הבדלים בין גרסאות בדף "שיחה:88-132 סמסטר א' תשעא"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(תרגיל 11 שאלה 4)
(משפט ערך הביניים)
שורה 107: שורה 107:
  
 
בהוכחה, נראה שלנתון הזה שהקטע סגור יש משמעות, כי השתמשו בלמה של קאנטור (עבור קטעים מקוננים), ובה חשוב שהקטעים הם סגורים - ושוב, אני לא רואה את החשיבות, גם בלמה.
 
בהוכחה, נראה שלנתון הזה שהקטע סגור יש משמעות, כי השתמשו בלמה של קאנטור (עבור קטעים מקוננים), ובה חשוב שהקטעים הם סגורים - ושוב, אני לא רואה את החשיבות, גם בלמה.
 +
 +
===תשובה===
 +
בוא תנסה לנסח את המשפט בקטע פתוח, ואז לחשוב לבד אם הוא נכון, זה תרגיל קל (גם עשינו אותו בכיתה פחות או יותר). --[[משתמש:ארז שיינר|ארז שיינר]] 19:39, 1 בינואר 2011 (IST)
  
 
== תרגיל 10 שאלה 7 b ==
 
== תרגיל 10 שאלה 7 b ==

גרסה מ־17:39, 1 בינואר 2011

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון


שאלות

תרגיל 11 שאלה 2

בתרגיל 2 הכוונה לרציפות במ"ש בקטע סופי?

אממ... שיהיה בקטע כלשהו, זה לא ממש משנה. --ארז שיינר 14:21, 29 בדצמבר 2010 (IST)

שאלה אל רציפות במ"ש

פונקציה מחזורית רציפה במידה שווה בגלל שהיא חסומה? האם כל הפונקציות מחזוריות רציפות במ"ש?

לא. חסימות לא גורר רציפות במ"ש. יש משפט שפונקציה מחזורית שרציפה בכל הממשיים היא רציפה במ"ש. --ארז שיינר 16:22, 29 בדצמבר 2010 (IST)

שאלה

האם ההרכבה של פונקציה מחזורית אל פונקציה שאינה מחזורית היא גם מחזורית?

לא בהכרח. למשל sin(x^2) אינה מחזורית. אבל הרכבה של פונקציה כלשהי על פונקציה מחזורית היא תמיד מחזורית, למשל f(sin(x)) מחזורית לכל f. --ארז שיינר 23:35, 29 בדצמבר 2010 (IST)

תרגיל 10 שאלה 4

בקשר לזה שצריך שהפונקציה תהיה חסומה מלעיל ומלרע בקטע [0,1) - אז העובדה שהפו' צריכה להיות רציפה גם ב1 עצמו לא סותר את זה שהיא תהיה חסומה? כי כל הפונקציות שאני מוצא שמתאימות לתרגיל, יש להן אסימפטוטות ב0 (שבו שהפו' שואפת למינוס אינסוף) וב1 (שבו הפו' שואפת לאינסוף), אבל העובדה שצריך שהפו' תהיה רציפה גם ב 1 עצמו הורסת את הדוגמאות הנגדיות מכיוון שהפונקציות ששואפות לאינסוף ב1, לא מוגדרות ב1. אפשר עזרה/הכוונה לגבי העניין הזה? תודה!

אתה מתכוון וודאי ללא חסומה במקום חסומה. זה נכון, בצד של אחד הפונקציה חייבת להיות חסומה. לכן אי אפשר לקחת פונקציה ששואפת לאינסוף או למינוס אינסוף באפס כי אז אתה מאבד אחד מהם. צריך למצוא פונקציה שגם עולה וגם יורדת באפס. --ארז שיינר 23:36, 29 בדצמבר 2010 (IST)
פונקציה רציפה שמתכנסת גם לאינסוף וגם למינוס אינסוף?? (זה לא נשמע כזה הגיוני)
נראה לי שמצאתי פונקציה טובה. תודה

תרגיל 11-שאלה 4, סעיף A

האם הרכבה של פונק' לא רציפה על פונק' רציפה,בהכרח לא רציפה?

