הבדלים בין גרסאות בדף "משתמש:אור שחף/133 - הרצאה/3.4.11"
(יצירת דף עם התוכן "=מבוא לאינטגרציה נומרית {{הערה|(המשך)}}= בהרצאה הקודמת הצגנו את כלל סימפסון לקירוב האינטגרל ...") |
|||
(6 גרסאות ביניים של 2 משתמשים אינן מוצגות) | |||
שורה 1: | שורה 1: | ||
=מבוא לאינטגרציה נומרית {{הערה|(המשך)}}= | =מבוא לאינטגרציה נומרית {{הערה|(המשך)}}= | ||
בהרצאה הקודמת הצגנו את כלל סימפסון לקירוב האינטגרל המסויים והראנו שהטעות בחישוב בקטע <math>[a,b]</math> חסומה ע"י <math>\max_{x\in[a,b]}\left|f^{(4)}(x)\right|\frac{h^4(b-a)}{45}</math> כאשר h המרחק בין שתי נקודות סמוכות בחלוקה שבחרנו. ניתן גישה אחרת למציאת הטעות, שהיא יותר קצרה ונותנת ערך יותר קטן לחסם של הטעות, אבל היא פחות אינטואיטיבית: | בהרצאה הקודמת הצגנו את כלל סימפסון לקירוב האינטגרל המסויים והראנו שהטעות בחישוב בקטע <math>[a,b]</math> חסומה ע"י <math>\max_{x\in[a,b]}\left|f^{(4)}(x)\right|\frac{h^4(b-a)}{45}</math> כאשר h המרחק בין שתי נקודות סמוכות בחלוקה שבחרנו. ניתן גישה אחרת למציאת הטעות, שהיא יותר קצרה ונותנת ערך יותר קטן לחסם של הטעות, אבל היא פחות אינטואיטיבית: | ||
− | + | הראנו שמספיק לחשב בקירוב <math>\int\limits_{-h}^h f\approx\frac h3\Big(f(-h)+4f(0)+f(h)\Big)</math> כאשר f גזירה 4 פעמים בסביבת 0. נגדיר פונקציה חדשה <math>G(h):=\int\limits_{-h}^h f-\frac h3\Big(f(-h)+4f(0)+f(h)\Big)</math>. G מוגדרת ורציפה בסביבה של 0 וגם (לפי הצבה) <math>G(0)=0</math>. עבור F קדומה ל-f מתקיים (לפי המשפט היסודי){{left|<math>\begin{align}\frac\mathrm d{\mathrm dh}G(h)&=\frac\mathrm d{\mathrm dh}\left(F(h)-F(-h)-\frac h3\Big(f(-h)+4f(0)+f(h)\Big)\right)\\&=f(h)+f(-h)-\frac13\Big(f(-h)+4f(0)+f(h)\Big)-\frac h3\Big(-f'(-h)+f'(h)\Big)\end{align}</math>}} | |
− | + | לכן <math>\lim_{h\to0}G'(h)=f(0)+f(0)-\frac13\Big(f(0)+4f(0)+f(0)\Big)-0=2f(0)-\frac63f(0)=0</math>. ע"פ הלמה השנייה בהרצאה הקודמת <math>G'(0)</math> קיים ושווה ל-0. נגזור שוב את G ונקבל <math>\lim_{h\to0}G''(h)=0=G''(0)</math>. נמשיך לגזור פעמיים נוספות ונקבל <math>G'''(0)=G^{(4)}(0)=0</math> וגם <math>G^{(4)}(h)=-\frac13\Big(-f'''(-h)+f'''(h)\Big)-\frac h3\Big(f^{(4)}(-h)+f^{(4)}(h)\Big)</math>. עתה: | |
− | לכן <math>\lim_{h\to0}G'(h)=f(0)+f(0)-\frac13(f(0)+4f(0)+f(0)-0=2f(0)-\frac63f(0)=0</math>. ע"פ הלמה השנייה בהרצאה הקודמת <math>G'(0)</math> קיים ושווה ל-0. נגזור שוב את G ונקבל | + | |
{| | {| | ||
{{=|l=\frac{G(h)}{h^5} | {{=|l=\frac{G(h)}{h^5} | ||
שורה 23: | שורה 22: | ||
}} | }} | ||
|} | |} | ||
