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Fibonacci Heaps

These lecture slides are adapted
from CLRS, Chapter 20.
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Fibonacci Heaps

Fibonacci heap history.  Fredman and Tarjan (1986)

■ Ingenious data structure and analysis.

■ Original motivation:  O(m + n log n) shortest path algorithm.
– also led to faster algorithms for MST, weighted bipartite matching

■ Still ahead of its time.

Fibonacci heap intuition.

■ Similar to binomial heaps, but less structured.

■ Decrease-key and union run in O(1) time.

■ "Lazy" unions.
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Fibonacci Heaps:  Structure

Fibonacci heap.

■ Set of min-heap ordered trees.
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Fibonacci Heaps:  Implementation

Implementation.

■ Represent trees using left-child, right sibling pointers and circular, 
doubly linked list.

– can quickly splice off subtrees

■ Roots of trees connected with circular doubly linked list.
– fast union

■ Pointer to root of tree with min element.
– fast find-min
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Fibonacci Heaps:  Potential Function

Key quantities.

■ Degree[x] = degree of node x.

■ Mark[x] = mark of node x (black or gray).

■ t(H) = # trees.

■ m(H) = # marked nodes.

■ Φ(H) = t(H) + 2m(H) = potential function.
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Fibonacci Heaps:  Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.
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Fibonacci Heaps:  Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.
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Fibonacci Heaps:  Insert

Insert.

■ Create a new singleton tree.

■ Add to left of min pointer.

■ Update min pointer.

Running time.  O(1) amortized

■ Actual cost = O(1).

■ Change in potential = +1.

■ Amortized cost = O(1).
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Fibonacci Heaps:  Union

Union.

■ Concatenate two Fibonacci heaps.

■ Root lists are circular, doubly linked lists.
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Fibonacci Heaps:  Union

Union.

■ Concatenate two Fibonacci heaps.

■ Root lists are circular, doubly linked lists.

Running time.  O(1) amortized

■ Actual cost = O(1).

■ Change in potential = 0.

■ Amortized cost = O(1).
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min

Delete min.

■ Delete min and concatenate its children into root list.

■ Consolidate trees so that no two roots have same degree.
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Fibonacci Heaps:  Delete Min Analysis

Notation.

■ D(n) =  max degree of any node in Fibonacci heap with n nodes.

■ t(H) =  # trees in heap H.

■ Φ(H) =  t(H) + 2m(H).

Actual cost.   O(D(n) + t(H))

■ O(D(n)) work adding min’s children into root list and updating min.
– at most D(n) children of min node

■ O(D(n) + t(H)) work consolidating trees.
– work is proportional to size of root list since number of roots 

decreases by one after each merging
– ≤ D(n) + t(H) - 1 root nodes at beginning of consolidation

Amortized cost.  O(D(n))

■ t(H’)  ≤ D(n) + 1 since no two trees have same degree.

■ ∆Φ(H) ≤ D(n) + 1 - t(H).
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Fibonacci Heaps:  Delete Min Analysis

Is amortized cost of O(D(n)) good?

■ Yes, if only Insert, Delete-min, and Union operations supported.
– in this case, Fibonacci heap contains only binomial trees since 

we only merge trees of equal root degree
– this implies D(n)  ≤ log2 N

■ Yes, if we support Decrease-key in clever way.
– we’ll show that D(n)  ≤ logφ N, where φ is golden ratio
– φ2 = 1 + φ
– φ = (1 + √5) / 2 = 1.618…
– limiting ratio between successive Fibonacci numbers!



29

Decrease key of element x to k.

■ Case 0:  min-heap property not violated.
– decrease key of x to k
– change heap min pointer if necessary
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 1:  parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 1:  parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 1:  parent of x is unmarked.
– decrease key of x to k
– cut off link between x and its parent
– mark parent
– add tree rooted at x to root list, updating heap min pointer
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35

Decrease key of element x to k.

■ Case 2:  parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 2:  parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 2:  parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.
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Fibonacci Heaps:  Decrease Key
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Decrease key of element x to k.

