הבדלים בין גרסאות בדף "שיחת משתמש:Nimrod"
מתוך Math-Wiki
(←תרגיל 1, 2.8א: פסקה חדשה) |
(←תרגיל 1, 2.8א) |
||
שורה 4: | שורה 4: | ||
== תרגיל 1, 2.8א == | == תרגיל 1, 2.8א == | ||
− | + | אתה רוצה להראות ש-<math>\frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. מתקיים: <math>\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}</math>. מכיוון ש-<math>a^2-b^2 p \in \mathbb{F}</math> הטענה נכונה. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 18:46, 27 ביולי 2010 (IDT) | |
+ | :<math>\left(a^2-b^2 p\right)^{-1} \in \mathbb{F} \subset \mathbb{F}[\sqrt{p}]</math> ולכן <math>\frac{a}{a^2-b^2 p} \in \mathbb{F} \and \frac{-b}{a^2-b^2 p} \in \mathbb{F}</math>. לפי הגדרת <math>\mathbb{F}[\sqrt{p}]</math> ולפי דיסטריביוטיביות (שאותה צ"ל, זה קל) נובע ש-<math> \frac{a-b\sqrt{p}}{a^2-b^2 p} \in \mathbb{F}[\sqrt{p}]</math> ואז, לפי <math>x^2-y^2=(x+y)(x-y)</math> (צ"ל), <math>\frac{x}{x}=1</math> ואסוציאטיביות (צ"ל) מתקיים <math> \frac{a-b\sqrt{p}}{a^2-b^2 p} = \frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:44, 27 ביולי 2010 (IDT) |
גרסה מ־16:44, 27 ביולי 2010
תרגיל 1, 4.ג'
צ"ל ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: ). -אור שחף, שיחה, 19:01, 26 ביולי 2010 (IDT)
תרגיל 1, 2.8א
אתה רוצה להראות ש-. מתקיים: . מכיוון ש- הטענה נכונה. -אור שחף, שיחה, 18:46, 27 ביולי 2010 (IDT)