− | כעת נגדיר <math>M:=\max_{x\in[a,b]}\left|f^{(4)}(x)\right|</math>. לפי משפט לגראנז' קיים <math>c\in(-h,h)</math> כך ש-<math>\frac{f^{(3)}(h)-f^{(3)}(-h)}{2h}=f^{(4)}(c)</math> ולכן <math>\left|f^{(3)}(h)-f^{(3)}(-h)\right|\le2hM</math>. מכל זה נובע {{left|<math>\begin{align}\left|G^{(4)}(h_4)\right|&\le\left|-\frac13\ | + | כעת נגדיר <math>M:=\max_{x\in[a,b]}\left|f^{(4)}(x)\right|</math>. לפי משפט לגראנז' קיים <math>c\in(-h,h)</math> כך ש-<math>\frac{f^{(3)}(h)-f^{(3)}(-h)}{2h}=f^{(4)}(c)</math> ולכן <math>\left|f^{(3)}(h)-f^{(3)}(-h)\right|\le2hM</math>. מכל זה נובע {{left|<math>\begin{align}\left|G^{(4)}(h_4)\right|&\le\left|-\frac13\Big(f^{(3)}(-h_4)+f^{(3)}(h_4)\Big)\right|+\left|\frac{h_4}3\Big(f^{(4)}(-h_4)+f^{(4)}(h_4)\Big)\right|\\&\le\frac{2h_4}3M+\frac{h_4}32M\\&=\frac43Mh_4\end{align}</math>}} |
עתה <math>\left|\frac{G(h)}{h^5}\right|=\left|\frac{G^{(4)}(h_4)}{120h_4}\right|\le\frac1{120h_4}\frac43Mh_4=\frac M{90}</math> וקיבלנו ש-<math>|G(h)|\le\frac{Mh^5}{90}</math>, כלומר הטעות בכל קטע מהסוג <math>[x_{k-1},x_{k+1}]</math> חסומה ע"י <math>\frac{Mh^5}{90}</math>. ב-<math>[a,b]</math> יש <math>\frac n2=\frac{(b-a)}{2h}</math> ולפיכך הטעות חסומה ע"י <math>\frac{b-a}{2h}\cdot\frac{Mh^5}{90}=\frac{Mh^4}{180}(b-a)</math>. {{משל}} | עתה <math>\left|\frac{G(h)}{h^5}\right|=\left|\frac{G^{(4)}(h_4)}{120h_4}\right|\le\frac1{120h_4}\frac43Mh_4=\frac M{90}</math> וקיבלנו ש-<math>|G(h)|\le\frac{Mh^5}{90}</math>, כלומר הטעות בכל קטע מהסוג <math>[x_{k-1},x_{k+1}]</math> חסומה ע"י <math>\frac{Mh^5}{90}</math>. ב-<math>[a,b]</math> יש <math>\frac n2=\frac{(b-a)}{2h}</math> ולפיכך הטעות חסומה ע"י <math>\frac{b-a}{2h}\cdot\frac{Mh^5}{90}=\frac{Mh^4}{180}(b-a)</math>. {{משל}} | ||
===דוגמה=== | ===דוגמה=== | ||
שורה 30: | שורה 29: | ||
* הקירוב לפי סכום רימן הוא <math>\sum_{k=0}^4f(x_k)h=\frac14\left(1+\frac45+\frac23+\frac47+\frac12\right)\approx\underline{0.6}34523809</math>. | * הקירוב לפי סכום רימן הוא <math>\sum_{k=0}^4f(x_k)h=\frac14\left(1+\frac45+\frac23+\frac47+\frac12\right)\approx\underline{0.6}34523809</math>. | ||
* כעת נעשה קירוב בשיטת הטרפזים: {{left|<math>\frac{f(x_0)+f(x_4)}2h+h\sum_{k=1}^3f(x_k)=\frac18\left(1+\frac12\right)+\frac14\left(\frac45+\frac23+\frac47\right)\approx\underline{0.69}7023792</math>}} | * כעת נעשה קירוב בשיטת הטרפזים: {{left|<math>\frac{f(x_0)+f(x_4)}2h+h\sum_{k=1}^3f(x_k)=\frac18\left(1+\frac12\right)+\frac14\left(\frac45+\frac23+\frac47\right)\approx\underline{0.69}7023792</math>}} | ||