■ Case 2:  parent of x is marked.
– decrease key of x to k
– cut off link between x and its parent p[x], and add x to root list
– cut off link between p[x] and p[p[x]], add p[x] to root list

! If p[p[x]] unmarked, then mark it.
! If p[p[x]] marked, cut off p[p[x]], unmark, and repeat.
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Fibonacci Heaps:  Decrease Key
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Notation.

■ t(H) =  # trees in heap H.

■ m(H) =  # marked nodes in heap H.

■ Φ(H) =  t(H) + 2m(H).

Actual cost.  O(c)

■ O(1) time for decrease key.

■ O(1) time for each of c cascading cuts, plus reinserting in root list.

Amortized cost.  O(1)

■ t(H’) =  t(H) + c

■ m(H’) ≤ m(H) - c + 2
– each cascading cut unmarks a node
– last cascading cut could potentially mark a node

■ ∆Φ ≤ c + 2(-c + 2)  =  4 - c.

Fibonacci Heaps: Decrease Key Analysis
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Delete node x.

■ Decrease key of x to -∞.

■ Delete min element in heap.

Amortized cost. O(D(n))

■ O(1) for decrease-key.

■ O(D(n)) for delete-min.

■ D(n) = max degree of any node in Fibonacci heap.

Fibonacci Heaps:  Delete

39

Fibonacci Heaps:  Bounding Max Degree

Definition.  D(N) = max degree in Fibonacci heap with N nodes.
Key lemma.  D(N) ≤ logφ N, where φ = (1 + √5) / 2.
Corollary. Delete and Delete-min take O(log N) amortized time.

Lemma. Let x be a node with degree k, and let y1, . . . , yk denote the 
children of x in the order in which they were linked to x.  Then:

Proof.

■ When yi is linked to x, y1, . . . , yi-1 already linked to x,
⇒ degree(x)  = i - 1
⇒ degree(yi) = i - 1 since we only link nodes of equal degree

■ Since then, yi  has lost at most one child
– otherwise it would have been cut from x

■ Thus, degree(yi) = i - 1  or  i - 2
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Fibonacci Heaps:  Bounding Max Degree

Key lemma. In a Fibonacci heap with N nodes, the maximum degree of 
any node is at most logφ N, where φ = (1 + √5) / 2.

Proof of key lemma.

■ For any node x, we show that size(x)  ≥ φdegree(x) .
– size(x) = # node in subtree rooted at x
– taking base φ logs, degree(x) ≤ logφ (size(x))  ≤ logφ N.

■ Let sk be min size of tree rooted at any degree k node.
– trivial to see that s0 = 1, s1 = 2
– sk monotonically increases with k

■ Let x* be a degree k node of size sk,
and let y1, . . . , yk be children in order
that they were linked to x*.

Assume k ≥ 2
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Fibonacci Facts

Definition. The Fibonacci sequence is:

■ 1, 2, 3, 5, 8, 13, 21, . . .
• Slightly nonstandard definition.

Fact F1. Fk  ≥ φk, where φ =  (1 + √5) / 2  =  1.618…

Fact F2.

Consequence. sk   ≥ Fk  ≥ φk.

■ This implies that size(x) ≥ φdegree(x)

for all nodes x.
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Golden Ratio

Definition. The Fibonacci sequence is:  1, 2, 3, 5, 8, 13, 21, . . .
Definition. The golden ratio φ =  (1 + √5) / 2  =  1.618…

■ Divide a rectangle into a square and smaller rectangle such that the 
smaller rectangle has the same ratio as original one.

Parthenon, Athens Greece
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Fibonacci Facts

44

Fibonacci Numbers and Nature

Pinecone

Cauliflower
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Fibonacci Proofs

Fact F1. Fk ≥ φk.
Proof. (by induction on k)

■ Base cases:
– F0 = 1,  F1 = 2  ≥ φ.

■ Inductive hypotheses:
– Fk ≥ φk and Fk+1 ≥ φk+1

Fact F2.
Proof. (by induction on k)

■ Base cases:
– F2 = 3, F3 = 5

■ Inductive hypotheses:
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On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated 
algorithms, they usually run extremely fast. The computer doesn’t 
need to understand the algorithm, its task is only to run the 
programs."

R. E. Tarjan


