הבדלים בין גרסאות בדף "לינארית 2 לתיכוניסטים תש"ע"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(תשובה)
(פתיחת מחברות)
 
(206 גרסאות ביניים של 41 משתמשים אינן מוצגות)
שורה 1: שורה 1:
:::<math>
+
::<math>
 
\begin{bmatrix}
 
\begin{bmatrix}
 
\lambda & 0 & 0 \\
 
\lambda & 0 & 0 \\
שורה 25: שורה 25:
  
 
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 5|ארכיון 5]]''' - שאלות על המבחן
 
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 5|ארכיון 5]]''' - שאלות על המבחן
 +
 +
'''[[לינארית 2 לתיכוניסטים תש"ע - ארכיון 6|ארכיון 6]]''' - שאלות על המבחן
  
 
= שאלות =
 
= שאלות =
 +
==פתיחת מחברות==
 +
מתי יש פתיחת מחברות של מועד ב'?
  
 +
:תשאלו את המרצים
 +
 +
==מבחן מועד א'==
 +
העלתם את הפתרונות של מועד א' אבל לא העליתם את המבחן עצמו.
 +
אתם יכולים להעלות את המבחן?
 +
תודה.
  
==שאלה==
 
אפשר בבקשה לצרף את משפט הליכסון? ההוכחה שלו לא הייתה בצורה מלאה במחברת...
 
תודה!
 
 
===תשובה===
 
===תשובה===
אתם צריכים להיות מסוגלים להוכיח את זה לבד. הרי המשפט אומר שמטריצה לכסינה אם"ם יש בסיס למרחב כולו המורכב מו"ע שלה. קל מאד להוכיח שזה נכון אם"ם קיימת P הפיכה כך שAP=PD כאשר D אלכסונית.
+
תצלם מאחד החברים, אני אפילו לא בטוח שיש לי אותו
: לא נראה לי שהוא התכוון לזה.. לפי דעתי הוא התכוון למשפט עם התכונות השקולות (ר"ג=ר, וכו').
+
 
::תצטרכו לנסח אותו במדיוק. אם הריבוי הגיאומטרי שווה לאלגברי ברור שיש בסיס המורכב מוקטורים עצמיים, כי ידוע שו"ע של ע"ע שונים הם בת"ל. בכיוון ההפוך, אם הריבוי הגיאומטרי קטן ממש מהאלגברי אז ברור שאין בסיס המורכב מו"ע משיקולי מימדים.
+
==פתיחת מחברות==
 +
מתי בדיוק תתקיים פתיחת מחברות לקבוצה של ד"ר צבאן?
 +
 
 +
==פתרון המבחן-בקשה מהמתרגלים והמרצים==
 +
תוכל לעלות בבקשה את הפתרון למבחן (מועד א'). כך שנוכל לראות בצורה מדוייקת
 +
איך צריך לגשת לשאולות, איך לנסח את הפתרון - והכי חשוב את לפתור את כל השאלות.
 +
זה חשוב גם לאילו שמעוניינים לגשת למועד ב'.
 +
  ,תודה רבה.
 +
 
 +
 
 +
:פתרון המבחן כבר עלה לפני שבוע. נמצא עם פתרונות התרגילים.
 +
 
 +
==ציוני מבחן==
 +
מתי יהיו הציונים בלינארית בערך?
 +
 
 +
===תשובה===
 +
הבדיקה בשלביה האחרונים, אנחנו מקווים שיהיה תוצאות כבר בשבוע הבא
 +
 
 +
==מקום הפרסום==
 +
היי ארז. איפה יפורסמו הציונים של המבחן? במידע אישי לסטודנט?
 +
ואתה תוכל בבקשה לפרסם הודעה באתר כשהציונים יפורסמו? תודה!
 +
 
 +
 
 +
===תשובה===
 +
אני לא יודע, אני אודיע כשאדע
 +
 
 +
== שאלה ==
 +
 
 +
אהמ, מישהו יודע אם יש מצב להקדים מועד ב' ??
  
 
==שאלה==
 
==שאלה==
בשינוי בסיס של מכפלה פנימית אמרו ש-C היא מטריצת המעבר מבסיס B ל-B1 אבל למעשה אנו מסתכלים על הוקטורים כוקטורי שורה ולא עמודה. למעשה מדובר במטריצת המעבר המשוחלפת?
 
  
==לכסון ושילוש - אורתוגונלי ואוניטרי==
+
אם נתון לי בסיס E וקיימת לי מטריצה אוניטרית P, מותר לי להגדיר בא"נ B כך ש P תיהיה מטריצת המעבר מ B ל E?
מה בדיוק המטרה של יצירת כינוי חדש לפעולה מעל R? איך הידיעה על כך שהלכסון/שילוש שביצענו היא מעל R יכולה לעזור לנו?
+
 
 +
===תשובה===
 +
כן. כי אם נכפיל בשמאל במטריצה המעבר מE לS הסטנדרטי היא תהיה אוניטרית לכן המכפלה תהיה אוניטרית והמכפלה תהיה מטריצה המעבר מB לS ולכן B בא"נ.
  
בלכסון אני יכול להבין שקל יותר לעבוד איתה כי יש לה פחות דרישות (מעצם העובדה שב-R אין מרוכבים), אבל בשילוש יש דווקא יותר דרישות עבור המקרה הפרטי של R, אז למה שמישהו ירצה לשלש אורתוגונלית כשהוא צריך לבדוק שהפולינום האופייני מל"ל מעל R, אם הוא יכול פשוט לשלש אוניטרית בלי לבדוק תנאים מקדימים?
+
== הוכח\הפרך == 
 +
 
 +
שאלה מהמבחן של בוריס שנה שעברה, האם מישו הצליח לפתור?
 +
תהי A מטריצה ממעלה >=2 כך ש-<math>degA=2 <= rkA=1(</math>
  
 
===תשובה===
 
===תשובה===
לפעמים אנחנו פשוט מעל R ולא מעניינים אותנו המרוכבים, למשל בכל מה שקשור לזויות והיטלים. ההבדל העיקרי הוא, שהמטריצה המלכסנת/משלשת מכילה ערכים מרוכבים, ולפעמים אנחנו לא מעוניינים בזה.  
+
אני הצלחתי להוכיח - אבל אני לא בטוח ב - 100% בנכונות של זה - תנסה לכתוב את A בצורה מפורשת ותעבוד עם זה
 +
:גם אני חשבתי ככה (כתבתי את A בתור שורה אחת עם ערכים שאני לא יודע מה הם וכל שאר השורות אפס, ואז הראתי שהפולינום המינימלי על ידי בדיקה הוא באמת ממעלה 2 תמיד), אבל זה ש RANK A = 2 לא בהכרח אומר שלA יש N-1 שורות אפסים, אלא שאפשר להביא אותה לצורה מדורגת כך. לכן הדרך של כתיבה מפורשת לדעתי לא נכונה (ואכן אני לא יודע איך כן להוכיח את זה...).
  
זה כמו שיש מטריצות שהן לא לכסינות מעל הממשיים אבל כן מעל המרוכבים, ויש מטריצות שאינן לכסינות כלל.
+
'''תשובה:''' (נכונה) rankA=1 => dimIm(A)=1 ולכן dimKer(A)=n-1 ואז המימד של המרחב העצמי של 0 הוא n-1 (הריבוי הגיאומטרי של 0). מכיוון שהריבוי האלגברי תמיד גדול או שווה לגיאומטרי הוא או N או N-1. אם הוא N אז לפי משפט צורת ז'ורדן יש N-1 בלוקים של 0 אך כל הN עמודות הן של 0 ולכן הבלוק בגודל הכי גדול הוא בגודל 2 ואז M(A)=A^2 כדרוש. אם הוא N-1 אז מכיוון שסכום כל הריבועים האלגבריים הוא N אז יש עוד ערך עצמי עם ריבוי אלגברי (ולכן גם ריבוי גיאומטרי) של 1. לכן לפי משפט צורת ז'ורדן, יש N-1 בלוקים של 0 ו-1 של הערך העצמי הנוסף (נגיד X) ואז הגודל המקסימלי של כל בלוק הוא 1 והפולינום המינימלי הוא M(A)=A(A-X)=> rank(M)=2 מש"ל
 +
(סליחה שלא כתבתי הכל בכתיב מתמטי אבל אין לי באמת מושג איך..)
 +
 
 +
== שאלה ==
 +
 
 +
אני יודעת שאתמול הוכחת לנו את זה לפני השיעור חזרה, אבל זה היה ממש לא מסודר ולא ממש הצלחתי לעקוב, אז אני אשמח אם אתה (או מישהו אחר בכיף(:) יתן תשובה:
 +
ככה: T נורמלי הוכח ש- <math>im(T)=im(T^*)</math>
 +
 
 +
 
 +
===הוכחה===
 +
דבר ראשון נוכיח ש<math>ker(T)=ker(T^*)</math>. נניח <math>v \in kerT</math> לכן <math>Tv=0</math> ולכן <math>\forall u: <T^*Tv,u>=<0,u>=0</math> אבל <math>T^*T=TT^*</math> ולכן <math>\forall u: <TT^*v,u>=0</math> ולכן <math>\forall u: <T^*v,T^*u>=0</math> ובפרט זה נכון עבור v=u ולכן <math><T^*v,T^*v>=0</math> ולכן <math>T^*v=0</math> כלומר <math>v \in ker T^*</math>. בכיוון ההפוך ההוכחה דומה.
 +
 
 +
 
 +
עכשיו נוכיח את הטענה. <math>v \in kerT</math> אם"ם <math>\forall u: <Tv,u>=0</math> אם"ם <math>\forall u: <v,T^*u>=0</math> אם"ם <math>v \in (ImT^*)^\bot</math> ולכן <math>kerT = (ImT^*)^\bot</math>. בצורה דומה <math>kerT^*=(ImT)^\bot</math>. אבל הגרעינים שווים ולכן <math>(ImT)^\bot=(ImT^*)^\bot</math> ומזה נובע שהם שווים (כי המרחב המאונך הינו יחיד, והמאונך של המאונך הינו המרחב עצמו).
 +
 
 +
==השלמה לבסיס==
 +
האם קיימת דרך בה ניתן להשלים וקטור <math>v_1</math> לבסיס עבור <math>F^n</math> .
 +
למשל שמשלשים וצריך להשלים לבסיס?
 +
 
 +
===תשובה===
 +
זו שאלה מלינארית 1. על מנת להשלים קבוצת וקטורים לבסיס, אתה שם אותם בשורות מטריצה, מדרג אותה, ומוסיף וקטורים שמשלימים את הצירים החסרים.
  