− | * ולפי סימפסון: {{left|<math>\begin{array}{l}\frac h3\left(f(x_0)+4\sum_{k=1}^{2}f(x_{2k-1})+2\sum_{k=1}^{1}f(x_{2k})+f(x_4)\right)\\=\frac1{12}\left(1+4\ | + | * ולפי סימפסון: {{left|<math>\begin{array}{l}\displaystyle\frac h3\left(f(x_0)+4\sum_{k=1}^{2}f(x_{2k-1})+2\sum_{k=1}^{1}f(x_{2k})+f(x_4)\right)\\=\displaystyle\frac1{12}\left(1+4\tfrac45+2\tfrac23+4\tfrac47+\frac12\right)\\\approx\underline{0.693}253968\end{array}</math>}} נחשב את סדר הגודל של הטעות בקירוב סימפסון: {{left|<math>f'(x)=-x^{-2}\implies f''(x)=2x^{-3}\implies f^{(3)}(x)=-6x^{-4}\implies f^{(4)}(x)=24x^{-5}</math>}} ולכן <math>M=\max_{x\in[1,2]}\left|24x^{-5}\right|=24</math> והטעות R בקירוב מקיימת <math>|R|\le\frac{Mh^4}{180}(2-1)=\frac1{1920}<5.21\cdot10^{-4}</math> |
− | =אינטגרל לא אמיתי | + | =אינטגרל לא אמיתי, סוג I= |
− | עד עתה הגדרנו אינטגרלים מסויימים רק עבור פונקציות חסומות בקטעים סופיים. אם הפונקציה לא חסומה ו/או הקטע לא חסום עדיין ניתן להגדיר "אינטגרל לא אמיתי". | + | עד עתה הגדרנו אינטגרלים מסויימים רק עבור פונקציות חסומות בקטעים סופיים. אם הפונקציה לא חסומה ו/או הקטע לא חסום עדיין ניתן להגדיר "אינטגרל לא אמיתי" (improper integral). אינטגרלים של קטעים אינסופיים מהסוג <math>\int\limits_{-\infty}^b f,\ \int\limits_a^\infty f,\ \int\limits_{-\infty}^\infty f</math> הם אינטגרלים לא אמיתיים מסוג 1. |
− | + | ||
− | אינטגרלים של קטעים אינסופיים מהסוג <math>\int\limits_{-\infty}^b f,\ \int\limits_a^\infty f,\ \int\limits_{-\infty}^\infty f</math>. | + | |
− | '''הגדרה''': תהי f פונקציה מוגדרת בקטע מהסוג <math>[a,\infty)</math>. נאמר ש-f אינטגרבילית מקומית בקטע זה אם לכל <math>b>a</math> f אינטגרבילית בקטע <math>[a,b]</math>. | + | '''הגדרה''': תהי f פונקציה מוגדרת בקטע מהסוג <math>[a,\infty)</math>. נאמר ש-f אינטגרבילית מקומית (locally integrable) בקטע זה אם לכל <math>b>a</math> f אינטגרבילית בקטע <math>[a,b]</math>. |
למשל, אם f רציפה למקוטעין אז היא אינטגרבילית מקומית. | למשל, אם f רציפה למקוטעין אז היא אינטגרבילית מקומית. | ||
− | '''הגדרה:''' תהי f מוגדרת ואינטגרבילית מקומית ב-<math>[a,\infty)</math> נגדיר <math>\int\limits_a^\infty f:=\lim_{R\to\infty}\int\limits_a^R f</math>. אם הגבול קיים נאמר שהאינטגרל מתכנס, אחרת הוא מתבדר. | + | '''הגדרה:''' תהי f מוגדרת ואינטגרבילית מקומית ב-<math>[a,\infty)</math>. נגדיר <math>\int\limits_a^\infty f:=\lim_{R\to\infty}\int\limits_a^R f</math>. אם הגבול קיים נאמר שהאינטגרל מתכנס, אחרת הוא מתבדר. |
