
Limits

reset():
limit((1 - cos(x))/sin(x)^2, x)
1
2

limit((1 + 1/n)^n, n = infinity)
e

limit(1/sin(x), x = 0);
limit(1/x, x = 0, Left);
limit(1/x, x = 0, Right)
undefined
- ¥

¥

The function sinx oscillates for x ® ¥ between - 1 and 1; no accumulation points outside that interval exist:
limit(sin(x), x = infinity, Intervals)- 1, 1
limit is not able to compute the limit of xn for x ® ¥ without additional information about the parameter n:
assume(n in Z_):
limit(sin(x^n), x = infinity)

sin1  if  n = 0
0  if  n £ - 1

We can also assume immediately that n > 0 and get no case analysis then:

assume(n > 0):
limit(sin(x^n), x = infinity)
undefined

Similarly, we can assume that n=0:

assume(n = 0):
limit(sin(x^n), x = infinity)
sin1

Compute limit of the piecewise function:
f:=piecewise([x^3 > 10000*x, 1/x], [x^3 <= 10000*x, 10])

1
x
  if  10000 x < x3

10  if  x3 £ 10000 x

limit(f, x = 100, Left);
limit(f, x = 100, Right);
10

1
100

limit(f, x = -10);
limit(f, x = 1);
- 1

10


10

Derivatives
reset():

You can differentiate with respect to more than one variable with a single diff call. In the following example, we differentiate first with respect to x and then with respect to y:
diff(x^2*sin(y), x, y) = diff(diff(x^2*sin(y), x), y)
2 x cosy = 2 x cosy

We use the sequence operator $ to compute the third derivative of the following expression with respect to x:
diff(sin(x)*cos(x), x $ 3)
4 sinx2 - 4 cosx2

diff knows how to differentiate symbolic integrals:
int(f(x), x);
diff(%, x, x);

f x d x

¶
¶ x
  f x
g:=int(f(t, x), t = x..x^2);
diff(g, x);
x

x2

f t, x d t


x

x2

¶
¶ x
  f t, x d t - f x, x + 2 x f x2, x

diff knows how to differentiate piecewise functions:
f:=piecewise([x^3 > 10000*x, 1/x], [x^3 <= 10000*x, 10]);
diff(f,x);

1
x
  if  10000 x < x3

10  if  x3 £ 10000 x-
1
x2
  if  10000 x < x3

0  if  x3 < 10000 x

Exercise

Find c_0, c_1, c_2 such as and b such as f x =
 ex  if  0 < x

c2 x
2 + c1 x + c0  if  x £ 0

 belongs to C2

reset():
f1:=exp(x):
f2:=c_0+c_1*x + c_2*x^2:
sys:={f1=f2,diff(f1,x)=diff(f2,x),diff(f1,x$2)=diff(f2,x$2)};
sys1:=subs(sys,x=0);
numeric::fsolve(sys1,{c_0,c_1,c_2});

ex = c1 + 2 c2 x, ex = c2 x2 + c1 x + c0, ex = 2 c2


e0 = c0, e0 = c1, e0 = 2 c2


c0 = 1.0, c1 = 1.0, c2 = 0.5



Draw function f =

 ex  if  0 < x

x2

2
 + x + 1  if  x £ 0

for -3<=x<=2

f:=x->piecewise([x>0, exp(x)],[x<=0, 1+x+x^2/2]);
plot(f(x),x=-3..2);

x ® piecewise
0 < x, ex, x £ 0, 1 + x + x2

2
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Find a and b such as f is continuous and it's first derivative is continuous
assume(a<2);
f:=piecewise([2>x > a, (b*a^2-2*a*x-x^2)^3], [x >= 2, a*x+3*b]);

