limit(sin(x), x = infinity, Intervals)

[-1,1]

limit is not able to compute the limit of x” for x — « without additional information about the parameter n:
[ e(n in z_):
mit(sin(x"n), x = infinity)
sin(1) if n=0
{ 0 ifn<-1

assum

We can also assume immediately that n > 0 and get no case analysis then:
assume (n > 0):
| limit (sin(x"n), x = infinity)

undefined

Similarly, we can assume that n=0:

assume (n = 0):
limit(sin(x*n), x = infinity)
sin(1)

Compute limit of the piecewise function:

f:=piecewise([x"3 > 100

/x], [x"3 <= 10000*x, 10])
L if 10000 x < x*

10 if x* < 10000 x

[1imit(f, x = 100,

limit (£, x = 100,
10
L
100
limit (£, x -10);

Derivatives

[reset():

You can differentiate with respect to more than one variable with a single di £ £ call. In the following example, we differentiate first with respect to x and then with respect to y:
[diff(x*2*sin(y), %, y)
2 x cos(y) = 2 x cos(y)

(x*2*sin(y), =), vy)

We use the sequence operator $ to compute the third derivative of the following expression with respect to x:
diff (sin(x)*cos(x), x $ 3)
4sin(x)” - 4 cos(x)?

diff knows how to differentiate symbolic integrals:

int (£(x), x);
diff (%, x, x);

/mnu
2

= fx)
ax

[g:=int(£(t, x), t = x..x
diff(g, x);

/‘./’(1, x)dr
! 2

/f St x)di— f(x, x) +2x £, x)

x

diff knows how to differentiate piecewise functions:

[f:=piecewise ([x*3 > 1 1/x], [x"3 <= 10000*x, 10]);
diff (£,x);
L if 10000 x < x*
10 if x* < 10000 x
if 10000 x < x*
0 if x* < 10000 x
Exercise
e if 0<x 5
Find c_0, c_1, c_2 such as and b such as /(x) = belongs to C~

2ie .
X"+ xtcy if x<0

sys:={f1=£2,diff (f1,x)= £2,%),diff (£1,x$2)=diff (£2,x$2)};

bs (sys, x

::fsolve(sysl, {c_0,c_1,c_2});

{e"=c,+2¢,x, e =, +e x+cy, =20y}
{"=cpe®=c,e=2¢,}
[eg=1.0,¢;=1.0,¢,=05]

e if 0<x
Draw function /=< for -3<=x<=2
TH+x+1 if x<0
f:=x->piecewise ([
plot (£ (x),x=-3..2

x> piecewlse([() <x, e, [v <0, 1+x+ %‘})

x>0, exp(x)], [x<=0, 1+x+x"2/2]);
)i



x > a, (b*a"2-2*a*x-x"2)"3], [x >= 2, a*x+3*b]);
if 2<x
—(~bd+2ax+x?)? if a<xax<2

limit (f,x=2,Ri
limit(f,x=2,Lef

2a+3b
—(-bd*+4a+4)

=limit (der_f,x=

limit (der f,x

a
{ “3Qa+2x)(~bd*+2ax+x)? ifa<xax<2
a
~3Qa+4) (-bd*+4a+4)?
plot (

plot(l_de _
plot(l_f=r f,1 der=r der,a

06 04 02

24 22

=

N

24 22 20 T 16 T4 0 -08)-06 04 -02

numeric::solve ([1_f=r f,1 der=r_der], [a,b])

{[a=-1.923027381, b= 1350]932]2], [a = —0.949840617, b = 0.6527365335], [a = —0.8237026521, b = 0.53584489]}

Implicite differentiation

Example
Find the slope, m, of the tangent line to the graph of the cardioid with equation:

M2 -daaty-a 4yt -4y =0
. _ /3 3
at the point P = ( YAl Vel ).
First, we enter the equation of the cardioid and verify that the point P
lies on the curve.

; expand (eqc

subs (subs (eq, x=x1) ,y




Next, we sketch a graph of the cardioid in the coordinate plane using the
MuPAD command Implicit2d which

pl:=plot::Implicit2d(eq, x=- 3,y=-1 5);
plot::Implicit2d(2 3 y> =4 32 y —4 2 +x* —4 )7 4y -3.3,y=-1.5)
[plot(pl);
y 5
3
2
1
-3 2 1 1 2 3
X

Now we tell MuPAD to treat y as a function of x :

yi=f(x);
e
eqr
2 f)? -4 fx) -4+ f(0)* -4 f ()}
Observe that MuPAD has replaced each occurence of y by f(x).