אינטגביליות מקומית מוגדרת באופן דומה עבור קטע מהצורה <math>(-\infty,b]</math> ואם f אינטגרבילית מקומית שם נגדיר <math>\int\limits_{-\infty}^b f:=\lim_{R\to-\infty}\int\limits_R^b f</math>. | אינטגביליות מקומית מוגדרת באופן דומה עבור קטע מהצורה <math>(-\infty,b]</math> ואם f אינטגרבילית מקומית שם נגדיר <math>\int\limits_{-\infty}^b f:=\lim_{R\to-\infty}\int\limits_R^b f</math>. | ||
− | עבור f מוגדרת בכל <math>\mathbb R</math> נאמר שהיא אינטגרבילית מקומית אם היא אינטגרבילית | + | עבור f מוגדרת בכל <math>\mathbb R</math> נאמר שהיא אינטגרבילית מקומית אם היא אינטגרבילית בכל קטע סופי, ואם כן נגדיר <math>\int\limits_{-\infty}^\infty f=\int\limits_{-\infty}^a f+\int\limits_a^\infty f</math> עבור <math>a\in\mathbb R</math> כרצוננו עבורו שני האינטגרלים באגף ימין מתכנסים. |
− | + | ==דוגמאות== | |
− | # <math>\int\limits_1^\infty{\mathrm dx}{x^2}</math>. נחשב: {{left|<math>\begin{align}\int&=\lim_{R\to\infty}\int\limits_1^R\frac{\mathrm dx}{x^2}\\&=\lim_{R\to\infty}\left[-\frac1x\right]_{x=1}^R\\&=\lim_{R\to\infty}\left(-\frac1R+1\right)\\&=1\end{align}</math>}} ניתן גם לכתוב בקיצור: <math>\int\limits_1^\infty\frac{\mathrm dx}{x^2}=\left[-\frac1x\right]_{x=1}^\infty=0-(-1)=1</math>. | + | # <math>\int\limits_1^\infty\frac{\mathrm dx}{x^2}</math>. נחשב: {{left|<math>\begin{align}\int&=\lim_{R\to\infty}\int\limits_1^R\frac{\mathrm dx}{x^2}\\&=\lim_{R\to\infty}\left[-\frac1x\right]_{x=1}^R\\&=\lim_{R\to\infty}\left(-\frac1R+1\right)\\&=1\end{align}</math>}} ניתן גם לכתוב בקיצור: <math>\int\limits_1^\infty\frac{\mathrm dx}{x^2}=\left[-\frac1x\right]_{x=1}^\infty=0-(-1)=1</math>. |
# <math>\int\limits_1^\infty\frac{\mathrm dx}x=[\ln|x|]_{x=1}^\infty=\ln(\infty)-0=\infty</math>, כלומר האינטגרל מתבדר (אך מתכנס במובן הרחב). | # <math>\int\limits_1^\infty\frac{\mathrm dx}x=[\ln|x|]_{x=1}^\infty=\ln(\infty)-0=\infty</math>, כלומר האינטגרל מתבדר (אך מתכנס במובן הרחב). | ||
− | # שאלה מארה"ב מלפני הרבה שנים: חצוצרה אינסופית תתקבל מסיבוב הגרף <math>y=\frac1x</math> סביב ציר ה-x ב-<math>[1,\infty)</math>. | + | # שאלה מארה"ב מלפני הרבה שנים: חצוצרה אינסופית תתקבל מסיבוב הגרף <math>y=\frac1x</math> סביב ציר ה-x ב-<math>[1,\infty)</math>. האם יש מספיק צבע בעולם כדי לצבוע אותה מבפנים?<br/>'''פתרון''': לכאורה התשובה היא לא, כי שטח הפנים של החצוצרה הוא <math>\pi\int\limits_1^\infty\frac2x\sqrt{1+\left(-\frac1{x^2}\right)^2}\mathrm dx>\pi\int\limits_1^\infty\frac2x\mathrm dx=\infty</math>, כלומר אין מספיק צבע. אך מכיוון שכמות הצבע נמדדת ביחידות נפח ולא שטח, ומכיוון שהנפח בתוך החצוצרה הוא <math>\pi\int\limits_1^\infty\frac{\mathrm dx}{x^2}=\pi</math>, יספיקו לנו <math>\pi</math> יחידות מעוקבות של צבע ואפילו ישאר לנו עודף. |