3 b + a x  if  2 £ x

- - b a2 + 2 a x + x23  if  a < x Ù x < 2

l_f:=limit(f,x=2,Right);
r_f:=limit(f,x=2,Left);
2 a + 3 b
- - b a2 + 4 a + 43
der_f:=diff(f,x);
l_der:=limit(der_f,x=2,Right);
r_der:=limit(der_f,x=2,Left);

a  if  2 < x

- 3 2 a + 2 x - b a2 + 2 a x + x22  if  a < x Ù x < 2
a
- 3 2 a + 4 - b a2 + 4 a + 42
plot(l_f=r_f,a=-2.5..0,b=-3..15);
plot(l_der=r_der,a=-2.5..0,b=-3..15);
plot(l_f=r_f,l_der=r_der,a=-2.5..0,b=-3..15);
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numeric::solve([l_f=r_f,l_der=r_der],[a,b])a = - 1.923027381, b = - 1.550193212, a = - 0.949840617, b = 0.6527365335, a = - 0.8237026521, b = 0.53584489

Implicite differentiation
  
 Example
  Find the slope, m, of the tangent line to the graph of the cardioid with equation:  
       x4 + 2 x2 y2 - 4 x2 y - 4 x2 + y4 - 4 y3 = 0                                                               

  at the point  P  =  ( 3


2
 + 1   ,   3


+ 3

2
  ).

  First,  we enter the equation of the cardioid and verify that the point  P
lies on the curve.

reset();
x1:=(2+sqrt(3))/2; y1:=(3+2*sqrt(3))/2;

3


2
 + 1

3

+ 3

2


eq:=x^4+y^4-4*(y^3+x^2+(x^2)*y) + 2*(x^2)*(y^2);
x4 + 2 x2 y2 - 4 x2 y - 4 x2 + y4 - 4 y3

eqcheck:=subs(subs(eq,x=x1),y=y1); expand(eqcheck);
3

+ 3

2
4 - 4 


3

+ 3

2
3 - 4 


3


2
 + 1


2
+


3


2
 + 1


4
- 4 


3


2
 + 1


2
 


3

+ 3

2
 + 2 


3


2
 + 1


2
 


3

+ 3

2
2



0

Next, we sketch a graph of the cardioid in the coordinate plane using the 
MuPAD command  Implicit2d  which

p1:=plot::Implicit2d(eq,x=-3..3,y=-1..5);
plot::Implicit2d2 x2 y2 - 4 x2 y - 4 x2 + x4 - 4 y3 + y4, x = - 3..3, y = - 1..5
plot(p1);
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Now we tell MuPAD to treat  y  as a function of  x :

y:=f(x);
f x
eq;
x4 + 2 x2 f x2 - 4 x2 f x - 4 x2 + f x4 - 4 f x3

Observe that MuPAD has replaced each occurence of   y   by  f(x).

To differentiate this equation with respect to  x , we use the  diff  command.

deq:=diff(eq,x);
4 x2 f x ¶

¶ x
  f x - 4 x2 ¶

¶ x
  f x + 4 f x3 ¶

¶ x
  f x - 12 f x2 ¶

¶ x
  f x + 4 x3 + 4 x f x2 - 8 x f x - 8 x

Now we solve the derivative of the equation for the derivative of  f(x) 
using the result of the implicit differention. 

iddeq:=diff(f(x),x)=solve(deq, diff(f(x),x));

¶
¶ x
  f x =




- x3- x f x2+ 2 x f x+ 2 x

s5- x2+ f x3-s2

  if  s4 ¹ x2 + s2

Æ  if  s1 ¹ s3 Ù x ¹ 0 Ù s4 = x2 + s2

C  if  

s1 = s3 Ú x = 0


Ù s4 = x2 + s2

 
where
 

  s1 = x2 + f x2
 

  s2 = 3 f x2
 

  s3 = 2 f x + 2
 

  s4 = s5 + f x3
 

  s5 = x2 f x
The point  P  has coordinates  x1  and  y1 , so in order to find the slope  m
of the tangent at  P , we must replace  f(x)  with  y1  and  x  with  x1.

We first get the formula expressing the derivative  dy/dx.  Then we 
substitute the appropriate values for  x  and for  y using the  subs  command.

fprimex:=iddeq[2][1][1];
- x3 - x f x2 + 2 x f x + 2 x
x2 f x - x2 + f x3 - 3 f x2

subs(fprimex,f(x)=y1);

-
2 x + 2 x 


3

+ 3

2
 - x3 - x 


3

+ 3

2
2

3 


3

+ 3

2
2

-


3

+ 3

2
3

+ x2 - x2 


3

+ 3

2


subs(%,x=x1);

-
2 s2 s1+ 3


-s2

3-s2 s1
2+ 2

3 s1
2-s1

3+s2
2-s2

2 s1


 
where
 

  s1 = 3

+ 3

2


 

  s2 =
3


2
 + 1

The percent symbol (%) is a place-holder for the results of the immediately
preceding operation.  Then we  simplify  our answer.

m:=simplify(%);
- 1

First we remove the definition of  y  as  f(x)  with the  delete  command.

delete (y);
eq2:=y-m*(x-x1)-y1;

x + y - 3 3


2
 - 5

2


Now we make and store an implicit plot of the tangent line.

