
Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

Fibonacci Heaps

These lecture slides are adapted
from CLRS, Chapter 20.

2

Priority Queues

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary

log N

1

log N

N

log N

log N

1

Binomial

log N

log N

log N

log N

log N

log N

1

Fibonacci †

1

1

log N

1

1

log N

1

Relaxed

1

1

log N

1

1

log N

1

Linked List

1

N

N

1

1

N

is-empty 1 1 1 11

Heaps

this time
† amortized

3

Fibonacci Heaps

Fibonacci heap history. Fredman and Tarjan (1986)

■ Ingenious data structure and analysis.

■ Original motivation: O(m + n log n) shortest path algorithm.
– also led to faster algorithms for MST, weighted bipartite matching

■ Still ahead of its time.

Fibonacci heap intuition.

■ Similar to binomial heaps, but less structured.

■ Decrease-key and union run in O(1) time.

■ "Lazy" unions.

4

Fibonacci Heaps: Structure

Fibonacci heap.

■ Set of min-heap ordered trees.

723

30

17

35

26 46

24

H 39

4118 52

3

44

min

marked

5

Fibonacci Heaps: Implementation

Implementation.

■ Represent trees using left-child, right sibling pointers and circular,
doubly linked list.

– can quickly splice off subtrees

■ Roots of trees connected with circular doubly linked list.
– fast union

■ Pointer to root of tree with min element.
– fast find-min

723

30

17

35

26 46

24

H 39

4118 52

3

44

min

6

Fibonacci Heaps: Potential Function

Key quantities.

■ Degree[x] = degree of node x.

■ Mark[x] = mark of node x (black or gray).

■ t(H) = # trees.

■ m(H) = # marked nodes.

■ Φ(H) = t(H) + 2m(H) = potential function.

723

30

17

35

26 46

24

H

t(H) = 5, m(H) = 3

Φ(H) = 11

39

4118 52

3

44

mindegree = 3

7

Fibonacci Heaps: Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.

723

30

17

35

26 46

24

H 39

4118 52

3

44

min
21

Insert 21

8

Fibonacci Heaps: Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.

39

41

723

18 52

3

30

17

35

26 46

24

44

min

H

21

Insert 21

9

Fibonacci Heaps: Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.

Running time. O(1) amortized

■ Actual cost = O(1).

■ Change in potential = +1.

■ Amortized cost = O(1).

39

41

7

18 52

3

30

17

35

26 46

24

44

min

H

2123

Insert 21

10

Fibonacci Heaps: Union

Union.

■ Concatenate two Fibonacci heaps.

■ Root lists are circular, doubly linked lists.

39

41

717

18 52

3

30

23

35

26 46

24

44

min

H’ H’’

21

min

11

Fibonacci Heaps: Union

Union.

■ Concatenate two Fibonacci heaps.

■ Root lists are circular, doubly linked lists.

Running time. O(1) amortized

■ Actual cost = O(1).

■ Change in potential = 0.

■ Amortized cost = O(1).

39

41

717

18 52

3

30

23

35

26 46

24

44

min

H’ H’’

21

12

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

4118 52

3

44

min

1723

30

7

35

26 46

24

13

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

411723 18 52

30

7

35

26 46

24

44

current
min

14

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

411723 18 52

30

7

35

26 46

24

44

current

0 1 2 3

min

15

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

411723 18 52

30

7

35

26 46

24

44

current

0 1 2 3

min

16

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

411723 18 52

30

7

35

26 46

24

44
current

0 1 2 3

min

17

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

411723 18 52

30

7

35

26 46

24

44
current

0 1 2 3

Merge 17 and 23 trees.

min

18

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

4117

23

18 52

30

7

35

26 46

24

44

current

0 1 2 3

Merge 7 and 17 trees.

min

19

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

417

30

18 52

17

35

26 46

24

44

current

0 1 2 3

23

Merge 7 and 24 trees.

min

20

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

417

30

18 52

23

17

35

26 46

24 44

current

0 1 2 3

min

21

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

417

30

18 52

23

17

35

26 46

24 44

current

0 1 2 3

min

22

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

417

30

18 52

23

17

35

26 46

24 44

current

0 1 2 3

min

23

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

39

417

30

18 52

23

17

35

26 46

24 44

current

0 1 2 3

Merge 41 and 18 trees.

min

24

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

3941

7

30

1852

23

17

35

26 46

24

44

current

0 1 2 3

min

25

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

3941

7

30

1852

23

17

35

26 46

24

44

current

0 1 2 3

min

26

Fibonacci Heaps: Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.