תשובה

ממש לא, גם לגבי במ"ש וגם רציפות רגילה.

רציפות רגילה: ניקח f=\frac{1}{x},g=1+x^2 אזי f\circ g = \frac{1}{1+x^2}

רציפות במ"ש: ניקח f=lnx,g=e^x. בקטע (1,\infty) הפונקציה lnx רציפה במ"ש בעוד e^x אינה רציפה במ"ש אבל ההרכבה שלהן x רציפה במ"ש.

--ארז שיינר 23:33, 29 בדצמבר 2010 (IST)

תרגיל 10- שאלה 6 - סעיף c

בטוח שצריך להיות קטן שווה ולא קטן ממש? (בכל מקרה, תמיד מותר לי להגיד שאם a קטן ממש מ-b הוא גם קטן שווה ל-b, נכון?)

כן, זה לא משנה, מה שקטן ממש הוא בפרט קטן שווה. --ארז שיינר 23:37, 29 בדצמבר 2010 (IST)

תרגיל 11 שאלה 1

אפשר כיוון/ דרך לפתרון? חשבתי על זה הרבה ואין לי שמץ של מושג מאיפה להתחיל אפילו..

מה יכולים להיות ההפרשים בציר y אם הפונקציה שואפת לגבול מסוים? --ארז שיינר 19:40, 30 בדצמבר 2010 (IST)

תרגיל 10 שאלה 2

שאם אפשר להשתמש בכך שאפשר לחלק כל פונקציה רציפה לקטעים בהם היא מונוטונית?\

הצלחתי גם בלי זה, אבל בכל מקרה, זה בסדר?
דבר ראשון אני לא בטוח מאיפה המשפט הזה ובאיזה תנאים הוא נכון אם בכלל. שנית, אני לא רואה את הקשר לתרגיל, זה תרגיל למשפט ערך הביניים. --ארז שיינר 19:14, 1 בינואר 2011 (IST)

תרגיל 10 שאלה 7

האם צריך להוכיח דברים שקשה מאוד להוכיח אותם כגון בסעיף ב' שהפונקציה שואפת לאינסוף מהכיוון החיובי כאשר X שואף ל 2^(nPie) מהכיוון החיובי? או שאפשר להגיד את זה?

תרגיל 10- שאלה 2

אפשר בבקשה כיוון/רמז?

מצטרף לבקשה
(רמז לא ממתרגל) אתה נדרש להוכיח שקיים a עבורו f(a)=\frac{1}{a}. מהי הפונקציה הכי פשוטה עליה אתה מסוגל לחשוב בה h(a)=\frac{1}{a}? בנה בעזרת שתי אלו פונקציה אחרת כך שהפונקציה תתאפס בנקודה שתעזור לך להוכיח את הדרוש (הראה כי הפונקציה אכן מתאפסת!). גל א.
רמז אחר (גם לא מתרגל): משפט ערך הביניים אומר שלכל ערך קבוע (שאינו תלוי במקור) בין f(0), f(2) יש מקור בין 0 ל-2. שנה את הפונקציה כך שתצטרך למצוא מקור לערך קבוע במקום ל-\frac{1}{a}. נ"ב: מתי עזרה עוברת את הגבול המותר והופכת למתן תשובה? כלומר, עד כמה מותר לנו לעזור אחד לשני?

רציפות פונקציה

האם פונקציה רציפה היא פונקציה מונוטונית (לא עולה/לא יורדת) ולהפך - מונוטונית היא רציפה? תודה!

