Algebraic multiplicity of λ_{0} is $\max k$ s.t. $\left(\lambda-\lambda_{0}\right)^{k}$ divides $P_{A}(\lambda)$

Geometric multiplicity of λ_{0} is $\operatorname{dim} V_{\lambda_{0}}$

Th.: $1 \leq$ Geo. \leq Alge.
\qquad

Th.:

1. eigenvectors of different eigenvalues are linearly independent
2. $A \in \mathbb{F}^{n \times n}$ is diagonalizable \Longleftrightarrow
$\exists \mathrm{n}$ linearly independent eigenvectors \Longleftrightarrow \exists an eigenvectors basis \Longleftrightarrow
$P_{A}(\lambda)=\prod_{i}\left(\lambda-\lambda_{i}\right)^{\alpha_{i}}$ and for all λ_{i} : Geo. $=$ Alge. \Longleftrightarrow $m_{A}(\lambda)=\prod_{i}\left(\lambda-\lambda_{i}\right)$
1) λ is eigenvalue $\Longleftrightarrow P_{A}(\lambda)=|\lambda I-A|=0$
2) v is eigenvector $\Longleftrightarrow 0 \neq v \in V_{\lambda}=N(A-\lambda I)=\{v: A v=\lambda v\}$

$A \in \mathbb{F}^{n \times n}$ is diagonalizable if:
$\exists P: P^{-1} A P=\left(\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right)$

Note: $P=\left(v_{1}, \ldots v_{n}\right), v_{i}$ is eigenvector and λ_{i} its eigenvalue

\downarrow

Th.: For a normal matrix $A \in \mathbb{C}^{n \times n}$:

1. it is diagonalizable by unitary matrix, i.e.
$\exists P$ unitary: $P^{*} A P=\left(\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right)\left(P^{*}=P^{-1}\right)$
2. eigenvectors of different eigenvalues are orthogonal.

Th.: For a complex hermitian matrix $A^{*}=A: \forall i: \lambda_{i} \in \mathbb{R}$ \downarrow

Th.: For a real $A \in \mathbb{R}^{n \times n}$ symmetric matrix $A^{t}=A$:
P is (also) real matrix and $P^{-1}=P^{*}=P^{t}$, i.e.,
$\exists P: P^{t} A P=\left(\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right) \quad\left(P^{t}=P^{-1}\right)$