The semi-colon are suppresses the output from the command.

p2:=plot::Implicit2d(eq2,x=-3..3,y=-1..5):

Now we plot the tangent line on the same set of axes as the cardioid.

plot(p1,p2);



plot(p1,p2);
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Taylor series
We compute a Taylor series around the default point 0:

reset():
s := taylor(exp(exp(x)), x)

e + x e + x2 e + 5 x3 e
6

 + 5 x4 e
8

 + 13 x5 e
30

 + Ox6
Default order of Teylor series is 6.

s := taylor(exp(exp(x)), x, 15)

e + x e + x2 e + 5 x3 e
6

 + 5 x4 e
8

 + 13 x5 e
30

 + 203 x6 e
720

 + 877 x7 e
5040
 + 23 x8 e

224
 + 1007 x9 e

17280
 + 4639 x10 e

145152
 + 22619 x11 e

1330560
 + 4213597 x12 e

479001600
 + 27644437 x13 e

6227020800
 + 95449661 x14 e

43589145600
 + Ox15

The result of taylor is of the following domain type:

domtype(s)
Series::Puiseux

If we apply the function expr to a series, we get an arithmetical expression without the order term:

expr(s)
95449661 e x14

43589145600
 + 27644437 e x13

6227020800
 + 4213597 e x12

479001600
 + 22619 e x11

1330560
 + 4639 e x10

145152
 + 1007 e x9

17280
 + 23 e x8

224
 + 877 e x7

5040
 + 203 e x6

720
 + 13 e x5

30
 + 5 e x4

8
 + 5 e x3

6
 + e x2 + e x + e

domtype(%)
DOM_EXPR

delete s:

A Taylor series expansion of gx = 1
sinx

x
 - 1


2

  around x=0 does not exist. Therefore, taylor responds with an error message:

taylor(1/(1-sin(x)/x)^2, x = 0)
Error: Cannot compute a Taylor expansion of '1/(1/x*sin(x) - 1)^2'. Try 'series' for a more general expansion. [taylor]

Following the advice given in this error message, we try series to compute a more general series expansion. A Laurent expansion does exist:

series(1/(1-sin(x)/x)^2, x = 0)
36
x4
 + 18

5 x2
 + 129

700
 + Ox2

Multivariate Taylor series
reset():
f:=(x,y)->cos(cos(x)*y^2+cos(y))x, y ® coscosx y2 + cosy
t:=mtaylor(f(x,y),[x,y],6)
sin1 x2 y2

2
 +


- cos1

8
 - sin1

24
 y4 - sin1 y2

2
 + cos1

We compute a Taylor series around the origin (default). The expansion contains all terms through total degree 3:
mtaylor(exp(x^2 - y), [x, y], 4)
- x2 y + x2 - y3

6
 + y2

2
 - y + 1

We request additional terms of higher order:

mtaylor(exp(x^2 - y), [x, y], 5)
x4

2
 + x2 y2

2
 - x2 y + x2 + y4

24
 - y3

6
 + y2

2
 - y + 1

In the example above, the leading term is of total degree 0. In the following example, the leading term is of total degree 2. Thus, the default mode RelativeOrder produces terms of total degree smaller than 4 + 2 = 6:

mtaylor(x*y*exp(x^2 - y), [x, y], 4)