To differentiate this equation with respect to x , we use the diff command.

deqg:=diff (eq, x);
42 f) L f) -4 L f@+4 0 LS 12 (02 L f(0)+ 423 +4x f(x)2 - 8x f(x) - 8x
ox ax ax ax

Now we solve the derivative of the equation for the derivative of f(x)
using the result of the implicit differention.

[iddeq:=diff (£ (x),x)=solve (deg, di

B f? v s 2
2o f \}/r e2x | e 6, # P40,
o5-x+[(x)" -0,

(£(x),x));

L f(x)= @ if 6,20;Ax20A0, =27+,
c if (6,=0;vx=0)rc,=2"+0c,
where
24 f(x)?
0, =3 f(x)
;=2 f(x)+2

The point P has coordinates x1 and yl , so in order to find the slope m
of the tangent at P, we must replace f(x) with yl and x with x1.

‘We first get the formula expressing the derivative dy/dx. Then we
substitute the appropriate values for x and for y using the subs command.

[fprimex:=iddeq(2][1]([1];
- —x () +2x f(x)+2x
2

) -+ f(x)P -3 f(x)?

[ subs (fprimex, £ (x)=y1) ;

B 2\+2.¥<\/3_+§—)7.Y‘*\(\/§+
S (e (0

px=x1);

where

o, = V/3_+§_
_ 5

o=+l

The percent symbol (%) is a place-holder for the results of the immediately
preceding operation. Then we simplify our answer.

[m:=simplify(%);
-1

First we remove the definition of y as f(x) with the delete command.

[delete (y):
[eq2:=y-m* (x-x1)-y1;
Lyl 3 V3 s
2 2

Now we make and store an implicit plot of the tangent line.

The semi-colon are suppresses the output from the command.
p2:=plot::Implicit2d(eq2,x=-3..3,y=-1..5):

Now we plot the tangent line on the same set of axes as the cardioid.

plot (pl,p2);



Taylor series
We compute a Taylor series around the default point 0:

[reset():

3 . Se
c+xc+xzc+T+ 5 +L33;Y."+0(,rﬁ)

Default order of Teylor series is 6.

s := taylor(exp(exp(x)), x, 15)

[ 3 4 S 6 7 8 9 10
e+‘e+‘ze+5x63+5.te+l3,\e 203x"e  877x'e 23v\e+1007xe 4639x" e

. . 2764443727 ¢ 95449661 x' e oGS
8 30 720 5040 224 17280 145152 1330560 479001600 6227020800 43589145600 .

The result of taylor is of the following domain type:

| 95449661 ¢ x'* L 27644437 ex? 4213597 ex? | 22619 ex!!  4639ex'0  1007ex” 23ex® 877ex’ 203ex® 13ex’ Sex' Sex oo
43589145600 6227020800 479001600 1330560 145152 17280 224 5040 720 30 8 6 -

[ domtype (%)

DOM_EXPR

[delete s:

A Taylor series expansion of g(x) around x=0 does not exist. Therefore, taylor responds with an error message:

taylor (1/(l-sin(x)/x)"2, x = 0)
Error: Cannot compute a Taylor expansion of 'l/(1/x*sin(x) - 1)"2'. Try 'seri.

for a more general expansion. [taylor]

Following the advice given in this error message, we try series to compute a more general series expansion. A Laurent expansion does exist:

s /x)"2, % = 0)

n(x

_si
129 2
= 5X2+W+O(r)

Multivariate Taylor series
0

[ rese

f:=(x,y)->cos(cos(x) *y"2+cos (y))
(x, y) = cos(cos(x) y* + cos(y))

t:=mtaylor (f(x,y), [x,vy],6)

cos(l) _sin(1)
*(’ 3 pz3 )J

We compute a Taylor series around the origin (default). The expansion contains all terms through total degree 3:

4 sin(1))?