 
==שאלה==
 
==שאלה==
כיצד מוכיחים שלמטריצות דומות אותם פולינומים מינימליים?
+
איך מראים שלמטריצה נילפוטנטית יש '''רק''' ע"ע אחד שהוא 0 ?  
 +
בנוסף, צ"ל שמטריצה משולשת עם אפסים באלכסון היא נילפוטנטית.
 +
אני יכול לומר שהמטריצה דומה לצורת זורדן עם אפסים באלכסון
 +
ומעל אחד-ים ואם נעלה בחזקת K אז נקבל את מט' האפס. איך ממשיכים?
 +
 
 +
::הכי פשוט שבעולם - אני הסתכלתי על זה ככה: לפי משפט השילוש, 0 הוא הע"ע היחיד שלה (בהנחה שהאלכסון כולו אפסים), ולכן הפולינום האופייני שלה הוא f(x)=x^n. אם תציב את A תקבל 0, ולכן A^n=0, וזו בדיוק ההגדרה של נילפוטנטית - אם *קיים* k (במקרה זה k=n) עבורו A^k=0.
 +
 
 +
===תשובה===
 +
תשובה לע"ע רק 0-A נילפוטנטנטית מסדר K. נניח שיש ערך עצמי L שהוא לא אפס. ז"א Av=Lv. נכפול משמאל ב-A^K-1 ונקבל 0=LA^k-1V=
 +
אבל A*v= lv ולכן קיבלנו A^k-2*l^2=0. אבל A^K-2 שונה מאפס, וL שונה מאפס ולכן סתירה
 +
 
 +
==שאלה==
 +
איך מוכיחים את הכיוון הבא:
 +
אם T אוניטרית אזי היא מעבירה בא"נ לבא"נ אחר (T מעל C)
  
 
===תשובה===
 
===תשובה===
בקלות:
+
צריך להוכיח שאם <math>v_1,...v_n</math> בא"נ אזי גם <math>Tv_1,..Tv_n</math> בא"נ. ההגדרה של בא"נ הינה שהמכפלה הפנימית של כל זוג וקטורים שונים היא אפס, והמכפלה הפנימית של וקטור עם עצמו הינה 1.
<math>f_A=|A-xI|=|P^{-1}BP-xI|=|P^{-1}BP-xP^{-1}P|= |P^{-1}||B-xI||P|=|B-xI|=f_B</math>
+
 
:זו ההוכחה לפולינומים אופיינים. כדי להוכיח פולינומים מינימליים, תראה שעבור כל פולינום שמאפס את A, הוא מאפס גם את B וההפך. זה מראה לך בוודאות שהפולינום המינימליים שווים.
+
T אוניטרית ולכן <math>TT^*=T^*T=I</math>. נבדוק את המכפלה הפנימית של זוג וקטורים בבסיס החדש:
:: צודק, טעות שלי. עשינו אבל את ההוכחה הזו עשינו בתרגיל באמת (כמו שרשמת מראים שיש אותם פולינומים מאפסים)
+
<math><Tv_i,Tv_j>=<v_i,T^*Tv_j>=<v_i,v_j></math> ולכן המכפלות הן אותו הדבר (ראינו עכשיו שאופרטור אוניטרי שומר מכפלות פנימיות) ולכן גם הבסיס החדש הינו א"נ.
  
 
==שאלה==
 
==שאלה==
האם אופרטור שומר מרחקים הוא בהכרח אוניטרי?
+
א. יהי V מ"ו ממימד סופי, יהיא Y(פי) שייך ל- *V ושונה מ-0, יהי W ת"מ של V המכיל את KER Y(פי). צ"ל W=V או W=KER Y
  
:איפה הטעות שלי?
+
ב. יהי V ממ"פ ממימד סופי. יה Y שייך ל- V* . הוכח כי קיים וקטור W שייך ל- V כך ש: V,W >= ( Y(V>
נניח Length Tv = Length v
+
לכל V שייך ל- V.
(אני כותב LENGTH במקום נורמה כי אני לא יודע לכתוב מתמטית חח)
+
אזי vxv=TvxTv כשהמכפלה זה המכפלה הפנימית.
+
כלומר Tv-vxTv-v=0
+
לכן בהכרח Tv=v ולכן בהכרח T=I
+
  
 
===תשובה===
 
===תשובה===
קודם כל, אונטרי זה לא I, אלא T אוניטרי אם TT*=I.
+
א. אתמול בשיעור החזרה הראנו שהמימד של הגרעין של פונקציונל הינו n או n-1 (לפי משפט הדרגה). במקרה שהפונקציונל שונה מאפס המימד של הגרעין הינו n-1.
  
שנית, אסור לעשות את מה שרשמת עם מכפלה פנימית. <math><Tv,Tv>-<v,v>\neq <Tv-v,Tv-v></math>. הכלל הנכון הינו <math><v,u>-<w,u>=<v-w,u></math>
+
אם W מכיל את הגרעין והמימד שלו n-1 אזי הוא שווה לגרעין. אם המימד שלו n אזי הוא שווה למרחב V. אין עוד אופציות כי המימד שלו לא יכול להיות קטן מהמימד של הגרעין אותו הוא מכיל.
  
שלישית, למדנו בתרגיל שאופרטור הוא אוניטרי אם"ם שומר אורכים אם"ם שומר מכפלה פנימית. ואם זה לא מספיק, ההוכחה שאופרטור ששומר אורכים שומר מכפלה פנימית נמצאת באתר בעמוד הראשי.
+
ב. זה משפט ההצגה של ריס.
  
:: השאלה שלי הייתה אם אופרטור שומר מרחקים הוא בהכרח אוניטרי. לא נורמות ולא מ"פ. מרחקים.
 
::: ומה ההבדל בין שמירת נורמה לשמירת מרחקים? איך מודדים מרחק? אתה בעצמך רשמת נורמה בשאלה...
 
:::: אני כתבתי רק את השאלה המקורית, לא את שתי השורות שמתחתיה. מרחק זה הנורמה של הפרש הוקטורים.
 
::::: אז אם מרחק זה נורמה, והנורמה נשמרת אז ברור שהמרחק נשמר. ולחילופין, כל נורמה היא מרחק של הוקטור מאפס. זה שקול לחלוטין. אלה שמות שונים לאותו הדבר
 
  
==החזרת תרגילים==
+
==שאלה==
ארז - ביום שני הקרוב (מחרתיים) יש לנו שיעור חזרה, ועדיין לא קבלתי את כל התרגילים בחזרה וחשוב לי לראות מה עשיתי - האם הם כבר נבדקו? ולגבי אלה שנבדקו, מאיפה אפשר לאסוף אותם?
+
איך מראים שכל מטריצה מעל C דומה למטריצה המשוחלפת? A דומה לA^t
  
 
===תשובה===
 
===תשובה===
אם הם יחזרו אלינו אנחנו נחזיר אותם ביום שני. בכל מקרה אני ממליץ לקרוא את הפתרונות שיש באתר (בלי שום קשר לתרגילים)
+
בעזרת השאלה ממתחת. A דומה לצורת הז'ורדן שלה <math>A=PJP^{-1}</math> נשחלף לקבל ש
 +
<math>A^t=(P^t)^{-1}J^tP^t</math> כלומר A משוחלפת דומה לצורת הז'ורדן המשוחלפת. אבל על ידי החלפת בסיס מתאימה, צורת הז'ורדן המשוחלפת דומה לצורת הז'ורדן ולכן המטריצות דומות.
 +
 
 +
החלפת הבסיס היא שינוי סדרה איברי הבסיס מהסוף להתחלה, בתוך כל בלוק (נגיד הבלוק הראשון מגודל 3 והשני מגודל 2, אז נחליף לבסיס <math>v_3,v_2,v_1,v_5,v_4</math>.
  
 
==שאלה==
 
==שאלה==
בהוכחה של משפט אוילר כתוב שאם ההצגה של T אורתוגונלי לפי בא"נ B במרחב ממימד 2 היא Ref a, ניתן לשנות את הבסיס ככה שזה ייצא מטריצה שיש בה במקום 11 מינוס אחת, במקום 22 אחת ובשאר אפסים. איך משנים את הבסיס כדי שייצא ככה?
+
אם אני יודע שה"ל T מעל V ממימד N בהצגה לפי הסטנדרטי היא טראנספוז של בלוק ז'ורדן בגודל NXN, איך אני משנה את הבסיס ככה שהיא תצא בלוק ז'ורדן?
  
 
===תשובה===
 
===תשובה===
ניקח אופרטור שיקוף לפי ישר מסוים. מה האופרטור עושה לוקטור שנמצא על הישר? כלום, משאיר אותו כמו שהוא. מה האופרטור עושה לוקטור המאונך לישר? הופך אותו לצד השני, כלומר מחזיר את מינוס הוקטור. לכן ניקח את הבסיס שהוא וקטור על הישר שלפיו משקפים ווקטור מאונך לו. זה תמיד יהיה בסיס (למה?).
+
מסדר אותו מהסוף להתחלה. זה שקול למטריצת המעבר עם אחדות באלכסון המשני. מעבר הבסיס יהיה להחליף את סדר השורות ואז להחליף את סדר העמודות
  
זה הסבר ל2 על 2. אבל למדנו שכל אופרטור א"ג הוא סכום ישר של אופרטורים על מרחבי 2 על 2.
+
==שאלה==
 +
הוכח\הפרך: מעל R^n אם T אורתוגונלי וT^2=I אז T סימטרי.
 +
האם המטריצה ההפכית יחידה? כי אם כן
 +
TT=I
 +
TT*=I
 +
ואז T=T* משמע שזה אמת
  
:למדנו שהוא סכום ישר של סיבובים עם מינוס אחדים ואחדים. מה האחדים והמינוס אחדים מייצגים?
+
===תשובה===
 +
בוודאי שההופכית יחידה...
  
::או שיקוף (מינוס אחד) או פשוט שליחת וקטור לעצמו (אחד). הרי מה מטריצה הזו עושה לוקטורי הבסיס? מסובבת זוגות של וקטורי בסיס, חלק משאיר כמו שהם, וחלק משקפת כלומר הופכת את הכיוון
+
וזו הוכחה נכונה.
  
:::אם אני ממש רוצה למצוא את הבסיס המפורש שבשאלה, מה אני עושה?
+
:תודה! (:
:::: איזה שאלה? רשמתי איך מוצאים את הבסיס
+
 
 +
== 2 שאלות==
 +
1) ארז תוכל בבקשה להסביר לי למה לכל אופרטור יש בא"נ כך שההצגה שלו לפי הבא"נ הזה היא סכום ישר של סיבובים ו-פלוס-מינוס אחדים?
 +
 
 +
2) עברתי על השאלה בנוגע להוכחת תהליך גרם-שמידט ועדיין לא הבנתי את זה. עברתי על ההוכחה שיש בהרצאה וגם שם זה לא ברור לי. תוכל בבקשה להגיד לי מה בעצם מוכיחים ואיך מוכיחים?
 +
 
 +
תודה!
  
==שאלה - אורתוגונליות של אופרטור==
 
תוך כדי הוכחת חלק קטן ממשפט אוילר, שבא להוכיח את אחת מטענות העזר הרבות הבאה:
 
אם T אורתוגונלי, U אינווריאנטי, אזי גם U+ אינווריאנטי,
 
נתקלתי במשהו שלא הבנתי מההרצאה:
 
T אורתוגונלית, אז מדוע היא חח"ע? האם כל T אורתוגונלית בכל תת-מרחב (גם לא T-אינווריאנטי) תהיה חח"ע?
 