- x3 y2 + x3 y - x y4

6
 + x y3

2
 - x y2 + x y

We request an absolute truncation order of 4, so that only terms of total degree smaller than 4 are computed:

mtaylor(x*y*exp(x^2 - y), [x, y], AbsoluteOrder = 4)
x y - x y2

A common problem in symbolic calculations is “expression swell:” Intermediate expressions which are not or cannot be simplified lead to unnecessarily complicated results. The following is an example of such behavior: 
mtaylor((a+x)^n, x, 4)

s1 - x2 s1 


n
2 a2
 - n2

2 a2
 - x3 s1 

 n2

4 a3
 - n

3 a3
 +

n 


n
4 a2
 - n2

6 a2


a



+

n x s1
a


 
where
 

  s1 = en lna
In general, applying simplify or Simplify to complicated results is a strategy that often helps. In this case, however, it would destroy the format of the series: 

simplify(%)
an- 3 6 a3 + 6 a2 n x + 3 a n2 x2 - 3 a n x2 + n3 x3 - 3 n2 x3 + 2 n x3

6


What is required is a way to map a function like simplify to the coefficients of the series only. Since mtaylor returns an ordinary expression, this must be done in the mtaylor call itself, using the Mapcoeffs option: 

mtaylor((a+x)^n, x, 4, Mapcoeffs=simplify)

an + an- 1 n x + an- 2 n x2 n - 1
2

 + an- 3 n x3 n2 - 3 n + 2
6


 

Error finding

reset():
f:=cos(x*cos(y)+x*sin(y))
cosx cosy + x siny
t1:=mtaylor(f,[x,y],5)



t1:=mtaylor(f,[x,y],5)
x4

24
 - x2

2
 - x2 y + 1

t2:=mtaylor(f,[x,y],10)
x8 y
5040
 + x8

40320
 - x6 y3

180
 - x6 y2

60
 - x6 y

120
 - x6

720
 + x4 y5

45
 - 2 x4 y4

9
 - x4 y3

9
 + x4 y2

6
 + x4 y

6
 + x4

24
 + 4 x2 y7

315
 - 2 x2 y5

15
 + 2 x2 y3

3
 - x2 y - x2

2
 + 1

err1:=(f-t1):
err2:=abs(f-t2):
plotfunc3d(err1,x=-1..1,y=-1..1):
plotfunc3d(err2,x=-1..1,y=-1..1):

 

Exercise 1
0.9 .. םולתב 1.6  15 רדסמ 11 ו - הלש  רולייט  רוטו  היצקנופ  לש  םיפרגה  תא  רייצו  אצמ 
f(x)=ln(sin(x)+1)
f[0]:= ln(sin(x)+1);
f[11]:=taylor(f[0],x=0,11);
f[12]:=taylor(f[0],x=0,12);
plot(f[0],f[11], f[12],x=0.9..1.6,LegendVisible);
lnsinx + 1
x - x2

2
 + x3

6
 - x4

12
 + x5

24
 - x6

45
 + 61 x7

5040
 - 17 x8

2520
 + 277 x9

72576
 - 31 x10

14175
 + 50521 x11

39916800
 + Ox12

x - x2

2
 + x3

6
 - x4

12
 + x5

24
 - x6

45
 + 61 x7

5040
 - 17 x8

2520
 + 277 x9

72576
 - 31 x10

14175
 + 50521 x11

39916800
 - 691 x12

935550
 + Ox13

ln(sin(x) + 1)
Series::Puiseux::create(1, 1, 12, [1, -1/2, 1/6, -
Series::Puiseux::create(1, 1, 13, [1, -1/2, 1/6, -
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0.1 םינטק מ - "ל  נה םיבוריקב  תויועטה  םהב  םילודג  יכה  םיעטקה  תא  ואצמת 
numeric::solve(abs(f[0]-expr(f[11]))=0.1,x=0..infinity);
numeric::solve(abs(f[0]-expr(f[12]))=0.1,x=0..infinity);1.5902274161.599252115