+cos(1)

(x*2 = y), [x, yl, 4)
2

2

mtaylor (exr

2 2_ Y
Xyt -+ —y+1
Xy - % K

We request additional terms of higher order:

mtaylor (exp (x*2 - y),

We request an absolute truncation order of 4, so that only terms of total degree smaller than 4 are computed:

[mtaylor(x*y*exp(x*2 - y), [x, yl, AbsoluteOrder = 4)
xy—xy*
A common problem in symbolic calculations is “expression swell:" Intermediate expressions which are not or cannot be simpli lead to unr i i results. The following is an example of such behavior:

mtaylor ((a+x)"n, x, 4)

where
G, =" In(a)
=
In general, applying simplify or Simplify to complicated results is a strategy that often helps. In this case, however, it would destroy the format of the series:

simplify (%)
a3 6d+6

x+3anr P -3anxt+n’ X -3 +2nx)

What is required is a way to map a function like simplify to the coefficients of the series only. Since mtaylor returns an ordinary expression, this must be done in the mtaylox call itself, using the Mapcoef£s option:

[mtaylor((a+x)"n, x, 4, Mapc

A (=) d P nx
2 6

effs=simplify)
3n+2)

d+d  nx+

Error finding

reset ():

fi=cos (x*cos (y) +x*sin(y))
cos(x cos(y) + x sin(y))

[tl:=mtaylor(f, [x,y],5)



errl:=(f-tl):

err2:=abs (f-t2) :
plotfunc3d(errl, x=-1..1,y=-1..1):
plotfunc3d(err2,x=-1..1,y=-1..1):

Exercise 1

0.9..1.6 o172 15 -1 11 7 ToN AW A%V VI AXPAD 7Y D'OIAN NX VXTI KXN

f(x)=In(sin(x)+1)
[£001:= 1n(sin(
£[11] (
£[12] :=taylor(
| plot (£[0],£[11
In(sin(x) + 1)

.9..1.6,LegendVisible);

203 s 6 a1y 1748 2774 31410 | 50521 ! It
SN SRR A S - - et L
Yy tE T2t 450w =m0 77 mars tsotesoo O
28 S 61X 17x% 2772 31410 50521 691 x'2
X— =t — =t e e = | s e
776 12724 35 5040 7520 72576 14175 39916800 935550
y&m
0.75
0.70
0.65
0.60
D‘.Q 1.0 11 1.2 13 14 15 16

TnEInG) + 1)
Series: Puiseux:create(!, 1, 12, [1,-1/2, 1/6, -
ies: Pui 1, 1,13, [1.-1/2, 1/6. -

0.1 -n D2VR 730 DN NIYLD DR DY7ITA DN DYWL DX INXAN

[numeric::solve(abs (£[0]-expr (£[11]))=0.1,x=0..infinity);
numeri solve (abs (£(0)-expr(£[12])))=0.1,x=0..infinity);

{1.590227416}
| {1599252115}

o)

0.6 -n ML A'AN 7" LD N'YN'OFNN NIYLVAY D NI [VFA 1TON NN INXNN

In(sin(x)+1):
xpr (taylor (£,x,1)):

i:

while abs(float (subs (f-£1,x=1.6)))>0.06 do
i:=i+1;
fl:=expr (taylor (f,x,1)):

end_while:

i

28

[%=PI+sqrt(1-y~2), -l<=y<=1

x=n+/[1-)% (~1<y) <1

Exercise 2
Y9 7w 10 770N 70 110 W AN A7ITAD ANAWA DX IAUNN

ecos(y) sin(x)

7210n

x=my=0

anipya

x=m+/1-y" (-1<y)<1
[reset():

exp(sin(x)*cos(y)):
taylor (f, [x=PI,y=0],10):
1=PI+sqrt(l-y~2):
£2:=abs (Simplify (£1-£)):
plot(f2,y=-1..1);
diff(£2,y):

ic::solve (df2,y=0.6);




err:=float (subs(£2, y=y0([1]));

{0.6459511737}
0.00203704176

Exercise 3

Find asymptotic series of — 1 around x=0 (of order 10)

sin(x
reset () :
series(1l/sin(x),x=0,10);

s : J
LLxl 78 3 1274 9
v* %" 30 " 15120 * oason O™

Plot the graphics of asymptotic expansions of f (x)=1n(x)/(1-x) around x =0, x = o (of order 10)

es(f,x=infir
£,£1,£2,%x=0..