  
 
===תשובה===
 
===תשובה===
מה זה מטריצה א"ג? מטריצה שעמודותיה הן בסיס א"נ, ובפרט הן בסיס. כלומר זו מטריצה '''הפיכה''' ובוודאי חח"ע. אם היא לא הייתה חח"ע היה לה גרעין לי טריוויאלה, וזו סתירה לכך שעמודותיה הן בת"ל.
+
1. זה נכון רק לאופרטורים א"ג, ולא לכל אופרטור. ההוכחה היא באינדוקציה. אנחנו יודעים מההרצאה שזה נכון לאופרטורים א"ג מעל מרחבים ממימד 2 כי הם סיבובים או שיקופים (ושיקוף הוא מטריצה עם 1 ומינוס אחד על האלכסון).
 +
 
 +
לאופרטורים א"ג מעל מרחבים ממימד גבוה יותר, מפרקים אותם לסכום יש של אופרטורים א"ג מעל מרחב אינווריאנטי מימד 1 או 2, והמרחב הניצב לו, ממימד n-1 או n-2. לפי הנחת האינדוקציה המרחבים האלה הן כבר מהצורה הרצויה.  
 +
 
 +
זה מאד דומה להוכחה שיש בפתרון לתרגילים בנושא אופרטורים אנטי סימטריים.
 +
 
 +
2. צ"ל להוכיח שהנוסחא <math>w_i=v_i-\sum_{k=1}^i\frac{<v_i,w_k>}{<w_k,w_k>}w_k</math> נותנת וקטור שונה מאפס שמאונך ל<math>w_1,...,w_{i-1}</math>. על מנת להראות שהוא מאונך אליהם מראים שהמכפלה <math><w_i,w_j>=0</math> לכל <math>j<i</math>. אבל לפי ההנחה, הוקטורים <math>w_1,...,w_{i-1}</math> מאונכים זה לזה,  ולכן המכפלה יוצאת
  
::אההה מצוין, תודה!
+
<math><w_i,w_j>=<v_i,w_j>-\frac{<v_i,w_j>}{<w_j,w_j>}<w_j,w_j>=0</math> כפי שרצינו.  
::ויש לי עוד שאלה: בהוכת המשפט: 'יהי V מעל R, ו-T אופרטור אורתוגונלי, אזי קיים בא"נ עבורו ההצגה של T היא מטריצת בלוקים שכוללת: <math>Rot(a_1) . . . Rot(a_k), -1 . . . -1, 1, . . . 1</math> (אלו הם הבלוקים, והשאר אפסים)'.
+
  
::הוכחנו בעצם באינדוקצייה, אבל משהו פה נראה לי מוזר:
+
בנוסף, <math>w_i\neq 0</math> מכיוון שאחרת <math>v_i</math> ת"ל ב<math>v_1,...,v_{i-1}</math> בסתירה לכך שזה היה בסיס מלכתחילה.
  
::כשהגענו למקרה ה-n עבור n>2 אמרנו שבגלל ש-T אורתוגונלית יש תת"מ אינווריאנטי U ממימד 1 או 2, ואז יש לו בא"נ B1 כאשר ההעתקה המצומצמת של T עבור U לפי הבסיס B1 היא מהצורה הדרושה. בנוסף, נובע גם שיש גם U+ שהמימד שלו קטן מ-n. איך פתאום קפצנו מכאן למשפט הבא: '''"לכן לפי הנחת האינדוקצייה יש בא"נ B2 עבור U+ עבורו ההצגה של ההעתקה המצומצמת T ל-U+ לפי B2 היא כנדרש"'''? על איזו הנחה מדובר?
+
:: תודה רבה! - אבל יש רק דבר אחד שלא הבנתי: בנוגע ל-1, שיקוף אמור להיות ה-Ref. למה אמרת שהוא מטריצה של 1 ו-מינוס 1 על האלכסון?
  
:::מה זו הנחת האינדוקציה? זה בדיוק מה שצריך להוכיח הרי. האינדוקציה פה נעשית על המימד. כלומר אנחנו מניחים שכל אופרטור א"ג הוא מהצורה הזו אם הוא פועל על מרחב ממימד n. כעת אנחנו לוקחים את המרחב הגדול, ומפרקים אותו לשני תתי מרחבים אינווריאנטיים U, U+ שהמימד שלהם קטן ממש מהמימד של המרחב כולו. לכן לפי הנחת האינדוקציה האופרטור נראה כמו במשפט על כל אחת מתתי המרחבים הללו.
+
:::לכל שיקוף קיים בא"נ כך שהמטריצה של השיקוף לפי הבא"נ הינה <math>\begin{bmatrix}-1 & 0 \\0 & 1\end{bmatrix}</math>.
  
::::אהההה הבנתי, אז הנחת האינדוקצייה שפועלת על המימד נכונה כאן כי אנחנו משתמשים בה עבור U+ שאנחנו יודעים שהמימד שלו קטן ממש מ-n, וההנחה היא עבור 1, . . n-1, ובעצם מוכיחים עבור סכום הישר של ההצגות המצומצמות של T לפי הבסיסים שלהם ב-n. נחמד מאוד :) ! תודה ארז, אין עליך!!
+
::::עדיין לא הבנתי. הרי שיקוף זאת המטריצה cosa,sina,sina,-cosa. למה הכוונה שאתה אומר שיש בא"נ שלפיו זאת המטריצה 1 0 0 1-?
 +
::::: זו המטריצה לפי הבסיס הסטנדרטי. תראה שאלה 7 בארכיון 6.
 +
:::::: אוקי, שוב תודה :)
  
 
==שאלה==
 
==שאלה==
בפתרונות של שאלה מס' 3 סעיף א' בתרגיל 11, כתוב שזה העתקה בי לינארית. לא הבנתי איך, קח y=0'0'0 x=1'1'1 ותקבל f(x,y)=1 כשאמור לצאת 0...
+
יש שאלת הוכח או הפרך שאני לא מצליח לעלות על הכיוון שלה. אשמח לעזרה...
 +
הוכח\הפרך:
 +
 
 +
1. לכל מטר' A מרוכבת, I+A*A אינה סינגולרית.
 +
 
 +
2. אם k^2 ע"ע של A^2 אזי k ע"ע של A.
 +
 
 +
תודה לעוזר הנחמד.
  
 
===תשובה===
 
===תשובה===
צודק, זו טעות. נתקן
+
1. הוכחה:
 +
 
 +
אנחנו יודעים ש<math>A^*A</math> הינה חיובית לחלוטין, נוכיח: דבר ראשון, היא הרמיטית ולכן הע"ע שלה ממשיים. דבר שני, נניח ש <math>\lambda</math> ע"ע של <math>A^*A</math> אזי <math>\lambda<v,v>=<A^*Av,v>=<Av,Av>\geq 0</math> ולכן <math>\lambda \geq 0</math>.
 +
 
 +
כעת, נניח בשלילה ש<math>I+A^*A</math> סינגולרית כלומר לא הפיכה. לכן בהכרח אפס ע"ע שלה, כלומר <math>|I+A^*A+0\cdot I|=0</math> כלומר, <math>|A^*A-(-1)\cdot I|=0</math> כלומר מינוס אחד הינו ע"ע של <math>A^*A</math> בסתירה לכך שהע"ע שלה הינם חיוביים.
 +
 
 +
2. הפרכה:
 +
 
 +
ניקח A=I. אזי <math>(-1)^2</math> הינו ע"ע של A^2=I אבל מינוס אחד לא ע"ע של A
 +
:תודה רבה רבה רבה
 +
 
  
 
==שאלה==
 
==שאלה==
יש איזה שאלה שאני לא מצליח, אשמח לעזרה.
+
בהוכחה למעלה יש לך מעבר לא נכון, מ<A*Av,v> קפצת ל l<v,v< וזה לא נכון..
יהי V מ"ו מעל F ויהי W ת"מ של V. יהי Q פונקציונל לינארי מV לF. ידוע ש ker Q מוכל בW. הוכח: W=V או W=ker Q.
+
  
 
===תשובה===
 
===תשובה===
אנחנו פותרים מחר שאלה שכנראה תעזור לך. בינתיים אני ארמוז: מה המימד של הגרעין של פונקציונל?
+
שים לב ש<math>\lambda</math> הינו ע"ע של <math>A^*A</math> ולכן <math>A^*Av=\lambda v</math>
:המשך. הגרעין חייב להיות dimv-1 או שהוא יכול להיות גם dimv? כלומר, יש סיכוי שהמימד של IMT יהיה 0?
+
::פונקציונל האפס..
+
  
==שאלה - העתקה אוניטרית==
+
==שאלה==
אני רוצה להוכיח ש-T אוניטרית (TT*=T*T=I) אם ורק אם T שומרת מ"פ.
+
:עוד שאלה שאני שובר את הראש עליה, עזרה תתקבל בברכה:
כיוון אחד טרוויאלי, בכיוון השני אני צריך להוכיח שאם T שומרת מ"פ היא אוניטרית. איך אני עושה את זה?
+
:A מטריצה מרוכבת בגודל 3X3 כך ש:
הגעתי למצב שלכל w,v מתקיים:
+
:A(A^2+I)(A-2I)=0
<v,T*Tw>=<v,w>
+
:הוכח: A לכסינה.
עכשיו, אני יכול לפתח את זה כך:
+
 
<v,T*Tv>=<v,v> לכל v,
+
 
אבל איך אני יכול להמשיך מכאן? כלומר, אם <a,b>=<a,c> לכל a, האם זה בהכרח אומר ש-b=c?
+
תשובה
:מהמצב הזה-<v,T*Tw>=<v,w> אתה יכול להעביר אגף ולהשתמש בלינאריות במשתנה ראשון ולקבל v,T*Tw-w>=0>. זה נכון לכל v, בפרט
+
זה מתפרק לפולינום שA פותרת אותו:
לv=T*Tw-w לכן תקבל שT*Tw-w,T*Tw-w>=0>. מחיוביות תקבל שT*Tw-w=0 לכל w לכן T*Tw=Iw לכל w ולכן ההעתקות שוות, T*T=I.
+
x(x-i)(x+i)(x-2)      z
:זאת לא ההוכחה שיש באתר?
+
אנחנו יודעים שA מרוכבת, לכן הפולינום האופייני שלה מתפרק לגורמים ליניאריים מעל המרוכבים תמיד.
 +
מלבד זאת, אנחנו יודעים שהפולינום המינימלי של כל מטריצה (בפרט A) מחלק כל פולינום המאפס אותה (את A)
 +
ואם הפולינום המינימלי מחלק את הפולינום הזה ואנחנו יודעים שהוא ממעלה קטנה\שווה 3 לכל מטריצה מסדר 3X3, הוא מהצורה
 +
http://math-wiki.com/images/math/4/0/2/40248c16227e65ef2bce5e5d2056d7bf.png
 +
וזה אם ורק אם A לכסינה
 +
 
 +
::איך קטנה שווה 3? לא אמור להיות קטנה שווה ל4? הפולינום הנתון הוא ממעלה 4!!
 +
 
 +
:: כן אבל הפולינום המינמלי צריך לחלק את הפולינום האופיני כאשר הפ"א הוא ממעלה 3 (תסתכל בהרצאה 2 אם אתה לא זוכר..) ולכן הפולינום המינימלי הוא מדרגה קטנה או שווה ל-3..
  