0.6 הנטק מ - היהת  רולייט  רוטב  תילמיסקמה  תועטהש  ךכ  רתויב  ןטקה  רדסה  תא  ואצמת 
f:=ln(sin(x)+1):
f1:=expr(taylor(f,x,1)):
i:=1:
while abs(float(subs(f-f1,x=1.6)))>0.06 do
  i:=i+1;
  f1:=expr(taylor(f,x,i)):
end_while:
i;
28

x=PI+sqrt(1-y^2), -1<=y<=1
x = p + 1 - y2


, - 1 £ y £ 1

Exercise 2
היצקנופ לש  רדסמ 10  רולייט  רוט  לש  רתויב  הלודגה  האיגשה  תא  ובשחת 

ecosy sinx
ביבסמ ל

x = p, y = 0

המוקעב 

x = p + 1 - y2


, - 1 £ y £ 1

reset():
f:=exp(sin(x)*cos(y)):
f1:=mtaylor(f,[x=PI,y=0],10):
x:=PI+sqrt(1-y^2):
f2:=abs(Simplify(f1-f)):
plot(f2,y=-1..1);
df2:=diff(f2,y):
y0:=numeric::solve(df2,y=0.6);



err:=float(subs(f2, y=y0[1]));
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y

0.6459511737
0.00203704176

Exercise 3

Find asymptotic series of 1
sinx around x=0 (of order 10)

reset():
series(1/sin(x),x=0,10);
1
x
 + x

6
 + 7 x3

360
 + 31 x5

15120
 + 127 x7

604800
 + Ox9

Plot the graphics of asymptotic expansions of  f(x)=ln(x)/(1-x) around x = 0, x = ¥  (of order 10)

reset():
f:=ln(x)/(1-x);
f1:=series(f,x=0,10);
f2:=series(f,x=infinity,10);
plot(f,f1,f2,x=0..5,ViewingBoxYRange = -2..3, LegendVisible); 
- lnx

x - 1


lnx + x lnx + x2 lnx + x3 lnx + x4 lnx + x5 lnx + x6 lnx + x7 lnx + x8 lnx + x9 lnx + Ox10
- lnx

x
 - lnx

x2
 - lnx

x3
 - lnx

x4
 - lnx

x5
 - lnx

x6
 - lnx

x7
 - lnx

x8
 - lnx

x9
 - lnx

x10
 + O


1

x11


-ln(x)/(x - 1)
Series::Puiseux::create(1, 0, 10, [ln(x), ln(x), l
Series::Puiseux::create(1, 1, 11, [-ln(x), -ln(x),

1 2 3 4 5
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HOME READING

Using derivatives to find absolute maxima and minima 
                                                                                        
DERIVATIVES
   Differentiation is a process that, in most instances, involves only a few rules 
which are used over and over. Even for relatively simple functions, such as those  
in the examples and exercises that follow, the results may quickly become rather 
complicated and unwieldy. Therefore differentiation lends itself very well to execution 
by a computer.

   If f has been entered as a function in MuPAD, then the command "D(f);" yields 
the derivative of  f. For example, let
                                                     f(x) = x2 sec(x) .
 
   We will find the first and second derivatives of  f .
reset()
f:=x->x^2 * sec(x);
x ® x2 secx
D(f);

x ® 2 x
cosx + x2 sinx

cosx2
D(D(f));

x ® 2
cosx + x2

cosx + 2 x2 sinx2
cosx3 + 4 x sinx

cosx2
   To compute the n th derivative, we can use "(D@@n)(f);" thus the third 
derivative of the function  f  defined above is:
(D@@3)(f);

x ® 6 x
cosx + 6 sinx

cosx2 + 5 x2 sinx
cosx2 + 12 x sinx2

cosx3 + 6 x2 sinx3
cosx4

FINDING THE ABSOLUTE MAXIMUM AND MINIMUM
   The theory tells us that a continuous function defined on a closed interval always has an 
absolute maximum M and an absolute minimum m; i.e., there are numbers  and  in [a,b] such 
that m = f(a) < f(x) < f(b) = M for all x in [ a , b ]. Moreover, to find  them we need only
consider the endpoints a and b and the critical points, i.e., the solutions to the 
equation f '(x) = 0, and values of x for which f '(x) does not exist.
   As an example, we will find the absolute maximum and minimum of     f( x ) = sin x + xcos( x2 ) 
on the interval [ 0 , p ].

reset();
f:=x->sin(x)+x*cos(x^2);
x ® sinx + x cosx2
plot(f(x),x=0..PI);



plot(f(x),x=0..PI);
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  First use the above graph and the cursor to find approximate values of the absolute 
maximum and minimum.
  Next, use the derivative to find exact values of the absolute maximum and minimum:                          