In(x) +x In(x) + 3% In(x) +x° In(x) +x* In(x) +x° In(x) + 2 In(x) + 7 In(x)

_ @) _ @ _ @ _Inx) _InGx) @ _ @) _ In

8

In(x) + 27 In(x) + O(x')

In(x) _ In(x) 1
01 of )

x X X X x

Vs

- (- 1)
Series: Puiseux::create(1, 0, 10, [In(x), In(x),
- 1,1, 1. [In(x), -In(x),

HOME READING
Using derivatives to find absolute maxima and minima

Differentiation is a process that, in most instances, involves only a few rules
which are used over and over. Even for relatively simple functions, such as those
in the examples and exercises that follow, the results may quickly become rather

complicated and unwieldy. Therefore differentiation lends itself very well to execution
by a computer.

If f has been entered as a function in MuPAD, then the command "D(f);" yields
the derivative of f. For example, let

Ax) = ¥ see(x) .

We will find the first and second derivatives of 1.

cos(x)  cos(x)?
D(D(£))
R o .
. 2 L2, in()? 4 |mf)
cos(x) cos(x)  cos(x)’ cos(x)?

To compute the n th derivative, we can use "(D@@n)(f);" thus the third
derivative of the function f defined above is:
(D@@3) (f);

6x  6sin(x)  Sa%sin(x) | 12xsin(x)® | 627 sin(x)’
X + -+ + <+
cos(x)  cos(x)? cos(x cos(x)? cos(x)*

FINDING THE ABSOLUTE MAXIMUM AND MINIMUM

The theory tells us that a continuous function defined on a closed interval always has an
absolute maximum M and an absolute minimum m; i.e., there are numbers and in [a,b] such
that m = f(a) < f(x) < f() =M forall x in [ a, b ]. Moreover, to find them we need only
consider the endpoints a and b and the critical points, i.e., the solutions to the
equation f'(x) = 0, and values of x for which f'(x) does not exist.

As an example, we will find the absolute maximum and minimum of ~ f( x ) = sin x + xcos(+*)
on the interval [ 0, = ].

fr=x->sin(x)+x*cos (x"2);

x —> sin(x) + x cos(x”)




02 04 06 08 10 12 14 N 18 20 22 24 26 24 30
x

First use the above graph and the cursor to find approximate values of the absolute

maximum and minimum.
Next, use the derivative to find exact values of the absolute maximum and minimum:

D(f);
x = cos(x?) + cos(x) — 2 x? sin(x?)

plot (D(f) (x),x=0..PI,Col
y
8
6 |
|
4 |
|
2y |
— \ |
o |
02 04 06 08 1 12 14 16 8 20 22 24 126 28 3.0/
2 \ i x
4
5
8
-10
12
14
-16

This function has a derivative at every point. Therefore the only critical points are
the solutions of the equation f'(x) = 0.

solve (D (f) (x)=0,x);

solve(cos(x?) + cos(x) — 2 ¥ sin(x?) = 0, x)

MuPAD cannot find a general solution, so we will use the "fsolve" command to find
decimal approximations to the solutions. From the graph, it is clear that there are four
solutions of f'(x) = 0, since the graph of f'(x) cuts the X-axis four times.

use (numeric, fsolve);
X[1]:=fsolve (D(f) (x)=0
0.9201095708

X[2]):=fsolve(D(f) (x)=0,x=1.6..2) [1][2];

1.824276689

X[3]:=fsolve(D(f) (x)=0,x=2.4..2.6) [1][2];
2.509682366

X[4]:=fsolve (D (f) (x)=0,x=
3.086995383

From the graph it is clear that each of the intervals specified in the above four commands

contains exactly one zero of f(x).
Finally, we calculate the values of f at these four points and at 0 and =, the endpoints

of the interval under consideration:

£(X[1]);E(X([2]);E£(X[3]);E£(X[4]);£(0);
1.405270457
—0.824633074
3.100075094
—3.015500543
0

7 cos(n?)

For comparison purposes, we calculate a decimal expansion for f{ 7 ):

float (£(PI));
—2.835869702

Therefore the absolute maximum is f(X[3]) = 3.100075094 and the absolute
minimum is f(X[4]) = -3.015500543.
Instead of typing "float(f(PI));" we could have used the percent symbol
that acts as a placeholder for the last value computed by MuPAD. For example,
£(PI);
7 cos(n?)