---- | ---- |
גרסה אחרונה מ־15:25, 27 ביולי 2011
מבוא לאינטגרציה נומרית (המשך)
בהרצאה הקודמת הצגנו את כלל סימפסון לקירוב האינטגרל המסויים והראנו שהטעות בחישוב בקטע חסומה ע"י כאשר h המרחק בין שתי נקודות סמוכות בחלוקה שבחרנו. ניתן גישה אחרת למציאת הטעות, שהיא יותר קצרה ונותנת ערך יותר קטן לחסם של הטעות, אבל היא פחות אינטואיטיבית:
הראנו שמספיק לחשב בקירוב כאשר f גזירה 4 פעמים בסביבת 0. נגדיר פונקציה חדשה . G מוגדרת ורציפה בסביבה של 0 וגם (לפי הצבה) . עבור F קדומה ל-f מתקיים (לפי המשפט היסודי)לכן . ע"פ הלמה השנייה בהרצאה הקודמת קיים ושווה ל-0. נגזור שוב את G ונקבל . נמשיך לגזור פעמיים נוספות ונקבל וגם . עתה:
לפי משפט קושי קיים עבורו: | ||||||
קיים עבורו: | ||||||
קיים עבורו: | ||||||
קיים עבורו: |
עתה וקיבלנו ש-, כלומר הטעות בכל קטע מהסוג חסומה ע"י . ב- יש ולפיכך הטעות חסומה ע"י .
דוגמה
נקרב . נבחר . נציב:
- הקירוב לפי סכום רימן הוא .
- כעת נעשה קירוב בשיטת הטרפזים:
- ולפי סימפסון: נחשב את סדר הגודל של הטעות בקירוב סימפסון: ולכן והטעות R בקירוב מקיימת
אינטגרל לא אמיתי, סוג I
עד עתה הגדרנו אינטגרלים מסויימים רק עבור פונקציות חסומות בקטעים סופיים. אם הפונקציה לא חסומה ו/או הקטע לא חסום עדיין ניתן להגדיר "אינטגרל לא אמיתי" (improper integral). אינטגרלים של קטעים אינסופיים מהסוג הם אינטגרלים לא אמיתיים מסוג 1.
הגדרה: תהי f פונקציה מוגדרת בקטע מהסוג . נאמר ש-f אינטגרבילית מקומית (locally integrable) בקטע זה אם לכל f אינטגרבילית בקטע .
למשל, אם f רציפה למקוטעין אז היא אינטגרבילית מקומית.
הגדרה: תהי f מוגדרת ואינטגרבילית מקומית ב-. נגדיר . אם הגבול קיים נאמר שהאינטגרל מתכנס, אחרת הוא מתבדר.
אינטגביליות מקומית מוגדרת באופן דומה עבור קטע מהצורה ואם f אינטגרבילית מקומית שם נגדיר .
עבור f מוגדרת בכל נאמר שהיא אינטגרבילית מקומית אם היא אינטגרבילית בכל קטע סופי, ואם כן נגדיר עבור כרצוננו עבורו שני האינטגרלים באגף ימין מתכנסים.
דוגמאות
- . נחשב: ניתן גם לכתוב בקיצור: .
- , כלומר האינטגרל מתבדר (אך מתכנס במובן הרחב).
- שאלה מארה"ב מלפני הרבה שנים: חצוצרה אינסופית תתקבל מסיבוב הגרף סביב ציר ה-x ב-. האם יש מספיק צבע בעולם כדי לצבוע אותה מבפנים?
פתרון: לכאורה התשובה היא לא, כי שטח הפנים של החצוצרה הוא , כלומר אין מספיק צבע. אך מכיוון שכמות הצבע נמדדת ביחידות נפח ולא שטח, ומכיוון שהנפח בתוך החצוצרה הוא , יספיקו לנו יחידות מעוקבות של צבע ואפילו ישאר לנו עודף.
שאלה: האם התכנסות האינטגרל גוררת ש- (בדומה לטורים)?
תשובה: לא. נגדיר פונקציה f שהגרף שלה הוא
אזיכלומר האינטגרל מתכנס, אבל לא קיים.