D(f);
x ® cosx2 + cosx - 2 x2 sinx2
plot(D(f)(x),x=0..PI,Colors=[RGB::Green]);
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This function has a derivative at every point. Therefore the only critical points are 
the solutions of the equation f '(x) = 0.

solve(D(f)(x)=0,x);
solvecosx2 + cosx - 2 x2 sinx2 = 0, x

MuPAD cannot find a general solution, so we will use the "fsolve" command to find
decimal approximations to the solutions.  From the graph, it is clear that there are four
solutions of  f ' (x) = 0, since the graph of f '(x) cuts the X-axis four times.

use(numeric, fsolve);
X[1]:=fsolve(D(f)(x)=0,x=0.8..1)[1][2];
0.9201095708

X[2]:=fsolve(D(f)(x)=0,x=1.6..2)[1][2];
1.824276689

X[3]:=fsolve(D(f)(x)=0,x=2.4..2.6)[1][2];
2.509682366

X[4]:=fsolve(D(f)(x)=0,x=3..PI)[1][2];
3.086995383

 From the graph it is clear that each of the intervals specified in the above four commands 
contains exactly one zero of  f (x).
   Finally, we calculate the values of  f  at these four points and at  0  and p ,  the endpoints 
of the interval under consideration:

f(X[1]);f(X[2]);f(X[3]);f(X[4]);f(0);f(PI);
1.405270457
- 0.824633074
3.100075094
- 3.015500543
0
p cosp2

For comparison purposes, we calculate a decimal expansion for  f( p ):
float(f(PI));
- 2.835869702

Therefore the absolute maximum is  f (X[3]) = 3.100075094 and the absolute 
minimum is f(X[4]) = -3.015500543.
Instead of typing   "float(f(PI));"   we could have used the percent symbol 
that acts as a placeholder for the last value computed by MuPAD.  For example, 
f(PI);
p cosp2

Now use the percent symbol:

float(%);
- 2.835869702

Derivatives and properties of graphs 

   The important characteristics of the graph of a function f(x) can be established by 
studying its first and second derivatives. These characteristics include the location 
of any local maxima, local minima, and points of inflection, and  intervals in which 
the graph is increasing or decreasing, or is concave upward or concave downward.

     As an example we will study the function   f (x) = 3 sin2 x + x2 ,  - p < x < p

reset();
f:=x->x^2+3*sin(2*x);
x ® x2 + 3 sin2 x

    First we plot the graph of the function:
plot(f(x),x=-PI..PI);



plot(f(x),x=-PI..PI);
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    There appear to be two local minima, a local maximum close to x = 1, and possibly 
another local maximum near x = -3. At  points where there is a local maximum or minimum 
the derivative is 0. We next compute the derivative and draw the graphs of f (x) and f '(x) 
on the same set of axes:
D(f);
x ® 2 x + 6 cos2 x
plot(f(x),D(f)(x),x=-PI..PI,Colors=[RGB::Red,RGB::Green]);
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    To find the exact locations of the local maxima and minima we solve the equation  
f '(x) = 0:
solve(D(f)(x)=0,x);
solve2 x + 6 cos2 x = 0, x

    Apparently, MuPAD does not know a general solution, so we will find the solutions 
using the "fsolve" command.
use(numeric,fsolve);
X[1]:=fsolve(D(f)(x)=0,x=-1..0)[1][2];
- 0.6723755227

X[1]:=fsolve(D(f)(x)=0,x=0..1)[1][2];
0.9457599482

X[1]:=fsolve(D(f)(x)=0,x=1..2)[1][2];
1.992913103

    To see if there is another solution near -3, we zoom in on the graph of f '(x):
plot(D(f)(x),x=-PI..-2.8,ViewingBoxYRange=-1..1,
Colors=[RGB::Blue]);
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    Since the graph of f '(x) does not touch the X-axis there is not an additional solution.
     Note that, from the graph of f '(x), f '(x) is negative in the intervals ( p  , X[1] ) and 
( X[2] , X[3]), and thus f (x) is decreasing on these intervals. f '(x) is positive in 
( x[1],X[2] ) and (X[3] , p ), and therefore  f (x) is increasing there.
    We now apply the First Derivative Test. Since f '(x) is negative to the left of  X[1] 
and positive to the right, there is a local minimum at  X[1]; similarly, there is a local minimum 
at  X[3]. Since f '(x) is positive to the left  of  X[2] and negative to the right, there is a local 
maximum  at X[2] .
    The second derivative is used to find intervals of concavity and points of inflection. 
We will compute f ''(x) and plot it and f (x) on the same set of axes.