Now use the percent symbol:

float (%) ;
—2.835869702

Derivatives and properties of graphs

The important characteristics of the graph of a function f(x) can be established by
studying its first and second derivatives. These characteristics include the location
of any local maxima, local minima, and points of inflection, and intervals in which
the graph is increasing or decreasing, or is concave upward or concave downward.

As an example we will study the function f(x) =3sin2x)+x*, -n<x< 1

243*sin(2%x);

x = x’+3sin(2x)

First we plot the graph of the function:

plot (f(x),x=-PI..PI)



Av e A e e N o

There appear to be two local minima, a local maximum close to x = 1, and possibly
another local maximum near x = -3. At points where there is a local maximum or minimum
the derivative is 0. We next compute the derivative and draw the graphs of f (x) and f"'(x)
on the same set of axes:

D(f);
x—>2x+6c0s(2x)

plot (£(x),D(f) (x),x= Red, RG
y12
10
8
\ //
y /
/4 \ /

To find the exact locations of the local maxima and minima we solve the equation
f'(x)=0:
sol D(f) (x)=0,x);

solve(2 x + 6 cos(2x) =0, x)

Apparently, MuPAD does not know a general solution, so we will find the solutions
using the "fsolve" command.
use (numeric, fsolve) ;
X[1]:=fsolve (D(f) (x)=0,x=-1..0) [1]1[2];
~0.6723755227

0.9457599482

X[1]:
1.992913103

To see if there is another solution near -3, we zoom in on the graph of f'(x):
plot (D (f) (x),x=-PI.. Vi ngBoxYRange=-1..1,
Colors=[RGB luel);

RioY
08
06
04

02
90

0.2

04

r-06

T-08

L0

Since the graph of f'(x) does not touch the X-axis there is not an additional solution.

Note that, from the graph of f'(x), f'(x) is negative in the intervals (= , X[1]) and
( X[2], X[3]), and thus f (x) is decreasing on these intervals. f'(x) is positive in
(x[1],X[2] ) and (X[3] , ), and therefore f(x) is increasing there.

We now apply the First Derivative Test. Since f'(x) is negative to the left of X[1]
and positive to the right, there is a local minimum at X[1]; similarly, there is a local minimum
at X[3]. Since f'(x) is positive to the left of X[2]and negative to the right, there is a local
maximum at X[2] .

The second derivative is used to find intervals of concavity and points of inflection.
‘We will compute f"(x) and plot it and f (x) on the same set of axes.

D(D(f));
x—2-12sin(2x)

plot ((f(x),D(D(f)) (x)),x=-PI..P

RGB: :Red, RGB: :Blue]) ;

Points of inflection occur at points where f "(x) = 0 and the second derivative changes sign.
The graph is concave down on intervals where f "(x) < 0 and concave upward when f"(x) > 0;
thus the points of inflection are the points where the concavity changes. Here there are four
such points:



pi:=float (PI): Z[1]:=fsolve(D(D(f)) (x)=0,x=-pi..(-3))[1][2];
—3.057868614

:=fsolve (D(D(f)) (x)=0,x
B (D(D(f)) (
ve (D(D(f)) (x
—1.654520366

008372403961

1.487072287

11(02];
(21;
[21:

)
1]
2) [1]

The graph of f(x) is concave up for x in ( -=.z[1]) , (Z[2],Z[3].), and (Z[4], 7).
It is concave down in (Z[1],2[2]) and (Z[3],Z[4]).

DIFFERENTIATION OF INVERSE FUNCTION

Given a function f, we wish to define a function g, called the inverse of f, which
reverses the action of f, i.e., whenever f(a) =b, then g(b)= a. In order for this
reversal process to define a function it is necessary that f be one-to-one: for each
number b in the range of f there can be only one number a in the domain of f
such that f(a) =b. If f is one-to-one no horizontal line can cut the graph of f
more than once.

If g is the inverse of the one-to-one function f, then the graph of g is the set of points

{ (f(x),x)|xin Dom(f)}.
Dom(g) = Ran(f) and Ran(g) = Dom(f), that g( f( x ) ) =x and f( g(x) ) =x, that g is
one-to-one with inverse f, and that the graph of g is the reflection of the graph of f in the line y =x.
If we differentiate the equation f( g(x) ) = x using the chain rule we obtain the equation
£1(g(x)g'(x)= 1.
Solving this equation for g '(x) yields the formula for the derivative of the inverse g (x)
of a function f (x) :

g (x)=1f'(gx)).

