הבדלים בין גרסאות בדף "שיחת משתמש:Nimrod"
מתוך Math-Wiki
(←תרגיל 1, 2.8א) |
מ |
||
שורה 1: | שורה 1: | ||
− | == תרגיל 1, 4.ג' == | + | == בדידה: תרגיל 1, 4.ג' == |
צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')</math>). -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:01, 26 ביולי 2010 (IDT) | צ"ל <math>A\cap \bigcup_{i=1}^n B_i = \bigcup_{i=1}^n (A\cap B_i)</math> ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: <math>\bigcup_{i=1}^n A_i \cap \bigcup_{j=1}^m B_j' = \bigcup_{i=1}^n(A_i \cap \bigcup_{j=1}^m B_j') = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \cap B_j')</math>). -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 19:01, 26 ביולי 2010 (IDT) | ||
− | == תרגיל 1, 2.8א == | + | == לינארית: תרגיל 1, 2.8א == |
אתה רוצה להראות ש-<math>\frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. מתקיים: <math>\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}</math>. מכיוון ש-<math>a^2-b^2 p \in \mathbb{F}</math> הטענה נכונה. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 18:46, 27 ביולי 2010 (IDT) | אתה רוצה להראות ש-<math>\frac{1}{a+b\sqrt{p}} \in \mathbb{F}[\sqrt{p}]</math>. מתקיים: <math>\frac{1}{a+b\sqrt{p}} = \frac{a-b\sqrt{p}}{a^2-b^2 p}</math>. מכיוון ש-<math>a^2-b^2 p \in \mathbb{F}</math> הטענה נכונה. -[[משתמש:אור שחף|אור שחף]], [[שיחת משתמש:אור שחף|שיחה]], 18:46, 27 ביולי 2010 (IDT) |
גרסה מ־19:10, 27 ביולי 2010
בדידה: תרגיל 1, 4.ג'
צ"ל ואח"כ אתה משתמש בזה פעמיים (כדי להראות ש: ). -אור שחף, שיחה, 19:01, 26 ביולי 2010 (IDT)
לינארית: תרגיל 1, 2.8א
אתה רוצה להראות ש-. מתקיים: . מכיוון ש- הטענה נכונה. -אור שחף, שיחה, 18:46, 27 ביולי 2010 (IDT)
- ולכן . לפי הגדרת ולפי דיסטריביוטיביות (שאותה צ"ל, זה קל) נובע ש- ואז, לפי (צ"ל), ואסוציאטיביות (צ"ל) מתקיים . -אור שחף, שיחה, 19:44, 27 ביולי 2010 (IDT)
בגלל שעדיף לא לציין מה שיש בו טעות אלה רק מה שנכון