 
==שאלה==
 
==שאלה==
בקשר למשפט השילוש האוניטרי. (למשל עבור ה"ל). אם יש לנו בסיס B כך ש[T] לפי B משולשית (לפי משפט השילוש הרגיל), הגראם שמידט שנבצע על B יהיה בלי נירמול, לא? כלומר, גם אם ננרמל בטוח שהמטריצה תהיה משולשית, אבל בכיתה אמרו שVk~ (~ = החדש, של בסיס א"ג) שווה לVk-1~ ועוד צ"ל של v1~,..vk-2~. כלומר המקדם של Vk-1 שווה ל1, כלומר לא נירמלנו. נכון?
+
שיינר, אם אפשר ליישר קו, מה אומר החלק המתמטי של משפט אוילר, שאותו אנחנו צריכים לדעת?
 +
 
 
===תשובה===
 
===תשובה===
חייבים לנרמל, כי אנחנו רוצים מטריצה מלכסנת א"ג כלומר העמודות שלה הן בסיס א"נ ובפרט מנורמלות.
+
אני לא יכול לעזור בזה, כיוון שלא ראיתי את המבחן.
  
שנית, לא מבצעים גרם שמידט על B כי אז זה לא יהיה שילוש יותר. בדיוק כמו שלא מבצעים גרם שמידט על המטריצה המלכסנת על מנת לקבל לכסון א"ג.
+
תנסו להבין כמה שאתם יכולים.
  
התהליך המלא מפורט בחוברת ובאתר + דוגמאות.
+
 
:אבל בהוכחה שמדברת על העתקות ליניאריות, מצאנו שT לפי B אחרי שעבר גראם שמידט הוא מטריצה משולשית..!
+
:אני לא שואל מה יהיה במבחן אני שואל, מבחינת הקורס, מה אומר משפט אוילר. מצדי תן קישור לויקיפדיה
::זה לא נכון. עושים גרם שמידט בנפרד למרחבים העצמיים (בלכסון) ובשילוש יש תהליך שלם, אחרת הבסיס לא יהיה מורכב מו"ע. הרי אחרת המטריצות של '''כל''' ההעתקות מעל הבסיס הסטנדרטי היו משולשיות כי זה בא"נ, וזה בוודאי לא נכון.
+
::אני מבין, אני פשוט אומר שאני לא יודע בדיוק בעצמי מה הכוונה, ולכן לא רוצה לעסוק בניחושים. חפשתי עכשיו קישור למשפט ואני לא מוצא.
:::למה שכולן יהיו משולשיות? אנחנו לא דורשים שB יהיה בא"נ, אלא אנחנו דורשים שB יהיה בסיס של ו"ע! (כלומר הבסיס שמתקבל בלכסון הרגיל), ואז עושים לו גראם שמידט. כך בדיוק צבאן הוכיח לנו את משפט השילוש האוניטרי:    לפי משפט השילוש המקורי קיים בסיס B של V כך ש[T] לפי B מטריצה משולשית. ויהי B' הבסיס הא"נ המתקבל מהפעלת ג"ש על B. אז מטריצת המעבר [I] מB' לB היא משולשית עליונה, ואז לפי חישוב פשוט, [T] לפי B' גם היא משולשית עליונה.
+
 
::::קודם כל '''למטריצה שאינה לכסינה אין בסיס המורכב מו"ע''' השילוש נועד למטריצות שאינן לכסינות. דבר שני, יכול להיות שטעיתי בכך שפסלתי את הדרך. אם B הוא הבסיס שמשלש, אז ייתכן שהפעלת גרם שמידט עליו תשלש גם היא (לפי מה שתארת). ללכסון זה יכשל... ובכל מקרה חייבים לנרמל בגלל המשפט הראשון שרשמתי.
+
אז תחשוב כמה נחמד זה להיות יום לפני מבחן ולא לדעת מה אומר המשפט :)
 +
 
 +
זו שאלה שונה, המשפט אומר שהזזה של גוף צפיד עם נקודת שבת שקולה לסיבוב סביב ציר מסוים.
 +
 
 +
תודה I GUESS...
  
 
==שאלה==
 
==שאלה==
בקשר לציוני תרגיל, למה לחלק מהתלמידים הציון הסופי גבוה מהממוצע בין הממוצע בית לציון בוחן?
+
למה אם 0=(SV,V) לכל V כאשר S אופרטור לינארי צל"ע אז S=0??
  
 +
*לך לארכיון 5 יש שם תשובה לשאלה ממש דומה ואפילו נראה לי כזאת שמכלילה את זה..
  
איפה מופיעים ציוני התרגיל??
+
::(מישהו אחר) הסתכלתי שם וראיתי שאתה גם מוכיח את זה וגם מוכיח שזה לא נכון. אני לא מבין מה ה"תיקון" שהיה שם, הרי זאת אותה השאלה בדיוק..:S
 +
::: סבבה הבנתי, תודה על ההערה. :)
  
===תשובה===
 
כי הם קיבלו את הבונוס...
 
  
בעמוד הראשי
+
::תקרא שובפעם מה שכתוב שם ותראה שבשאלה הראשונה שנשאלה לא מיקדו אותך מעל איזה שדה זה( R או Cׂ ׂ) ואז יכלת להפריך זאת ע"י דוגמא מעל R        אבל  כאשר זוהי העתקה מעל C הדוגמא שנתנה בתחילה לא סותרת את זה ובהוכחה גם הוא השתמש בכך שאתה מעל C ...
 +
        מה שכן- זה באמת לא ממש אותה שאלה, כי פה באמת לא אומרים לך מעל איזה שדה אתה... תנסה לחשוב על זה קצת (:
  
*הבונוס לא היה אמור להיות 5 נקודות לבוחן?
+
==שאלה==
 +
איך פותרים את סעיף ב' בשאלה הזאת:
  
לא אמרנו דבר כזה בשום שלב...
+
נתונה מטריצה A:
  
*אז מה הוא היה? עיגול ל100?
+
0 0 0 5
  
עיגול זה מילה מצחיקה פה, אבל בגדול זה מה שיצא. הציון המקסימלי הינו 100, ולא במפתיע התלמידים שזכו בבונוס היו לא רחוקים ממנו גם ככה.
+
0 0 4 1
  
*ובכל זאת אפשר לדעת טכנית מה הוא היה? תוספת של כמה נקודות והאם התוספת הייתה לבוחן, לתרגילי בית או לסופי?
+
0 3 3 2
  
הוא היה נתון לשיקול הדעת האישי שלי.
+
3 6 5 4
  
==עזרה==
+
א) מצא את צורת הז'ורדן של A (צדקת ארז, זה באמת עם ז'.. חחח)
מצאתי מבחנים של בועז ובוריס כאן: (לכל מי שצריך)
+
http://bis.bgu.co.il/math/?c_inst=3659&name=אלגברה%20לינארית%202
+
+
חיפשתי באתר עם המבחנים של ד"ר צבאן ולא מצאתי שום שאלה לגבי פוליטופים. זה חומר חדש?? אם לא- אז כנראה שלא שואלים עליו במבחנים- אני אדע לא להתמקד בו. ואם כן- אז איפה אני יכול למצוא חומר עליו?
+
  
 +
ב) מצא מטריצה P הפיכה כך ש-p^-1*A*P היא צורת הז'ורדן של A.
 +
תודה!
  
זה חומר חדש. אני לא יודע איפה אפשר למצוא חומר עליו.
+
:למדנו בכלל למצוא את הP ההפיכה הזו? אני חושבת שאנחנו לא צריכים לדעת את זה
 +
::לא למדנו מטריצה מז'רדנת. לא צריך לדעת.
  
 +
== שאלה ==
 +
איפה המבחן מחר?
  
 +
לפי אורי וייס
 +
505 כיתה 2- זה רק הכיתה של בוריס...505 כיתה 1 זה הכיתה של צבאן...
 +
 +
== שאלה ==
 +
 +
סתם שאלה, אפשר לראות הוכחה לכך שאם U הוא T אינ' אז גם U+ (הת"מ הנציב) הוא גם T אינ' כאשר T א"ג, אני לא בטוח שהדרך שלי נכונה...
  
==משפט ההצגה של ריס==
 
במשפט ההצגה של ריס- איך אני יודע שתמיד קיים v כך שההצגה של V לפי E היא הוקטור a משלים?(כאשר a הוא וקטור המעבר של T בין E לS.)
 
  
 
===תשובה===
 
===תשובה===
לא הבנתי את השאלה...
+
T אורתוגונאלי, ולכן לא מנוון
:אני חושב שאני הבנתי. זה משום שהצגה לפי בסיס זה איזומורפיזם בין V לF^n, כלומר לכל תמונה יש מקור.
+
לכן, לפי משפט הדרגה, IMT=Uכאשר T מצומצם על U+
 +
כלומר לכל w בU קיים w' כך ש  T(w')=w
 +
נניח y במרחב הניצב למרחב המקורי
 +
<w,Ty>=<Tw',Ty>=<w',y>=<0>
 +
ולכן Ty גם בU+
 +
 
  
 
==שאלה==
 
==שאלה==
היטל אפשר לחשב גם בעזרת בסיס א"ג? בהרבה הוכחות שלנו עשינו גראם שמידט בלי נירמול ואז השתמשנו בהיטלים. [אבל בכיתה הגדרנו היטל על בסיס א"נ!]
+
האם פונקציה דו לינארית שולחת בהכרח לסקלר?
 +
==תשובה==
 +
לפי ההגדרה f:VxV->F לכן בהכרח סקלר.
 +
 
 +
==שאלה==
 +
המרחב הדואלי. כמעט ולא עסקנו בו וגם לא ניתן לנו תרגיל בית. הוא יכול להיות במבחן?
  
 
===תשובה===
 
===תשובה===
הגדרנו גם היטל על בסיס א"ג, ולמעשה השיטה שלמדנו בתרגיל לאלגוריתם ג"ש מתבססת על היטל על קבוצה א"ג ולא קבוצה א"נ. ולכן אנחנו מחלקים בנורמה
+
התעסקנו איתו הרצאה ותרגיל כמו כל נושא. תרגיל בית אכן לא ניתן. כמובן שהוא יכול להופיע  במבחן.
  
נניח <math>S=\{v_1,..v_n\}</math> קבוצה א"ג אזי ההיטל של וקטור <math>v</math> על הקבוצה הינו <math>\pi_S(v)=\sum_{i=1}^n\frac{<v,v_i>}{<v_i,v_i>}v_i</math>.
 