D(D(f));
x ® 2 - 12 sin2 x
plot((f(x),D(D(f))(x)),x=-PI..PI,Colors=[RGB::Red,RGB::Blue]);
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     Points of inflection occur at points where f ''(x) = 0 and the second derivative changes sign. 
The graph is concave down on intervals where f ''(x) < 0 and concave upward when f ''(x) > 0; 
thus the points of inflection are the points where the concavity changes. Here there are four 
such points:
pi:=float(PI): Z[1]:=fsolve(D(D(f))(x)=0,x=-pi..(-3))[1][2];



pi:=float(PI): Z[1]:=fsolve(D(D(f))(x)=0,x=-pi..(-3))[1][2];
- 3.057868614

Z[2]:=fsolve(D(D(f))(x)=0,x=-2..-1)[1][2];
Z[3]:=fsolve(D(D(f))(x)=0,x=0..1)[1][2];
Z[4]:=fsolve(D(D(f))(x)=0,x=1..2)[1][2];
- 1.654520366
0.08372403961
1.487072287

The graph of f(x) is concave up for x in ( - p ,Z[1]) , (Z[2],Z[3],), and (Z[4], p ). 
It is concave down in (Z[1],Z[2]) and (Z[3],Z[4]).

 DIFFERENTIATION OF INVERSE FUNCTION
 
   Given a function  f, we wish to define a function  g, called the inverse of  f, which 
reverses the action of  f, i.e., whenever  f(a) = b, then  g(b) = a. In order for this 
reversal process to define a function it is necessary that  f  be one-to-one: for each 
number b in the range of  f  there can be only one number a in the domain of  f  
such that  f(a) = b. If  f  is one-to-one no horizontal line can cut the graph of  f  
more than once.
 
   If  g  is the inverse of the one-to-one function  f, then the graph of  g  is the set of points                                      

{ (f (x) , x) | x in Dom(f)}.   
 Dom(g) = Ran(f)  and  Ran(g) = Dom(f), that g( f( x ) ) = x and f( g(x) ) = x,  that  g  is
one-to-one with  inverse  f, and that the graph of  g  is the reflection of the graph of  f  in the line  y = x.
   If we differentiate the equation  f( g(x) ) = x using the chain rule we obtain the equation
                                                        f '( g(x) )g '( x ) = 1.
   Solving this equation for g '(x) yields the formula for the derivative of the inverse g (x) 
of a function f (x) :
                                                        g' (x ) = 1/f '( g(x) ).
   
   Now suppose that  f(a) = b, and therefore that  g(b) = a. From the last formula it follows that 
                                                   g '(b) = 1/f '( g(b) ) = 1/f '(a)
or
                                                           g'( f(a) ) = 1/f '(a).
   Since all of the numbers in the domain of g (and thus the domain of g ' ) are of the form 
f (a) for some a in the domain of f , it follows that the graph of  g ' is the set of points
                                                 { ( f(a) , 1/f '(a) ); a in dom f }.

   MuPAD will use this representation to generate the graph of  g'.      
                                      
   Example 1

   Sometimes it is easy to find an explicit expression for the inverse  g  of a given
function  f  by solving the equation  f( y ) = x  for y. For example, suppose 

                                                    f x = 2 x - 3
3 x + 7
  .

reset();
f:=x->(2*x-3)/(3*x+7);
x ® 2 x - 3

3 x + 7


 To find g, the inverse of f, we interchange x and y and solve the resulting equation for y:

eq:=f(y)=x;
2 y - 3
3 y + 7
 = x

g:=solve(eq,y);
Æ  if  x = 2

3


- 7 x+ 3
3 x- 2
  if  x ¹ 2

3


We can extract the formula from this case display as follows.
op(op(op(g,2),2),1)
- 7 x + 3