3941

7

30

1852

23

17

35

26 46

24

44

min

Stop.

27

Fibonacci Heaps: Delete Min Analysis

Notation.

■ D(n) = max degree of any node in Fibonacci heap with n nodes.

■ t(H) = # trees in heap H.

■ Φ(H) = t(H) + 2m(H).

Actual cost. O(D(n) + t(H))

■ O(D(n)) work adding min’s children into root list and updating min.
– at most D(n) children of min node

■ O(D(n) + t(H)) work consolidating trees.
– work is proportional to size of root list since number of roots

decreases by one after each merging
– ≤ D(n) + t(H) - 1 root nodes at beginning of consolidation

Amortized cost. O(D(n))

■ t(H’) ≤ D(n) + 1 since no two trees have same degree.

■ ∆Φ(H) ≤ D(n) + 1 - t(H).

28

Fibonacci Heaps: Delete Min Analysis

Is amortized cost of O(D(n)) good?

■ Yes, if only Insert, Delete-min, and Union operations supported.
– in this case, Fibonacci heap contains only binomial trees since

we only merge trees of equal root degree
– this implies D(n) ≤ log2 N

■ Yes, if we support Decrease-key in clever way.
– we’ll show that D(n) ≤ logφ N, where φ is golden ratio
– φ2 = 1 + φ
– φ = (1 + √5) / 2 = 1.618…
– limiting ratio between successive Fibonacci numbers!

29

Decrease key of element x to k.

■ Case 0: min-heap property not violated.
– decrease key of x to k
– change heap min pointer if necessary

24

46

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 46 to 45.
72

Fibonacci Heaps: Decrease Key

45

35

min

30

Decrease key of element x to k.

■ Case 1: parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer

24

45

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15.
72

Fibonacci Heaps: Decrease Key

15

35

min

31

Decrease key of element x to k.

■ Case 1: parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer

24

15

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15.
72

24

Fibonacci Heaps: Decrease Key

35

min

32

Decrease key of element x to k.

■ Case 1: parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer

24 17

30

23

7

88

26

21

52

39

18

41

38

Decrease 45 to 15.

24

Fibonacci Heaps: Decrease Key

35

min

15

72

33

35

Decrease key of element x to k.

■ Case 2: parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

24

15

17

30

23

7

88

26

21

52

39

18

41

38

Decrease 35 to 5.

72 24

Fibonacci Heaps: Decrease Key

5

min

34

Decrease key of element x to k.

■ Case 2: parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

24 17

30

23

7

26

21

52

39

18

41

38

Decrease 35 to 5.

24

5

Fibonacci Heaps: Decrease Key

88

parent marked

15

72

min

35

Decrease key of element x to k.

■ Case 2: parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

24

26

17

30

23

7

21

52

39

18

41

38

Decrease 35 to 5.

88 24

5

Fibonacci Heaps: Decrease Key

15

72

parent marked

min

36

Decrease key of element x to k.

■ Case 2: parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.

26

17

30

23

7

21

52

39

18

41

38

Decrease 35 to 5.

88

5

Fibonacci Heaps: Decrease Key

15 24

72

min

37

Notation.

■ t(H) = # trees in heap H.

■ m(H) = # marked nodes in heap H.

■ Φ(H) = t(H) + 2m(H).

Actual cost. O(c)

■ O(1) time for decrease key.

■ O(1) time for each of c cascading cuts, plus reinserting in root list.

Amortized cost. O(1)

■ t(H’) = t(H) + c

■ m(H’) ≤ m(H) - c + 2
– each cascading cut unmarks a node
– last cascading cut could potentially mark a node

■ ∆Φ ≤ c + 2(-c + 2) = 4 - c.

Fibonacci Heaps: Decrease Key Analysis

38

Delete node x.

■ Decrease key of x to -∞.

■ Delete min element in heap.

Amortized cost. O(D(n))

■ O(1) for decrease-key.

■ O(D(n)) for delete-min.

■ D(n) = max degree of any node in Fibonacci heap.