  
בג"ש אנו מחסרים את ההיטל מהוקטור, וקל לראות שזה בדיוק החלק השלילי בנוסחא של ג"ש.
+
רואים שזה היה במבחן? אסור לפסול חומר...
 +
 
 +
==שאלה על התרגיל==
 +
קיבלתי בתרגיל 50 ובמבחן 100, סופי 90. יש סיכוי כלשהו להעלות לי את התרגיל? (אני מניח שרוב מי שקורא את זה יודע מי אני...:-) )
 +
 
 +
:לא נגשת לבוחן? על סמך מה נעלה את התרגיל?
 +
 
 +
=תודה!!=
 +
ארז שיינר, תודה רבה לך על כל ההתמסרות וההשקעה בזמן הסמסטר וכמובן לפני המבחן בשאלות שלי ושל כולם.
 +
תבוא לתרגל באינפי 2 (:
 +
 
 +
: בהחלט כל הכבוד, מסכים עם כל מה שנאמר פה ובאמת שאין דרך לתאר את הרצון שלך לעזור לנו והעזרה שנתת לכולנו
 +
 
 +
:אין ספק שאתה צריך לתרגל אותנו אינפי 2..חחח
 +
 
 +
 
 +
תודה לכם, ומקווה שהלך טוב המבחן. מי שלא, נתראה במועד ב'.
 +
 
 +
-מצטרף לתשבוחות
 +
רק אם אפשר לתת קצת ביקורת קונסטרוקטיבית: מאגר העניבות מחזורי, וזה מקשה על ההתרכזות בתרגולים, כיוון שבמקום לעסוק במיון שניויניות, אנו הסטדנטים חייבים לחשוב מתי כבר ראינו עניבה מסוימת ולבנות העתקה על בין קבוצת העניבות שלך לתרגולים. לפיכך, הינך מתבקש לרכוש עניבות חדשות ומחושדות, אם אפשר עם ציורים חמודים. תודה מראש
 +
 
 +
:חחחחחחחחחחחח גדוללל!
 +
 
 +
:מאיפה אתה קונה את העניבות האלה? גמאני רוצה 8)
 +
 
 +
חחח תכלס עניבות מגניבות...מתרגל מצוין עם אחלה לוק !!!
 +
 
 +
=שאלה=
 +
בציוני התרגיל שלי תרגיל שהגשתי וקיבלתי חזרה כתוב שקיבלתי בו 0 למרות שקיבלתי בו 95.
 +
מה לעשות?
 +
 
 +
===תשובה===
 +
אם זה לא משפיע על הציון הסופי, אז להבין שזה לא אומר כלום ולא להציק לי סתם. אם מדובר על תרגיל ש'''ישנה''' את הציון באדום, אפשר לשלוח לי מייל בנושא.
  
 
==שאלה==
 
==שאלה==
יהיה V מ"ו מעל C, אזי קיים פונקציונל לינארי מV לR. למה זה לא ייתכן?
+
היי ארז,
 +
ברור לך שהזמן של הבוחן היה קצר מאוד,וסביר להניח שהפעם לרוב ציון התרגיל די מוריד את הממוצע.גם אם זה בשתי נק' זה ממש מבאס,כי על בוחן אי אפשר לעשות מועד ב' ולהוכיח שהנפילה החד פעמית הייתה בגלל חוסר זמן....הנה עבר לו המבחן,וכמו שאמרת מטרת הבוחן הייתה לזעזע אותנו לקראת המבחן....אז מה אתה אומר שעכשיו תנסו(כן גם ניסיון יעזור...) לדון בציון....אולי תעשו כמו ברוב הקורסים הגבוהה מבין ציון התרגילים לבוחן,או תורידו את המשקל של הבוחן?
 +
תודה רבה!
 +
נ.ב:ארז ,אני רוצה בשם כל תלמידי הקורס למסור לך אתת הערכתנו על התמיכה...מקווים שתתרגל אותנו באינפי 2 או באלגברה מופשטת!!!!!!!!
 +
 
 +
 
 +
סתם שאלה-מתי מתחיל סמסטר ב'? תודה...
 +
 
 +
:מתי יפורסמו פתרונות למבחן?
 +
 
 +
 
 +
::אחרי שהמבחנים יבדקו
 +
 
 +
:::לא מאמינים. תוכיח :)
 +
:::: אני אף פעם לא משקר. אמרתי שאחרי שהמבחנים יבדקו. לכן משפט זה הוא אמת. מ.ש.ל
 +
==שאלה==
 +
מה מס' הקורס? :P
 +
==אמירה==
 +
יש ציונים!!!
 +
 
 +
למה לקבוצה של בועז אין ומתי יהיה?
 +
 
 +
הם עוד בבדיקה, אני מקווה שיהיה בקרוב. פתרון המבחן נמצא בדף הפתרונות
 +
 
 +
איך התחלק הניקוד בשאלות ההוכחה בין סעיף א לב?
 +
 
 +
18/11
 +
 
 +
מה 18 ומה 11  עזוב מספרים שפה קשה כאילו סעיף א-18 וסעיף ב-11?
 +
 
 +
:כן, מן הסתם ההוכחה שוקלת יותר...
 +
 
 +
 
 +
:ארז - יש לי שאלה - במבחן, נניח שמישהו השתמש בטענה שהריבוי האלגברי תמיד יהיה גדול או שווה לריבוי הגיאומטרי בשאלה 1 (א'), מבלי להוכיח את הטענה הזו - האם יורידו נקודות? אם כן, זה יהיה קצת לא הוגן, כי בהוכחה המקורית שיש באתר לאותה שאלה בדיוק (שד"ר צבאן העלה כהשלמה להרצאה) מתייחסים אל אי-השוויון הזה כמובן מאליו.
 +
 
 +
::עד כמה שידוע לי לא ירדו נקודות על זה. חכו לפתיחת המחברות
 +
 
 +
מתי הפתיחת מחברות?
 +
 
 +
תשאלו את המרצים
 +
 
 +
==הכרזה==
 +
יש ציונים! וכן, גם לקבוצה של ד"ר צבאן! (ב'ציוני ביניים')
 +
 
 +
יכול להיות שהיה פקטור? הציונים נראים לכם סבירים<?
 +
הציונים הרשומים בציוני ביניים ב-ט-ו-ח נכונים? אחרי שרושמם אפשר לשנותם אם לא מגישים ערעור?(כלומר מצד המרצה או משהו)
 +
 
 +
 
 +
הממוצע מאד גבוה, אם יהיה פקטור הוא לא יהיה לכיוון שתאהבו :) אבל לא יהיה פקטור כזה כמובן..
 +
 
 +
==שאלה==
 +
מישהו יודע אילו וכמה קורסים צפויים בסמסטר ב' (לא כולל קורסי קיץ)? נשאר לנו השנה (למתמטיקה שימושית) : אינפי 2, שימושי מחשב, אלגברה מופשטת, הסתברות וסטטיסטיקה, ושיטות נומריות.
  
 
===תשובה===
 
===תשובה===
כי לפי הגדרה, פונקציונל הוא מהמרחב לשדה. ולפי ההגדרה שלך השדה הינו C ולא R. במינימום, תכפול בסקלר i ולא תהיה לך סגירות בכלל
+
את אינפי 2 ושימושי מחשב נלמד בסמסטר ב'.
  
==שיעור החזרה==
+
==הצעה==
איפה יהיה השיעור חזרה? איפה כל קבוצה? ועד מתי הוא ימשך?
+
לדעתי יהיה הוגן להחליט שאם ציון המבחן גבוה מציון הבוחן, אז הציון הסופי ייקבע כ-90% מציון המבחן ועוד 10% מציון התרגילים.
  
 
===תשובה===
 
===תשובה===
קיבלתם על זה הודעה, אני לא זוכר את כל המיקומים בע"פ. הוא יהיה במשך שיעור רגיל החל משלוש וחצי, הקבוצה שלי נדמה לי ב202 204
+
ציוני התרגיל הוגנים וציוני המבחן הוגנים מאד. אי אפשר להתחשב בכל החזיתות.
 +
 
 +
:אבל הבוחן ממש לא היה הוגן. היה מחסור חמור בזמן, כל טעות קטנה הובילה לירידה גדולה בציון וגם הבדיקה לא נעשתה ברחמנות, בלשון המעטה. לכן, אם מישהו מעד בבוחן (מה שיכל לקרות בקלות בגלל כל הסיבות שפירטתי למעלה) והוכיח את עצמו אחר כך במבחן, צריך לדעתי להתחשב יותר במבחן על חשבון הבוחן.
 +
 
 +
::בדיקת הבוחן הייתה הוגנת, והבוחן היה הוגן. ציון תרגילי הבית היה קרוב ל100 לכולם. מטרת הציון הסופי של הקורס היא לא לחפש סיבות למה לתת לכולם 100. לכל קורס יש כללים מסוימים וחלוקה בין הציונים השונים, והמטרה שלכם היא להצליח בצורה המירבית. אם ניצור נוסחא אישית לכל תלמיד פשוט כולם יקבלו ציונים טובים. השורה התחתונה היא שממוצע הציונים הסופיים גבוה מאד גם ככה, ובוודאי אין מקום לשום התחשבות נוספת. אני מאד מעריך את הרצון והשאיפה לקבל ציונים טובים, ואני ממליץ שתתעלו אותו ללמידה והמשך הצלחה בקורסים הבאים.
 +
 
 +
מתי יהיו ציונים סופיים?
 +
 
 +
לא יודע, אבל ניתן לחשב פחות או יותר לבד: 20 אחוז ציון תרגיל (הציון הסופי שפורסם באתר) ו80 אחוז ציון מבחן.
 +
 
 +
===פתיחת מחברות===
 +
מה עם פתיחת המחברות של הקבוצה של בוריס?
 +
 
 +
 
 +
אני ממליץ לשאול את בוריס :)
 +
 
 +
===לגבי מועד ב'===
 +
אפשר בבקשה לקבל מידע על מועד ב' (האם אותו מבנה,  האם הוא יהיה רק לתיכוניסטים או לכל הסטודנטים, האם יהיה שיעור חזרה לקראתו, האם הוא יהיה יותר קשה)??
 +
 
 +
 
 +
רציתי להצטרף לשואל ולשאול האם גם המתכונת של המבחן תהיה זהה? כלומר כמות השאלות וכו'..
 +
 
 +
===תשובה===
 +
מומלץ לשאול את המרצים, אבל עד כמה שידוע לי המועד ב' צריך להיות כמו המועד א', כלומר כמו שאמרנו לכם להתכונן למועד א' (כמובן שיכול להופיע חומר שלא היה בפועל במועד א' אבל היה צריך ללמוד אותו במועד א').
 +
 
 +
===תשובה של דר' צבאן===
 +
לתלמידים עם ציונים מעולים (נאמר, תשעים ומעלה), איני ממליץ לעשות מועד ב'.
 +
 +
לתלמידים עם ציון סופי (כולל תרגיל ובוחן) מתחת לשמונים, אני ממליץ כן לעשות מועד ב', מהסיבה שציון
 +
נמוך משמונים לעתים אינו מוכר לפטור מקורס באוניברסיטאות אחרות, למקרה שתרצו לעבור תחום
 +
ו/או אוניברסיטה. כמובן, זה בתנאי שהתלמיד לוקח את מועד ב' ברצינות ולומד אליו היטב.
 +
 
 +
לגבי שאר התלמידים: זו החלטה שעליהם לקחת בעצמם, ויש לקחת בחשבון כמה דברים.
 +
 
 +
סטטיסטית, רוב מי שלומד שוב (היטב) למועד ב', מצליח יותר במועד ב' מאשר במועד א', וגם מבין
 +
את החומר טוב יותר בשביל הקורסים הבאים. כך שזה עשוי להועיל מאד.
 +
מצד שני, תמיד יש יוצאי דופן, וקורה (למרות שנדיר) שתלמיד שניגש שוב ציונו משתנה לרעה.
 +
בכל מקרה, מי שניגש למועד ב', הציון הקובע הוא זה של מועד ב' (לטובה או לא לטובה).
 +
המדיניות שלנו היא להשתדל לעשות מועד ב' ברמה דומה למועד א'. זה עניין סובייקטיבי ובודאי חלק מהתלמידים ירגישו שהוא יותר קל ממועד א', וחלק ירגישו שהוא יותר קשה ממועד א', אבל בפירוש איננו מנסים שהוא יהיה יותר קשה ממועד א'.
  