פונקציה מונוטנית היא רציפה אם אין לה שום נקודת אי רציפות, ופונקציה רציפה לא בהכרח מונוטינית (דוגמא: x^2)... אני משארת שהתכוונת לשאול על רציפות במ"ש אבל גם אז.. פונקציה מונוטונית אומנם רציפה במידה שווה אבל פונקציה אשר רציפה במידה שווה לא מונוטונית בהכרח...
לעניות דעתי פונקציה מונוטונית אינה בהכרח רציפה במ"ש כפי שכתבת, אפילו אם היא רציפה. לדוגמה הפונקציה שנתת x^2 בקטע R+. -לידור.א.- 22:30, 31 בדצמבר 2010 (IST)
מונוטונית ממש לא חייבת להיות רציפה במ"ש, הרי רציפות במ"ש מתרחשת כאשר יש חסם על מהירות הפונקציה. אם היא שואפת ממש מהר לאינסוף היא לא תהיה רציפה במ"ש. להפך, אם פונקציה רציפה במ"ש היא יכול להיות מחזורית כמו סינוס (למשל) ולכן לא חייבת להיות מונוטונית. --ארז שיינר 19:16, 1 בינואר 2011 (IST)

תרגיל 11 שאלה 4

האם כשאני שולל רציפות במ"ש של פונקציה לפי נגיד זה שהיא לא רציפה בחלק מהתחום, אני צריך לתת דוגמא של של סדרות כדי להפריך רציפות במ"ש.

לא, יש משפט לפיו רציפה במ"ש היא רציפה בכל נקודה. אם היא לא רציפה בנקודה מסוימת אז היא לא רציפה במ"ש בגלל המשפט. אם היא לא מוגדרת באיזו נקודה, אז ממש ברור שהיא לא רציפה במ"ש (כי ההגדרה של רציפה במ"ש דורשת מוגדרות). --ארז שיינר 19:37, 1 בינואר 2011 (IST)

משפט ערך הביניים

הוכחנו אותו עבור פונקציה רציפה בקטע סגור. האם הוא נכון גם עבור פונקציה רציפה בקטע פתוח?

בהוכחה, נראה שלנתון הזה שהקטע סגור יש משמעות, כי השתמשו בלמה של קאנטור (עבור קטעים מקוננים), ובה חשוב שהקטעים הם סגורים - ושוב, אני לא רואה את החשיבות, גם בלמה.

תשובה

בוא תנסה לנסח את המשפט בקטע פתוח, ואז לחשוב לבד אם הוא נכון, זה תרגיל קל (גם עשינו אותו בכיתה פחות או יותר). --ארז שיינר 19:39, 1 בינואר 2011 (IST)

תרגיל 10 שאלה 7 b

מותר לעשות קירוב על פי טורי טיילור עבור x->0?

צריך להסביר?

בתרגיל 10, שאלה 4 מצאתי פונקציה f(x) כך שקיימת תת סדרה \{a_n\}\subset\mathbb R שעבורה \lim_{n\to\infty}f(a_n)=\infty וסדרה \{b_n\}\subset\mathbb R שעבורה \lim_{n\to\infty}f(b_n)=-\infty. זה מספיק מפורט כדי להסביר ש-f(x) אינה חסומה מלעיל ואינה חסומה מלרע? תודה.

(לא מתרגלת) אבל היא אמורה להיות לא חסומה מלעיל ולא חסומה מלרע בקטע [0,1)...
את צודקת, אז מה אם אני מפרט גם ש-\{a_n\},\{b_n\}\subset(0,1]?

log(x)=log10(x) או ln(x)?

רק ליתר ביטחון, כשכתוב בש"ב log הכוונה היא ל-ln או ל-log10? או שזה בכלל log2?

לא מתרגלת: log בלי בסיס זה אומר בסיס 10.
לא תמיד.

פונקציה לא רציפה במ"ש

יש דרך לדעת בקלות שפונקציה היא לא רציפה במ"ש? לדוגמה, הייתי בטוח ש fx=x^2 היא רבמ"ש, אבל מישהו כאן אמר שהיא לא. איך יודעים? תודה

ראה בוויקיפדיה. אולי יעניין אותך לדעת שפרופ' עוזי ו. תרם לערך כ-1,400 בתים מתוך ה-12,800 שהוא כולל.