3 x - 2


g:=g[2][1];
- 7 x + 3

3 x - 2


We will verify the formula for g', i.e., we will show that g '(x) = 1/f '(g(x)) 
by computing both g'(x) and 1/f'(g(x)) and showing they are equal.
Note that we defined  g  as an expression  in the variable x  rather than using 
the MuPAD (variable-independent) function  method; this was necessary 
because we were exchanging the variables x and y. To differentiate an expression
 in the variable x we use the following "diff" command:
diff(g,x);
3 7 x + 33 x - 22 - 7

3 x - 2


simplify(%);
233 x - 22

Now we compute 1/ f '(g (x) ):

diff(f(x),x);
2

3 x + 7
 - 3 2 x - 33 x + 72
subs(%,x=g);
3 


2 7 x+ 3
3 x- 2
 + 3




3 7 x+ 3
3 x- 2
 - 7

2
 - 2

3 7 x+ 3
3 x- 2
 - 7


simplify(%);3 x - 22
23


1/(%);

233 x - 22
   
  We next plot the graphs of  f,  g, and the line y = x: 



  We next plot the graphs of  f,  g, and the line y = x: 

A:=plot::easy(f(x),x=-5..5,y=-5..5,Colors=[RGB::Red]):
B:=plot::easy(g(x),x=-5..5,y=-5..5,Colors=[RGB::Green]):
j:=x->x;
x ® x

C:=plot::easy(j(x), x=-5..5,y=-5..5,Colors=[RGB::Black]):
plot(A,B,C,Footer="Example 1: Figure 1");
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Example 1: Figure 1

Note that the graph of g is the reflection of the graph of f in the line y = x.

     Example 2.     
reset():

  Consider the function   f(x) = x + sin

p x
4
 - 2 ;      0  <  x  <  8 .

  The inverse of f will again be denoted by g.

  In this case, as we will see below, we are not able to explicitly solve the 
equation f( y ) = x  for y = g(x), and thus generate a formula for g (x). 
However, we can still plot the graph of the inverse g and its derivative g ', 
and compute their values for numbers in their domains.
    We first try to find a formula for g by solving f( y ) = x, as in example 1.

f:=x->x-2+sin(PI*x/4);

x ® x - 2 + sin

p x
4


f(x);

x + sin

p x
4
 - 2

eq:=f(y)=x;

y + sin

p y
4
 - 2 = x

solve(eq,y);

solve


y + sin

p y
4
 = x + 2, y



   Apparently MuPAD cannot solve this equation for y = g(x) in terms of x. 
However, even though we don't have a formula for g, we can still easily 
generate the graph of  g since we know it consists of the set of points 
of the form  (f (x) , x) for x in dom( f ). 

fGraph:=plot::easy([x,f(x)],x=0..8,Colors=[RGB::Red]):
T2:=plot::Text2d("y = f(x)",[6,2]):
gGraph:=plot::easy([f(x),x],x=0..8,Colors=[RGB::Green]):
T1:=plot::Text2d("y = g(x)",[2.5,7]):
identity:=plot::easy([x,x],x=-1.5..7,Colors=[RGB::Black]):
plot(fGraph,gGraph,identity,T1,T2,Footer="Example 2: Figure 1");
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Example 2: Figure 1

 Next, we plot  g  and  g ' on the same set of axes. Recall that the graph of g ' is the set of points
                                                 { ( f (x) , 1/ f '(x) ) ;  x in dom f }. 
fprime:=x->D(f)(x);
x ® f x
DgGraph:=plot::easy([f(x),1/fprime(x)],x=0..8,Colors=[RGB::Red]):
T3:=plot::Text2d("y = g '(x)",[4,1.5]):
plot(gGraph,DgGraph,T1,T3,Footer="Example 2: Figure 2");
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Example 2: Figure 2

   Recall that  g '(x) = 1/f '(g(x)) ,  -2 <  x  <  6 .    

gprime:=1/fprime(g(x));



gprime:=1/fprime(g(x));
1

p cos

p gx

4

4

 + 1



  For example, we may find  g' (2) by utilizing the fact that  f (4) = 2  implies  g (2) = 4. 
subs(subs(gprime,g(x)=4),x=2); simplify(%);

1
p cosp

4
 + 1

- 4
p - 4


float(%);
4.659792366


