הבדלים בין גרסאות בדף "שיחת משתמש:Nimrod"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(לינארית: תרגיל 1, 2.8א)
(החלפת הדף בתוכן "לא הצלחתי להשיג אותך, תתקשר אלי בהזדמנות. ~~~~")
 
(43 גרסאות ביניים של 4 משתמשים אינן מוצגות)
שורה 1: שורה 1:
== בדידה: תרגיל 1, 4.ג' ==
+
לא הצלחתי להשיג אותך, תתקשר אלי בהזדמנות. [[משתמש:אור שחף|אור שחף]]<sup>[[שיחת משתמש:אור שחף|שיחה]]</sup> 17:03, 5 ביולי 2012 (IDT)
 
+
צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')</math>). -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:01, 26 ביולי 2010 (IDT)
+
 
+
== לינארית: תרגיל 1, 2.8א ==
+
 
+
אתה רוצה להראות ש-<math>\frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. מתקיים: <math>\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}</math>. מכיוון ש-<math>a^2-b^2 p \in \mathbb{F}</math> הטענה נכונה. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 18:46, 27 ביולי 2010 (IDT)
+
:<math>\left(a^2-b^2 p\right)^{-1} \in \mathbb{F} \subset \mathbb{F}[\sqrt{p}]</math> ולכן <math>\frac{a}{a^2-b^2 p} \in \mathbb{F} \and \frac{-b}{a^2-b^2 p} \in \mathbb{F}</math>. לפי הגדרת <math>\mathbb{F}[\sqrt{p}]</math> ולפי דיסטריביוטיביות (שאותה צ"ל, זה קל) נובע ש-<math> \frac{a-b\sqrt{p}}{a^2-b^2 p} \in \mathbb{F}[\sqrt{p}]</math> ואז, לפי <math>x^2-y^2=(x+y)(x-y)</math> (צ"ל), <math>\frac{x}{x}=1</math> ואסוציאטיביות (צ"ל) מתקיים <math> \frac{a-b\sqrt{p}}{a^2-b^2 p} = \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:44, 27 ביולי 2010 (IDT)
+
::בזכות תומר שמתי לב ש-p לא בהכרח שייך ל-F, חכו. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 20:07, 27 ביולי 2010 (IDT)
+
:::ברגע שמוכיחים סגירות נובע מכך: <math>a^2-b^2 p \in \mathbb{F}[\sqrt{p}]</math>.  ניסיתי להוכיח סגירות: <math>(a+b\sqrt{p})(c+d\sqrt{p})=^\text{(distributivity)}ac+bdp+ad\sqrt{p}+bc\sqrt{p}=^\text{(associativity)}(ac+bdp)+(ad+bc)\sqrt{p}</math>. בזכות הגדרת <math>\mathbb{F}[\sqrt{p}]</math>, נותר להוכיח ש-<math>ac+bdp \in \mathbb{F}</math>, אבל בגלל קיום איבר נגדי, איבר הופכי וסגירות החיבור והכפל ב-F, צריך להתקיים ש-p שייך ל-F. חכו רגע, או שטעיתי או שיש פה משהו מתוחכם שלא ראיתי. נ.ב. נמרוד, למה מחקת? -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 20:37, 27 ביולי 2010 (IDT)
+
 
+
בגלל שעדיף לא לציין מה שיש בו טעות אלה רק מה שנכון
+
:חשבתי שאולי תנסו למצוא טעות (ואולי נובע מכך שלכל תת-שדה של R כל הראשוניים שייכים לתת-שדה). בכל מקרה, רוב מה שכתבתי ישמש אותנו גם אם טעיתי. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 21:20, 27 ביולי 2010 (IDT)
+
 
+
==אור תתקשר אליי דחוף 03-5344111!!!!!==
+

גרסה אחרונה מ־14:03, 5 ביולי 2012

לא הצלחתי להשיג אותך, תתקשר אלי בהזדמנות. אור שחףשיחה 17:03, 5 ביולי 2012 (IDT)