ומה עם הקבוצה של לואי? ולא קיבלנו על זה שום הודעה..
+
מידע נוסף, כולל מי צריך להירשם למועד ב' ואיך, תמצאו בקישור הבא (מקורס קיץ ישן):
  
איכשהו תמיד אומרים את זה הסטודנטים שבדר"כ לא מקבלים הודעות ולא מטפלים בזה... סטודנטים קיבלו הודעות. תבררו מחר במחלקה בדיוק איפה זה.
+
http://u.cs.biu.ac.il/~tsaban/Summer08/Summer08.html
  
בקשה:
+
בהצלחה,
  
בבקשה תצ'פרו את כולם ב 10 או 20 נקודות לציון הסופי של התרגיל
+
ד"ר בועז צבאן
  
הציונים הם אחרי התוספת של ה20 נקודות כבר
+
: תודה רבה

גרסה אחרונה מ־17:16, 2 במאי 2010


\begin{bmatrix}
\lambda & 0 & 0 \\
0 &\lambda & 0 \\
0 & 0 & \lambda 
\end{bmatrix}

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחתית הדף את השורה הבאה:

== כותרת שאלה ==

לכתוב מתחתיה את השאלה שלכם, וללחוץ על 'שמירה'.

(אין צורך להרשם לאתר. רק לעקוב אחרי ההוראות הפשוטות...)

ארכיון

ארכיון 1 - שאלות על תרגילים 1-4

ארכיון 2 - שאלות על תרגילים 5-8

ארכיון 3 - שאלות על תרגילים 10-11

ארכיון 4 - שאלות על תרגיל 12 והמבחן

ארכיון 5 - שאלות על המבחן

ארכיון 6 - שאלות על המבחן

שאלות

פתיחת מחברות

מתי יש פתיחת מחברות של מועד ב'?

תשאלו את המרצים

מבחן מועד א'

העלתם את הפתרונות של מועד א' אבל לא העליתם את המבחן עצמו. אתם יכולים להעלות את המבחן? תודה.

תשובה

תצלם מאחד החברים, אני אפילו לא בטוח שיש לי אותו

פתיחת מחברות

מתי בדיוק תתקיים פתיחת מחברות לקבוצה של ד"ר צבאן?

פתרון המבחן-בקשה מהמתרגלים והמרצים

תוכל לעלות בבקשה את הפתרון למבחן (מועד א'). כך שנוכל לראות בצורה מדוייקת איך צריך לגשת לשאולות, איך לנסח את הפתרון - והכי חשוב את לפתור את כל השאלות. זה חשוב גם לאילו שמעוניינים לגשת למועד ב'.

  ,תודה רבה.


פתרון המבחן כבר עלה לפני שבוע. נמצא עם פתרונות התרגילים.

ציוני מבחן

מתי יהיו הציונים בלינארית בערך?

תשובה

הבדיקה בשלביה האחרונים, אנחנו מקווים שיהיה תוצאות כבר בשבוע הבא

מקום הפרסום

היי ארז. איפה יפורסמו הציונים של המבחן? במידע אישי לסטודנט? ואתה תוכל בבקשה לפרסם הודעה באתר כשהציונים יפורסמו? תודה!


תשובה

אני לא יודע, אני אודיע כשאדע

שאלה

אהמ, מישהו יודע אם יש מצב להקדים מועד ב' ??

שאלה

אם נתון לי בסיס E וקיימת לי מטריצה אוניטרית P, מותר לי להגדיר בא"נ B כך ש P תיהיה מטריצת המעבר מ B ל E?

תשובה

כן. כי אם נכפיל בשמאל במטריצה המעבר מE לS הסטנדרטי היא תהיה אוניטרית לכן המכפלה תהיה אוניטרית והמכפלה תהיה מטריצה המעבר מB לS ולכן B בא"נ.

הוכח\הפרך

שאלה מהמבחן של בוריס שנה שעברה, האם מישו הצליח לפתור?- תהי A מטריצה ממעלה >=2 כך ש-degA=2 <= rkA=1(

תשובה

אני הצלחתי להוכיח - אבל אני לא בטוח ב - 100% בנכונות של זה - תנסה לכתוב את A בצורה מפורשת ותעבוד עם זה

גם אני חשבתי ככה (כתבתי את A בתור שורה אחת עם ערכים שאני לא יודע מה הם וכל שאר השורות אפס, ואז הראתי שהפולינום המינימלי על ידי בדיקה הוא באמת ממעלה 2 תמיד), אבל זה ש RANK A = 2 לא בהכרח אומר שלA יש N-1 שורות אפסים, אלא שאפשר להביא אותה לצורה מדורגת כך. לכן הדרך של כתיבה מפורשת לדעתי לא נכונה (ואכן אני לא יודע איך כן להוכיח את זה...).

תשובה: (נכונה) rankA=1 => dimIm(A)=1 ולכן dimKer(A)=n-1 ואז המימד של המרחב העצמי של 0 הוא n-1 (הריבוי הגיאומטרי של 0). מכיוון שהריבוי האלגברי תמיד גדול או שווה לגיאומטרי הוא או N או N-1. אם הוא N אז לפי משפט צורת ז'ורדן יש N-1 בלוקים של 0 אך כל הN עמודות הן של 0 ולכן הבלוק בגודל הכי גדול הוא בגודל 2 ואז M(A)=A^2 כדרוש. אם הוא N-1 אז מכיוון שסכום כל הריבועים האלגבריים הוא N אז יש עוד ערך עצמי עם ריבוי אלגברי (ולכן גם ריבוי גיאומטרי) של 1. לכן לפי משפט צורת ז'ורדן, יש N-1 בלוקים של 0 ו-1 של הערך העצמי הנוסף (נגיד X) ואז הגודל המקסימלי של כל בלוק הוא 1 והפולינום המינימלי הוא M(A)=A(A-X)=> rank(M)=2 מש"ל (סליחה שלא כתבתי הכל בכתיב מתמטי אבל אין לי באמת מושג איך..)

שאלה

אני יודעת שאתמול הוכחת לנו את זה לפני השיעור חזרה, אבל זה היה ממש לא מסודר ולא ממש הצלחתי לעקוב, אז אני אשמח אם אתה (או מישהו אחר בכיף(:) יתן תשובה: ככה: T נורמלי הוכח ש- im(T)=im(T^*)


הוכחה

דבר ראשון נוכיח שker(T)=ker(T^*). נניח v \in kerT לכן Tv=0 ולכן \forall u: <T^*Tv,u>=<0,u>=0 אבל T^*T=TT^* ולכן \forall u: <TT^*v,u>=0 ולכן \forall u: <T^*v,T^*u>=0 ובפרט זה נכון עבור v=u ולכן <T^*v,T^*v>=0 ולכן T^*v=0 כלומר v \in ker T^*. בכיוון ההפוך ההוכחה דומה.


עכשיו נוכיח את הטענה. v \in kerT אם"ם \forall u: <Tv,u>=0 אם"ם \forall u: <v,T^*u>=0 אם"ם v \in (ImT^*)^\bot ולכן kerT = (ImT^*)^\bot. בצורה דומה kerT^*=(ImT)^\bot. אבל הגרעינים שווים ולכן (ImT)^\bot=(ImT^*)^\bot ומזה נובע שהם שווים (כי המרחב המאונך הינו יחיד, והמאונך של המאונך הינו המרחב עצמו).

השלמה לבסיס

האם קיימת דרך בה ניתן להשלים וקטור v_1 לבסיס עבור F^n . למשל שמשלשים וצריך להשלים לבסיס?

תשובה

זו שאלה מלינארית 1. על מנת להשלים קבוצת וקטורים לבסיס, אתה שם אותם בשורות מטריצה, מדרג אותה, ומוסיף וקטורים שמשלימים את הצירים החסרים.

שאלה

איך מראים שלמטריצה נילפוטנטית יש רק ע"ע אחד שהוא 0 ? בנוסף, צ"ל שמטריצה משולשת עם אפסים באלכסון היא נילפוטנטית. אני יכול לומר שהמטריצה דומה לצורת זורדן עם אפסים באלכסון ומעל אחד-ים ואם נעלה בחזקת K אז נקבל את מט' האפס. איך ממשיכים?

הכי פשוט שבעולם - אני הסתכלתי על זה ככה: לפי משפט השילוש, 0 הוא הע"ע היחיד שלה (בהנחה שהאלכסון כולו אפסים), ולכן הפולינום האופייני שלה הוא f(x)=x^n. אם תציב את A תקבל 0, ולכן A^n=0, וזו בדיוק ההגדרה של נילפוטנטית - אם *קיים* k (במקרה זה k=n) עבורו A^k=0.

תשובה

תשובה לע"ע רק 0-A נילפוטנטנטית מסדר K. נניח שיש ערך עצמי L שהוא לא אפס. ז"א Av=Lv. נכפול משמאל ב-A^K-1 ונקבל 0=LA^k-1V= אבל A*v= lv ולכן קיבלנו A^k-2*l^2=0. אבל A^K-2 שונה מאפס, וL שונה מאפס ולכן סתירה

שאלה

איך מוכיחים את הכיוון הבא: אם T אוניטרית אזי היא מעבירה בא"נ לבא"נ אחר (T מעל C)

תשובה

צריך להוכיח שאם v_1,...v_n בא"נ אזי גם Tv_1,..Tv_n בא"נ. ההגדרה של בא"נ הינה שהמכפלה הפנימית של כל זוג וקטורים שונים היא אפס, והמכפלה הפנימית של וקטור עם עצמו הינה 1.

T אוניטרית ולכן TT^*=T^*T=I. נבדוק את המכפלה הפנימית של זוג וקטורים בבסיס החדש: <Tv_i,Tv_j>=<v_i,T^*Tv_j>=<v_i,v_j> ולכן המכפלות הן אותו הדבר (ראינו עכשיו שאופרטור אוניטרי שומר מכפלות פנימיות) ולכן גם הבסיס החדש הינו א"נ.

שאלה

א. יהי V מ"ו ממימד סופי, יהיא Y(פי) שייך ל- *V ושונה מ-0, יהי W ת"מ של V המכיל את KER Y(פי). צ"ל W=V או W=KER Y

ב. יהי V ממ"פ ממימד סופי. יה Y שייך ל- V* . הוכח כי קיים וקטור W שייך ל- V כך ש: V,W >= ( Y(V> לכל V שייך ל- V.

תשובה

א. אתמול בשיעור החזרה הראנו שהמימד של הגרעין של פונקציונל הינו n או n-1 (לפי משפט הדרגה). במקרה שהפונקציונל שונה מאפס המימד של הגרעין הינו n-1.

