הבדלים בין גרסאות בדף "שיחת משתמש:Nimrod"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(דף חדש: == תרגיל 1, 4.ג' == צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigc…)
 
(תרגיל 1, 2.8א: פסקה חדשה)
שורה 1: שורה 1:
 
== תרגיל 1, 4.ג' ==
 
== תרגיל 1, 4.ג' ==
 
צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')</math>). -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:01, 26 ביולי 2010 (IDT)
 
צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')</math>). -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:01, 26 ביולי 2010 (IDT)
 +
 +
== תרגיל 1, 2.8א ==
 +
 +
צריך להראות <math>\frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. מתקיים: <math>\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}</math>. מכיוון ש-<math>a^2-b^2 p \in \mathbb{F}</math> הטענה נכונה. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 18:46, 27 ביולי 2010 (IDT)

גרסה מ־15:46, 27 ביולי 2010

תרגיל 1, 4.ג'

צ"ל A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i) ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: \bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')). -אור שחף, שיחה, 19:01, 26 ביולי 2010 (IDT)

תרגיל 1, 2.8א

צריך להראות \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]. מתקיים: \frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}. מכיוון ש-a^2-b^2 p \in \mathbb{F} הטענה נכונה. -אור שחף, שיחה, 18:46, 27 ביולי 2010 (IDT)