Th. (Cayley-Hamilton)
$$P_n(A) = 0$$

Algebraic multiplicity of λ_n is
max k s.t. $(\lambda - \lambda_0)^k$ divides $P_A(\lambda)$
(Beometric multiplicity of λ_0 is digenvalue $\leftrightarrow P_A(\lambda) = |\lambda I - A| = 0$
 \downarrow
(Beometric multiplicity of λ_0 is digenvalue $\leftrightarrow P_A(\lambda) = |\lambda I - A| = 0$
 \downarrow
(Civen $A \in \mathbb{F}^{n \times n}$
(Find $v \neq 0, \lambda: Av = \lambda v$
 $\lambda - eigenvalue, v - eigenvector
 $\lambda - eigenvalue, v - eigenvector$
(Civen $A \in \mathbb{F}^{n \times n}$
(Civen $A \in \mathbb{F}^{n \times n}$)
(Civen $A \in \mathbb{F}^{n \times n}$
(Civen $A \in \mathbb{F}^{n \times n}$)
(Civen $A \in \mathbb{F}^{n \times n}$
(Civen $A \in \mathbb{F}^{n \times n}$)
(Civen$