אם W מכיל את הגרעין והמימד שלו n-1 אזי הוא שווה לגרעין. אם המימד שלו n אזי הוא שווה למרחב V. אין עוד אופציות כי המימד שלו לא יכול להיות קטן מהמימד של הגרעין אותו הוא מכיל.

ב. זה משפט ההצגה של ריס.


שאלה

איך מראים שכל מטריצה מעל C דומה למטריצה המשוחלפת? A דומה לA^t

תשובה

בעזרת השאלה ממתחת. A דומה לצורת הז'ורדן שלה A=PJP^{-1} נשחלף לקבל ש A^t=(P^t)^{-1}J^tP^t כלומר A משוחלפת דומה לצורת הז'ורדן המשוחלפת. אבל על ידי החלפת בסיס מתאימה, צורת הז'ורדן המשוחלפת דומה לצורת הז'ורדן ולכן המטריצות דומות.

החלפת הבסיס היא שינוי סדרה איברי הבסיס מהסוף להתחלה, בתוך כל בלוק (נגיד הבלוק הראשון מגודל 3 והשני מגודל 2, אז נחליף לבסיס v_3,v_2,v_1,v_5,v_4.

שאלה

אם אני יודע שה"ל T מעל V ממימד N בהצגה לפי הסטנדרטי היא טראנספוז של בלוק ז'ורדן בגודל NXN, איך אני משנה את הבסיס ככה שהיא תצא בלוק ז'ורדן?

תשובה

מסדר אותו מהסוף להתחלה. זה שקול למטריצת המעבר עם אחדות באלכסון המשני. מעבר הבסיס יהיה להחליף את סדר השורות ואז להחליף את סדר העמודות

שאלה

הוכח\הפרך: מעל R^n אם T אורתוגונלי וT^2=I אז T סימטרי. האם המטריצה ההפכית יחידה? כי אם כן TT=I TT*=I ואז T=T* משמע שזה אמת

תשובה

בוודאי שההופכית יחידה...

וזו הוכחה נכונה.

תודה! (:

2 שאלות

1) ארז תוכל בבקשה להסביר לי למה לכל אופרטור יש בא"נ כך שההצגה שלו לפי הבא"נ הזה היא סכום ישר של סיבובים ו-פלוס-מינוס אחדים?

2) עברתי על השאלה בנוגע להוכחת תהליך גרם-שמידט ועדיין לא הבנתי את זה. עברתי על ההוכחה שיש בהרצאה וגם שם זה לא ברור לי. תוכל בבקשה להגיד לי מה בעצם מוכיחים ואיך מוכיחים?

תודה!


תשובה

1. זה נכון רק לאופרטורים א"ג, ולא לכל אופרטור. ההוכחה היא באינדוקציה. אנחנו יודעים מההרצאה שזה נכון לאופרטורים א"ג מעל מרחבים ממימד 2 כי הם סיבובים או שיקופים (ושיקוף הוא מטריצה עם 1 ומינוס אחד על האלכסון).

לאופרטורים א"ג מעל מרחבים ממימד גבוה יותר, מפרקים אותם לסכום יש של אופרטורים א"ג מעל מרחב אינווריאנטי מימד 1 או 2, והמרחב הניצב לו, ממימד n-1 או n-2. לפי הנחת האינדוקציה המרחבים האלה הן כבר מהצורה הרצויה.

זה מאד דומה להוכחה שיש בפתרון לתרגילים בנושא אופרטורים אנטי סימטריים.

2. צ"ל להוכיח שהנוסחא w_i=v_i-\sum_{k=1}^i\frac{<v_i,w_k>}{<w_k,w_k>}w_k נותנת וקטור שונה מאפס שמאונך לw_1,...,w_{i-1}. על מנת להראות שהוא מאונך אליהם מראים שהמכפלה <w_i,w_j>=0 לכל j<i. אבל לפי ההנחה, הוקטורים w_1,...,w_{i-1} מאונכים זה לזה, ולכן המכפלה יוצאת

<w_i,w_j>=<v_i,w_j>-\frac{<v_i,w_j>}{<w_j,w_j>}<w_j,w_j>=0 כפי שרצינו.

בנוסף, w_i\neq 0 מכיוון שאחרת v_i ת"ל בv_1,...,v_{i-1} בסתירה לכך שזה היה בסיס מלכתחילה.

תודה רבה! - אבל יש רק דבר אחד שלא הבנתי: בנוגע ל-1, שיקוף אמור להיות ה-Ref. למה אמרת שהוא מטריצה של 1 ו-מינוס 1 על האלכסון?
לכל שיקוף קיים בא"נ כך שהמטריצה של השיקוף לפי הבא"נ הינה \begin{bmatrix}-1 & 0 \\0 & 1\end{bmatrix}.
עדיין לא הבנתי. הרי שיקוף זאת המטריצה cosa,sina,sina,-cosa. למה הכוונה שאתה אומר שיש בא"נ שלפיו זאת המטריצה 1 0 0 1-?
זו המטריצה לפי הבסיס הסטנדרטי. תראה שאלה 7 בארכיון 6.
אוקי, שוב תודה :)

שאלה

יש שאלת הוכח או הפרך שאני לא מצליח לעלות על הכיוון שלה. אשמח לעזרה... הוכח\הפרך:

1. לכל מטר' A מרוכבת, I+A*A אינה סינגולרית.

2. אם k^2 ע"ע של A^2 אזי k ע"ע של A.

תודה לעוזר הנחמד.

תשובה

1. הוכחה:

אנחנו יודעים שA^*A הינה חיובית לחלוטין, נוכיח: דבר ראשון, היא הרמיטית ולכן הע"ע שלה ממשיים. דבר שני, נניח ש \lambda ע"ע של A^*A אזי \lambda<v,v>=<A^*Av,v>=<Av,Av>\geq 0 ולכן \lambda \geq 0.

כעת, נניח בשלילה שI+A^*A סינגולרית כלומר לא הפיכה. לכן בהכרח אפס ע"ע שלה, כלומר |I+A^*A+0\cdot I|=0 כלומר, |A^*A-(-1)\cdot I|=0 כלומר מינוס אחד הינו ע"ע של A^*A בסתירה לכך שהע"ע שלה הינם חיוביים.

2. הפרכה:

ניקח A=I. אזי (-1)^2 הינו ע"ע של A^2=I אבל מינוס אחד לא ע"ע של A

תודה רבה רבה רבה


שאלה

בהוכחה למעלה יש לך מעבר לא נכון, מ<A*Av,v> קפצת ל l<v,v< וזה לא נכון..

תשובה

שים לב ש\lambda הינו ע"ע של A^*A ולכן A^*Av=\lambda v

שאלה

עוד שאלה שאני שובר את הראש עליה, עזרה תתקבל בברכה:
A מטריצה מרוכבת בגודל 3X3 כך ש:
A(A^2+I)(A-2I)=0
הוכח: A לכסינה.


תשובה זה מתפרק לפולינום שA פותרת אותו: x(x-i)(x+i)(x-2) z אנחנו יודעים שA מרוכבת, לכן הפולינום האופייני שלה מתפרק לגורמים ליניאריים מעל המרוכבים תמיד. מלבד זאת, אנחנו יודעים שהפולינום המינימלי של כל מטריצה (בפרט A) מחלק כל פולינום המאפס אותה (את A) ואם הפולינום המינימלי מחלק את הפולינום הזה ואנחנו יודעים שהוא ממעלה קטנה\שווה 3 לכל מטריצה מסדר 3X3, הוא מהצורה http://math-wiki.com/images/math/4/0/2/40248c16227e65ef2bce5e5d2056d7bf.png וזה אם ורק אם A לכסינה

איך קטנה שווה 3? לא אמור להיות קטנה שווה ל4? הפולינום הנתון הוא ממעלה 4!!
כן אבל הפולינום המינמלי צריך לחלק את הפולינום האופיני כאשר הפ"א הוא ממעלה 3 (תסתכל בהרצאה 2 אם אתה לא זוכר..) ולכן הפולינום המינימלי הוא מדרגה קטנה או שווה ל-3..

שאלה

שיינר, אם אפשר ליישר קו, מה אומר החלק המתמטי של משפט אוילר, שאותו אנחנו צריכים לדעת?

תשובה

אני לא יכול לעזור בזה, כיוון שלא ראיתי את המבחן.

תנסו להבין כמה שאתם יכולים.


אני לא שואל מה יהיה במבחן אני שואל, מבחינת הקורס, מה אומר משפט אוילר. מצדי תן קישור לויקיפדיה
אני מבין, אני פשוט אומר שאני לא יודע בדיוק בעצמי מה הכוונה, ולכן לא רוצה לעסוק בניחושים. חפשתי עכשיו קישור למשפט ואני לא מוצא.

אז תחשוב כמה נחמד זה להיות יום לפני מבחן ולא לדעת מה אומר המשפט :)

זו שאלה שונה, המשפט אומר שהזזה של גוף צפיד עם נקודת שבת שקולה לסיבוב סביב ציר מסוים.

תודה I GUESS...

שאלה

למה אם 0=(SV,V) לכל V כאשר S אופרטור לינארי צל"ע אז S=0??

*לך לארכיון 5 יש שם תשובה לשאלה ממש דומה ואפילו נראה לי כזאת שמכלילה את זה..
(מישהו אחר) הסתכלתי שם וראיתי שאתה גם מוכיח את זה וגם מוכיח שזה לא נכון. אני לא מבין מה ה"תיקון" שהיה שם, הרי זאת אותה השאלה בדיוק..:S
סבבה הבנתי, תודה על ההערה. :)


תקרא שובפעם מה שכתוב שם ותראה שבשאלה הראשונה שנשאלה לא מיקדו אותך מעל איזה שדה זה( R או Cׂ ׂ) ואז יכלת להפריך זאת ע"י דוגמא מעל R אבל כאשר זוהי העתקה מעל C הדוגמא שנתנה בתחילה לא סותרת את זה ובהוכחה גם הוא השתמש בכך שאתה מעל C ...
       מה שכן- זה באמת לא ממש אותה שאלה, כי פה באמת לא אומרים לך מעל איזה שדה אתה... תנסה לחשוב על זה קצת (:

שאלה

איך פותרים את סעיף ב' בשאלה הזאת:

נתונה מטריצה A:

0 0 0 5

0 0 4 1

0 3 3 2

3 6 5 4

א) מצא את צורת הז'ורדן של A (צדקת ארז, זה באמת עם ז'.. חחח)

ב) מצא מטריצה P הפיכה כך ש-p^-1*A*P היא צורת הז'ורדן של A. תודה!

למדנו בכלל למצוא את הP ההפיכה הזו? אני חושבת שאנחנו לא צריכים לדעת את זה
לא למדנו מטריצה מז'רדנת. לא צריך לדעת.

שאלה

איפה המבחן מחר?

לפי אורי וייס 505 כיתה 2- זה רק הכיתה של בוריס...505 כיתה 1 זה הכיתה של צבאן...

שאלה

סתם שאלה, אפשר לראות הוכחה לכך שאם U הוא T אינ' אז גם U+ (הת"מ הנציב) הוא גם T אינ' כאשר T א"ג, אני לא בטוח שהדרך שלי נכונה...


