הבדלים בין גרסאות בדף "שיחה:88-132 סמסטר א' תשעא"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(גדולללללל: פסקה חדשה)
(שאלה כללית)
שורה 31: שורה 31:
  
 
בכדי להראות שאפסילון גדול 1\שורש n אפשר להישתמש בארכימדס ואם כן אז איך בדיוק?
 
בכדי להראות שאפסילון גדול 1\שורש n אפשר להישתמש בארכימדס ואם כן אז איך בדיוק?
 +
 +
===תשובה===
 +
לא רוצים להראות שאפסילון גדול מאחד חלק שורש n אלא רוצים להראות שקיים n שמקיים את אי השיוויון הנ"ל. לכן, רוצים n שמקיים את אי השיוויון <math>n>\frac{1}{\epsilon^2}</math> (העלאנו בריבוע ועשינו 'אחד חלקי').
 +
 +
עכשיו <math>\frac{1}{\epsilon^2}</math>  מספר ממשי ולכן לפי ארכימדס קיים מספר טבעי גדול ממנו, כפי שרצינו.
  
 
== עוד שאלה כללית:] ==
 
== עוד שאלה כללית:] ==

גרסה מ־20:27, 17 בנובמבר 2010

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון

שאלות

שאלה 1 תרגיל 6

האם שאלה 1 תרגיל 6 הכוונה למתבדר/מתכנס במובן הרחב או במובן הצר?

תשובה

במובן הצר. כלומר מתכנס = מתכנס לגבול ממשי ומתבדר = לא מתכנס לגבול ממשי. --ארז שיינר 16:52, 16 בנובמבר 2010 (IST)

טור מתבדר

אם טור מתבדר אז אפשר להגיד ש0.5 טור גם מתבדר??

תשובה

יש משפט שאומר שאם \sum a_n מתכנס אז גם \sum 2\cdot a_n מתכנס. תסיק לבד --ארז שיינר 22:57, 16 בנובמבר 2010 (IST)

שאלה כללית

בכדי להראות שאפסילון גדול 1\שורש n אפשר להישתמש בארכימדס ואם כן אז איך בדיוק?

תשובה

לא רוצים להראות שאפסילון גדול מאחד חלק שורש n אלא רוצים להראות שקיים n שמקיים את אי השיוויון הנ"ל. לכן, רוצים n שמקיים את אי השיוויון n>\frac{1}{\epsilon^2} (העלאנו בריבוע ועשינו 'אחד חלקי').

עכשיו \frac{1}{\epsilon^2} מספר ממשי ולכן לפי ארכימדס קיים מספר טבעי גדול ממנו, כפי שרצינו.

עוד שאלה כללית:]

צריך לדעת \ לכתוב בתרגיל [כלשהו] את ההוכחה לכך שהגבול של שורש n של n הוא 1? , או שמספיק לומר "ידוע שהגבול של an="..." הוא 1?

הבהרת מושגים

לפני כשבוע כתבתי sup{an}, וארז, אמרת שזה סימון לא נכון ושזה לא קיים, אך כך הגדרנו בהרצאה ובתרגול את הסופ' של הקבוצה של איברי an מהאיבר הn.

תרגיל 6

האם בטורים קיים משפט הסנדוויץ?

גדולללללל

בואנה אדווה כל הכבודדדד! חבר'ה תסתכלו על פתרון של תרגיל 5 יש הוסיפו שמה דרך פתרון נוספת שאדווה חשבה עליה....