Now suppose that f(a) =b, and therefore that g(b) = a. From the last formula it follows that
g'(b)=1/f"(g(b)) = 1/f'(a)
or
¢(fla))=1/f'(a).
Since all of the numbers in the domain of g (and thus the domain of g ') are of the form
f (a) for some a in the domain of f, it follows that the graph of g is the set of points
{(f(a), 1/f'(a));aindom f }.

MuPAD will use this representation to generate the graph of g'.
Example 1

Sometimes it is easy to find an explicit expression for the inverse g of a given
function f by solving the equation f('y)=x fory. For example, suppose

2x-3
fx) = .
3x+7
reset () ;
£r=x->(2*x-3) / (3*x+7) ;
2x-3
3x+7

To find g, the inverse of f, we interchange x and y and solve the resulting equation for y:

(v)=x;

We can extract the formula from this case display as follows.
op (op (0p (g,2),2),1)
7x+43
3x-2

gi=g[2][1];
_7x+3
3x-2

‘We will verify the formula for g', i.e., we will show that g '(x) = 1/f'(g(x))
by computing both g'(x) and 1/f(g(x)) and showing they are equal.
Note that we defined g as an expression in the variable x rather than using
the MuPAD (variable-independent) function method; this was necessary
because we were exchanging the variables x and y. To differentiate an expression
in the variable x we use the following "diff" command:

diff (g, x);

3(7x+3) 7

(3x-27% 3x-2

simplify (%) ;
23
(B3x-2)°

Now we compute 1/ f'(g (x) ):

diff (£(x),x);

simplify (%) ;
(B3x-2)?
73

1/(%):
23
(Bx-2)°

We next plot the graphs of f, g, and the line y = x:



A:=plot::easy(f(x),x=-5..5,y=-5..5,Colors=[RG

.5,Colors=[Ri

Green]):

[c:=plot::easy(j(x), x=-5..5,y=-5. Colors=[RGB::Black]) :
plot(A,B,C,Footer="Example 1: Figure 1");

Ve

4

-8

|
|
| -6
|
|
'

Note that the graph of g is the reflection of the graph of f in the line y = x.

Example 2.

reset () :

7
The inverse of f will again be denoted by g.

Consider the function f{x) =x + sin<ﬂ_) -2; 0

In this case, as we will see below, we are not able to explicitly solve the
equation f( y ) =x fory = g(x), and thus generate a formula for g (x).
However, we can still plot the graph of the inverse g and its derivative g ',
and compute their values for numbers in their domains.

We first try to find a formula for g by solving f('y ) =x, as in example 1.

fi=x->x-2+sin (PI*x/4);

X
2 x=2+ —_—
x> sm<4)

f(x);

o (mx)
x+>m<T) 2

eq:=f (y)=x;

Apparently MuPAD cannot solve this equation for y = g(x) in terms of x.
However, even though we don't have a formula for g, we can still easily
generate the graph of g since we know it consists of the set of points
of the form (f(x), x) for x in dom( f).

[ fGraph

T2:=plot

[ gGraph:=g
[T1:=plot
identity Black])
plot (f Figure 1");
Ve
7 y=g9(x)
6
5
4
3
2 y=fx)
/
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Example 2: Figure 1

Next, we plot g and g 'on the same set of axes. Recall that the graph of g ' is the set of points
{(f(x),1/f'(x)); xindomf}.

[ fprime:=x->D(f) (x);
x = f1(x)

:=plot::easy([£f(x),1/fprime(x)],x=0..8,Colors=[RGB::Red]):
.51):

xample

Figure 2");

Vg

Example 2: Figure 2

Recall that g'(x) = 1/f'(g(x)), -2< x < 6.

gprime:=1/fprime (g (x));



For example, we may find g' (2) by utilizing the fact that f(4) =2 implies g (2)=4.

[ subs (subs (gprime, g (x)=4) ,x=2) ; simplify(%);

7 cos(n)

+1

4
n—4

[ float (%) ;
4.659792366