תשובה

T אורתוגונאלי, ולכן לא מנוון לכן, לפי משפט הדרגה, IMT=Uכאשר T מצומצם על U+ כלומר לכל w בU קיים w' כך ש T(w')=w נניח y במרחב הניצב למרחב המקורי <w,Ty>=<Tw',Ty>=<w',y>=<0> ולכן Ty גם בU+


שאלה

האם פונקציה דו לינארית שולחת בהכרח לסקלר?

תשובה

לפי ההגדרה f:VxV->F לכן בהכרח סקלר.

שאלה

המרחב הדואלי. כמעט ולא עסקנו בו וגם לא ניתן לנו תרגיל בית. הוא יכול להיות במבחן?

תשובה

התעסקנו איתו הרצאה ותרגיל כמו כל נושא. תרגיל בית אכן לא ניתן. כמובן שהוא יכול להופיע במבחן.


רואים שזה היה במבחן? אסור לפסול חומר...

שאלה על התרגיל

קיבלתי בתרגיל 50 ובמבחן 100, סופי 90. יש סיכוי כלשהו להעלות לי את התרגיל? (אני מניח שרוב מי שקורא את זה יודע מי אני...:-) )

לא נגשת לבוחן? על סמך מה נעלה את התרגיל?

תודה!!

ארז שיינר, תודה רבה לך על כל ההתמסרות וההשקעה בזמן הסמסטר וכמובן לפני המבחן בשאלות שלי ושל כולם. תבוא לתרגל באינפי 2 (:

בהחלט כל הכבוד, מסכים עם כל מה שנאמר פה ובאמת שאין דרך לתאר את הרצון שלך לעזור לנו והעזרה שנתת לכולנו
אין ספק שאתה צריך לתרגל אותנו אינפי 2..חחח


תודה לכם, ומקווה שהלך טוב המבחן. מי שלא, נתראה במועד ב'.

-מצטרף לתשבוחות רק אם אפשר לתת קצת ביקורת קונסטרוקטיבית: מאגר העניבות מחזורי, וזה מקשה על ההתרכזות בתרגולים, כיוון שבמקום לעסוק במיון שניויניות, אנו הסטדנטים חייבים לחשוב מתי כבר ראינו עניבה מסוימת ולבנות העתקה על בין קבוצת העניבות שלך לתרגולים. לפיכך, הינך מתבקש לרכוש עניבות חדשות ומחושדות, אם אפשר עם ציורים חמודים. תודה מראש

חחחחחחחחחחחח גדוללל!
מאיפה אתה קונה את העניבות האלה? גמאני רוצה 8)

חחח תכלס עניבות מגניבות...מתרגל מצוין עם אחלה לוק !!!

שאלה

בציוני התרגיל שלי תרגיל שהגשתי וקיבלתי חזרה כתוב שקיבלתי בו 0 למרות שקיבלתי בו 95. מה לעשות?

תשובה

אם זה לא משפיע על הציון הסופי, אז להבין שזה לא אומר כלום ולא להציק לי סתם. אם מדובר על תרגיל שישנה את הציון באדום, אפשר לשלוח לי מייל בנושא.

שאלה

היי ארז, ברור לך שהזמן של הבוחן היה קצר מאוד,וסביר להניח שהפעם לרוב ציון התרגיל די מוריד את הממוצע.גם אם זה בשתי נק' זה ממש מבאס,כי על בוחן אי אפשר לעשות מועד ב' ולהוכיח שהנפילה החד פעמית הייתה בגלל חוסר זמן....הנה עבר לו המבחן,וכמו שאמרת מטרת הבוחן הייתה לזעזע אותנו לקראת המבחן....אז מה אתה אומר שעכשיו תנסו(כן גם ניסיון יעזור...) לדון בציון....אולי תעשו כמו ברוב הקורסים הגבוהה מבין ציון התרגילים לבוחן,או תורידו את המשקל של הבוחן? תודה רבה! נ.ב:ארז ,אני רוצה בשם כל תלמידי הקורס למסור לך אתת הערכתנו על התמיכה...מקווים שתתרגל אותנו באינפי 2 או באלגברה מופשטת!!!!!!!!


סתם שאלה-מתי מתחיל סמסטר ב'? תודה...

מתי יפורסמו פתרונות למבחן?


אחרי שהמבחנים יבדקו
לא מאמינים. תוכיח :)
אני אף פעם לא משקר. אמרתי שאחרי שהמבחנים יבדקו. לכן משפט זה הוא אמת. מ.ש.ל

שאלה

מה מס' הקורס? :P

אמירה

יש ציונים!!!

למה לקבוצה של בועז אין ומתי יהיה?

הם עוד בבדיקה, אני מקווה שיהיה בקרוב. פתרון המבחן נמצא בדף הפתרונות

איך התחלק הניקוד בשאלות ההוכחה בין סעיף א לב?

18/11

מה 18 ומה 11 עזוב מספרים שפה קשה כאילו סעיף א-18 וסעיף ב-11?

כן, מן הסתם ההוכחה שוקלת יותר...


ארז - יש לי שאלה - במבחן, נניח שמישהו השתמש בטענה שהריבוי האלגברי תמיד יהיה גדול או שווה לריבוי הגיאומטרי בשאלה 1 (א'), מבלי להוכיח את הטענה הזו - האם יורידו נקודות? אם כן, זה יהיה קצת לא הוגן, כי בהוכחה המקורית שיש באתר לאותה שאלה בדיוק (שד"ר צבאן העלה כהשלמה להרצאה) מתייחסים אל אי-השוויון הזה כמובן מאליו.
עד כמה שידוע לי לא ירדו נקודות על זה. חכו לפתיחת המחברות

מתי הפתיחת מחברות?

תשאלו את המרצים

הכרזה

יש ציונים! וכן, גם לקבוצה של ד"ר צבאן! (ב'ציוני ביניים')

יכול להיות שהיה פקטור? הציונים נראים לכם סבירים<? הציונים הרשומים בציוני ביניים ב-ט-ו-ח נכונים? אחרי שרושמם אפשר לשנותם אם לא מגישים ערעור?(כלומר מצד המרצה או משהו)


הממוצע מאד גבוה, אם יהיה פקטור הוא לא יהיה לכיוון שתאהבו :) אבל לא יהיה פקטור כזה כמובן..

שאלה

מישהו יודע אילו וכמה קורסים צפויים בסמסטר ב' (לא כולל קורסי קיץ)? נשאר לנו השנה (למתמטיקה שימושית) : אינפי 2, שימושי מחשב, אלגברה מופשטת, הסתברות וסטטיסטיקה, ושיטות נומריות.

תשובה

את אינפי 2 ושימושי מחשב נלמד בסמסטר ב'.

הצעה

לדעתי יהיה הוגן להחליט שאם ציון המבחן גבוה מציון הבוחן, אז הציון הסופי ייקבע כ-90% מציון המבחן ועוד 10% מציון התרגילים.

תשובה

ציוני התרגיל הוגנים וציוני המבחן הוגנים מאד. אי אפשר להתחשב בכל החזיתות.

אבל הבוחן ממש לא היה הוגן. היה מחסור חמור בזמן, כל טעות קטנה הובילה לירידה גדולה בציון וגם הבדיקה לא נעשתה ברחמנות, בלשון המעטה. לכן, אם מישהו מעד בבוחן (מה שיכל לקרות בקלות בגלל כל הסיבות שפירטתי למעלה) והוכיח את עצמו אחר כך במבחן, צריך לדעתי להתחשב יותר במבחן על חשבון הבוחן.
בדיקת הבוחן הייתה הוגנת, והבוחן היה הוגן. ציון תרגילי הבית היה קרוב ל100 לכולם. מטרת הציון הסופי של הקורס היא לא לחפש סיבות למה לתת לכולם 100. לכל קורס יש כללים מסוימים וחלוקה בין הציונים השונים, והמטרה שלכם היא להצליח בצורה המירבית. אם ניצור נוסחא אישית לכל תלמיד פשוט כולם יקבלו ציונים טובים. השורה התחתונה היא שממוצע הציונים הסופיים גבוה מאד גם ככה, ובוודאי אין מקום לשום התחשבות נוספת. אני מאד מעריך את הרצון והשאיפה לקבל ציונים טובים, ואני ממליץ שתתעלו אותו ללמידה והמשך הצלחה בקורסים הבאים.

מתי יהיו ציונים סופיים?

לא יודע, אבל ניתן לחשב פחות או יותר לבד: 20 אחוז ציון תרגיל (הציון הסופי שפורסם באתר) ו80 אחוז ציון מבחן.

פתיחת מחברות

מה עם פתיחת המחברות של הקבוצה של בוריס?


אני ממליץ לשאול את בוריס :)

לגבי מועד ב'

אפשר בבקשה לקבל מידע על מועד ב' (האם אותו מבנה, האם הוא יהיה רק לתיכוניסטים או לכל הסטודנטים, האם יהיה שיעור חזרה לקראתו, האם הוא יהיה יותר קשה)??


רציתי להצטרף לשואל ולשאול האם גם המתכונת של המבחן תהיה זהה? כלומר כמות השאלות וכו'..

תשובה

מומלץ לשאול את המרצים, אבל עד כמה שידוע לי המועד ב' צריך להיות כמו המועד א', כלומר כמו שאמרנו לכם להתכונן למועד א' (כמובן שיכול להופיע חומר שלא היה בפועל במועד א' אבל היה צריך ללמוד אותו במועד א').

תשובה של דר' צבאן

לתלמידים עם ציונים מעולים (נאמר, תשעים ומעלה), איני ממליץ לעשות מועד ב'.

לתלמידים עם ציון סופי (כולל תרגיל ובוחן) מתחת לשמונים, אני ממליץ כן לעשות מועד ב', מהסיבה שציון נמוך משמונים לעתים אינו מוכר לפטור מקורס באוניברסיטאות אחרות, למקרה שתרצו לעבור תחום ו/או אוניברסיטה. כמובן, זה בתנאי שהתלמיד לוקח את מועד ב' ברצינות ולומד אליו היטב.

לגבי שאר התלמידים: זו החלטה שעליהם לקחת בעצמם, ויש לקחת בחשבון כמה דברים.

סטטיסטית, רוב מי שלומד שוב (היטב) למועד ב', מצליח יותר במועד ב' מאשר במועד א', וגם מבין את החומר טוב יותר בשביל הקורסים הבאים. כך שזה עשוי להועיל מאד. מצד שני, תמיד יש יוצאי דופן, וקורה (למרות שנדיר) שתלמיד שניגש שוב ציונו משתנה לרעה. בכל מקרה, מי שניגש למועד ב', הציון הקובע הוא זה של מועד ב' (לטובה או לא לטובה). המדיניות שלנו היא להשתדל לעשות מועד ב' ברמה דומה למועד א'. זה עניין סובייקטיבי ובודאי חלק מהתלמידים ירגישו שהוא יותר קל ממועד א', וחלק ירגישו שהוא יותר קשה ממועד א', אבל בפירוש איננו מנסים שהוא יהיה יותר קשה ממועד א'.

מידע נוסף, כולל מי צריך להירשם למועד ב' ואיך, תמצאו בקישור הבא (מקורס קיץ ישן):

http://u.cs.biu.ac.il/~tsaban/Summer08/Summer08.html

בהצלחה,

ד"ר בועז צבאן

תודה רבה