Fibonacci Heaps: Delete

39

Fibonacci Heaps: Bounding Max Degree

Definition. D(N) = max degree in Fibonacci heap with N nodes.
Key lemma. D(N) ≤ logφ N, where φ = (1 + √5) / 2.
Corollary. Delete and Delete-min take O(log N) amortized time.

Lemma. Let x be a node with degree k, and let y1, . . . , yk denote the
children of x in the order in which they were linked to x. Then:

Proof.

■ When yi is linked to x, y1, . . . , yi-1 already linked to x,
⇒ degree(x) = i - 1
⇒ degree(yi) = i - 1 since we only link nodes of equal degree

■ Since then, yi has lost at most one child
– otherwise it would have been cut from x

■ Thus, degree(yi) = i - 1 or i - 2

≥−
=

≥
1if2

1if0
)(degree

ii

i
yi

40

Fibonacci Heaps: Bounding Max Degree

Key lemma. In a Fibonacci heap with N nodes, the maximum degree of
any node is at most logφ N, where φ = (1 + √5) / 2.

Proof of key lemma.

■ For any node x, we show that size(x) ≥ φdegree(x) .
– size(x) = # node in subtree rooted at x
– taking base φ logs, degree(x) ≤ logφ (size(x)) ≤ logφ N.

■ Let sk be min size of tree rooted at any degree k node.
– trivial to see that s0 = 1, s1 = 2
– sk monotonically increases with k

■ Let x* be a degree k node of size sk,
and let y1, . . . , yk be children in order
that they were linked to x*.

Assume k ≥ 2

∑+=

∑+≥

∑+≥

∑+=

=

−

=

=
−

=

=

2

0

2
2

2
]deg[

2

2

2

2

)(2

*)(size

k

i
i

k

i
i

k

i
y

k

i
i

k

s

s

s

ysize

xs

i

41

Fibonacci Facts

Definition. The Fibonacci sequence is:

■ 1, 2, 3, 5, 8, 13, 21, . . .
• Slightly nonstandard definition.

Fact F1. Fk ≥ φk, where φ = (1 + √5) / 2 = 1.618…

Fact F2.

Consequence. sk ≥ Fk ≥ φk.

■ This implies that size(x) ≥ φdegree(x)

for all nodes x.

≥+
=
=

=
2ifFF

1if2

0if1

F

2-k1-k

k

k

k

k

∑+=≥
−

=

2

0
2,2For

k

i
ik F Fk

∑+=

∑+≥

∑+≥

∑+=

=

−

=

=
−

=

=

2

0

2
2

2
]deg[

2

2

2

2

)(2

*)(size

k

i
i

k

i
i

k

i
y

k

i
i

k

s

s

s

ysize

xs

i

42

Golden Ratio

Definition. The Fibonacci sequence is: 1, 2, 3, 5, 8, 13, 21, . . .
Definition. The golden ratio φ = (1 + √5) / 2 = 1.618…

■ Divide a rectangle into a square and smaller rectangle such that the
smaller rectangle has the same ratio as original one.

Parthenon, Athens Greece

43

Fibonacci Facts

44

Fibonacci Numbers and Nature

Pinecone

Cauliflower

45

Fibonacci Proofs

Fact F1. Fk ≥ φk.
Proof. (by induction on k)

■ Base cases:
– F0 = 1, F1 = 2 ≥ φ.

■ Inductive hypotheses:
– Fk ≥ φk and Fk+1 ≥ φk+1

Fact F2.
Proof. (by induction on k)

■ Base cases:
– F2 = 3, F3 = 5

■ Inductive hypotheses:

∑+=≥
−

=

2

0
2,2For

k

i
ik F Fk

2

2

1
12

)(

)1(

+

+
++

=
=

+=
+≥
+=

k

k

k

kk
kkk FFF

ϕ
ϕϕ

ϕϕ
ϕϕ

φ2 = φ + 1

∑+=
−

=

2

0
2

k

i
ik FF ∑+=

∑ ++=

+=

=

−

=
+

++

k

i
k

k

i
ki

kkk

F

FF

FFF

0

2

0
1

12

2

2

46

On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated
algorithms, they usually run extremely fast. The computer doesn’t
need to understand the algorithm, its task is only to run the
programs."

R. E. Tarjan

