הבדלים בין גרסאות בדף "שיחה:88-132 סמסטר א' תשעא"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
מ (שאלה כללית)
(בקשה לפתרון הבוחן: פסקה חדשה)
שורה 22: שורה 22:
  
 
:לא רשום תיקון הוא פשוט מתוקן. היה בצד הימני n+1 במקום n-1, זה הכל. --[[משתמש:ארז שיינר|ארז שיינר]] 14:46, 9 בנובמבר 2010 (IST)
 
:לא רשום תיקון הוא פשוט מתוקן. היה בצד הימני n+1 במקום n-1, זה הכל. --[[משתמש:ארז שיינר|ארז שיינר]] 14:46, 9 בנובמבר 2010 (IST)
 +
 +
== בקשה לפתרון הבוחן ==
 +
 +
שלום רב,
 +
 +
אמנם הבוחן של הקבוצה של פרופסור זלצמן הוא ב-22/11 אבל לקבוצות של התיכוניסטים (ד"ר הורוביץ וד"ר שיין) יש בוחן ב-14/11. אני מאמין שאני מדבר בשמם של כל התיכוניסטים בבקשה להעלות את הפתרון לאתר עוד לפני הבוחן שלנו, זה מאוד יעזור לנו. תודה בכל מקרה! [[משתמש:Gordo6|גל]].

גרסה מ־20:04, 9 בנובמבר 2010

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון

שאלות

שאלה כללית

אם לסדרה יש גבול חלקי אחד ויחיד ז"א שהסידרה מתכנסת לגבול זה?

בשאלה 2.b בתרגיל 4 אתם נדרשים להוכיח את זה --ארז שיינר 21:30, 8 בנובמבר 2010 (IST)
בהוכחה שלי לשאלה זאת הנחתי כמו ברמז שהגבול הוא משהו אחר ואז הגעתי לסתירה. אבל מה אם הגבול בכלל לא קיים?
מצב כזה יכול בכלל להתרחש?
אם כך, לא הוכחת את מה שהיה צריך להוכיח. כאשר רשום להוכיח שהגבול הינו L הכוונה שצריך להראות שיש גבול והוא L. מה שרשום שם אומר במפורש שאם הגבול החלקי העליון והתחתון שווים (זה בפרט המקרה של קיום גבול חלקי יחיד) אזי הסדרה מתכנסת לגבול הזה. --ארז שיינר 00:18, 9 בנובמבר 2010 (IST)

תיקון שאלה 4 תרגיל 5

על איזה תיקון בשאלה 4 תרגיל 5 אתה מדבר? בתרגיל עצמו לא מופיע תיקון...

לא רשום תיקון הוא פשוט מתוקן. היה בצד הימני n+1 במקום n-1, זה הכל. --ארז שיינר 14:46, 9 בנובמבר 2010 (IST)

בקשה לפתרון הבוחן

שלום רב,

אמנם הבוחן של הקבוצה של פרופסור זלצמן הוא ב-22/11 אבל לקבוצות של התיכוניסטים (ד"ר הורוביץ וד"ר שיין) יש בוחן ב-14/11. אני מאמין שאני מדבר בשמם של כל התיכוניסטים בבקשה להעלות את הפתרון לאתר עוד לפני הבוחן שלנו, זה מאוד יעזור לנו. תודה בכל מקרה! גל.