הבדלים בין גרסאות בדף "אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(שאלות)
(ביטול גרסה 5876 של 87.68.229.138 (שיחה))
 
(863 גרסאות ביניים של יותר מ־100 משתמשים אינן מוצגות)
שורה 22: שורה 22:
  
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 7| ארכיון 7]]''' - (מי עוקב)
 
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 7| ארכיון 7]]''' - (מי עוקב)
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 8| ארכיון 8]]'''
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 9| ארכיון 9]]''' - לקראת הבוחן
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 10| ארכיון 10]]''' - פוסט בוחן
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 11| ארכיון 11]]''' - תרגיל 9
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 12| ארכיון 12]]''' - תרגיל 9
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 13| ארכיון 13]]''' - תרגיל 10
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 14| ארכיון 14]]''' - תרגיל 10
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 15| ארכיון 15]]''' - תרגיל 10
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 16| ארכיון 16]]''' - לקראת המבחן
 +
 +
'''[[אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות - ארכיון 17| ארכיון 17]]''' - לקראת המבחן
  
 
=שאלות=
 
=שאלות=
==שאלה - פונקציות טריגונומטריות ממעלה גבוהה==
 
נניח שאני רוצה לחשב את האינטגרל של סינוס בחמישית של x. האם "חוקי", בהנחה שהצבתי <math>sin(x)=t</math>, להסיק ש: <math>cos(x)=\sqrt{1-t^2}</math> להמשך ההצבה? אם לא, באילו דרכים נוספות (מלבד ההצבה האוניברסאלית שלא נראית יעילה במיוחד והנוסחא לחישוב סינוס ממעלה גבוהה) ניתן לחשב את האינטגרל?
 
:הערה : שמתי לב שמאחר וחזקת הסינוס היא אי-זוגית, נוח יותר להציב t=cosx. אני ממשיך לשאול את אותה שאלה באופן כללי.
 
  
==השאלה שרוני ביתן נתן בתאריך ה2/5 ופתרונה==
+
==שאלה==
+
f רציפה, מחזורית ואי שלילית(אינה זהותית 0) ב-R =>? האינטגרל שלה מתבדר באינסוף.
+
  
פתרון:
+
יהיה במבחן פונקציות עם שתי משתנים?
הפיתרון נעשה יחסית פשוט מאז שהועלה תרגיל 7(שאלה 1 ב' עוזרת)
+
:לא שידוע לי, אם המרצה אמר שיהיה אז יהיה, אם לא אז לא
[[http://www.mediafire.com/download.php?nag1mmjnmnk]]
+
  
+
תומר - מה פתאום שיהיה משהו שלא למדתם ??? הגיון חבר"ה , הגיון !
השאלה היתה להוכיח שהאינטגרל של: f(x)/x מתבדר...  ההוכחה שהוכחת היא טריוויאלית: נניח שאחרי אורך מחזור האינטגרל על הפונקציה הוא I. אזי ברור שאם ניקח אינטגרל על הפונקציה לאורך M/I האינטגרל יהיה שווה M (כי הפונקציה מחזורית) וb שואף לאינסוף ולכן גם האינטגרל.
+
  
 +
==שאלה==
 +
תחת אילו תנאים ניתן לומר שאינטגרל על סכום אינסופי של פונקציות שווה לסכום האינסופי של האינטגרלים של הפונקציות?
 +
תודה
  
באמת? :P אז הפיתרון בכלל פשוט... לפי מבחן ההשוואה הראשון...
+
תומר - מפנה אותך לנוסח משפטים המתאימים ! יש משפטים שמתארים תנאים מספיקים לכך . ייתכן שיהיו מצבים נוספים שזה יתקיים אבל אז צריך לבדוק כל מקרה לגופו.
f(x)/x>m/x>=0 כאשר m הוא המינימום של הפונקציה f.
+
בגלל שהאינטגרל של m/x מתבדר באינסוף אז האינטגרל של f(x)/x מתבדר באינסוף...
+
  
===תשובה===
+
==שאלה==
מוצאים את פיתרון האינטגרל על ידי הנוסחא הרקורסיבית:
+
נניח יש לי טור פונקציות שרץ על fn (הסדרה המזהה שלו). למה אם הטור |fn| מתכנס במ"ש בI, אז גם הטור המקורי מתכנס במ"ש בI?
[[http://upload.wikimedia.org/math/4/8/0/4805f6229810b464973a52e89f20bd3a.png]]
+
  
אם אתה צריך לחשב את האינטגרל של cos(x( ממעלה מסויימת אתה יכול להמיר אותו לאינטגרלים של sin(x) או שאתה יכול להשתמש בנוסחא:
+
*נקודתית זה ברור מאינפי 1. לבמ"ש ההוכחה דומה. שארית הטור לא בהחלט קטנה משארית הטור בהחלט, כלומר הטור לא בהחלט מתכנס מהר יותר מאשר הטור בהחלט.
[[http://upload.wikimedia.org/math/6/c/c/6ccc9782d57f50a93575a81aba47acda.png]]
+
  
==שאלה בקשר לבוחן==
+
ועוד שאלה: אם יש לי סדרת פונ' fn כך ש|fn| מתכנסת לפונ' גבול כלשהי f במ"ש, האם זה אומר שfn המקורית מתכנסת לf1 כלשהי במ"ש?
מה יהיו הנושאים בבוחן? איזה סוג של שאלות הוא יכלול? עברתי על כל התרגילים שנתנו עד כה (1-8), החל ממשפטי לגראנז' והערך הממוצע, דרך כלל לופיטל, חקירת פונקציות, טורי טיילור, עד לאינטגרלים הלא מסויימים, הצבות שונות, ולבסוף את כל הנושא של האינטגרביליות ועד לחישובים השונים של אינטגרלים מסויימים. אני די מתוסכל כי זה המון חומר ואשמח אם תוכלו לספק מידע, אפילו מועט, בנוגע לסוג השאלות שיופיעו בבוחן : האם תהיה בחירה? האם יהיו שאלות מסוג אמריקאי / נכון לא נכון? הוכח או הפרך? האם נצטרך לחקור פונקציות? תודה!
+
  
 +
*ברור שלא.... אינפי 1. <math>fn=(-1)^n</math> לא מתכנס בכלל, אבל הערך המוחלט מתכנס במ"ש.
  
===תשובה===
+
יש טעות בסיכום במשפט פרמה, לא? המשפט הראשון בעמוד הראשון של הסיכום...התנאים לא צריעכים להיות הפוכים???
ציינת יפה את רשימת החומר לבוחן.
+
  
יהיו שאלות הוכחה כלומר שאלות תאורטיות, ויהיו שאלות קצרות יותר בסגנון של הוכח הפרך (עם תשובה קצרה). צריך לדעת חקירת פונקציות, אבל לא נתן לכם לחקור פונקציה מלאה.
+
*נכון מאד, הסרתי את הסיכום. המשפט אומר שאם יש מקסימום/מינימום והפונקציה גזירה הנגזרת הינה אפס. בוודאי שאם הנגזרת אפס אין שום הכרח שיהיה מינימום/מקסימום (לדוגמא x^3).
  
ותהרגו אותי אם אני מבין איך עוזר לכם לדעת אם תהיה בחירה או לא. אם המטרה היא לדלג על חומר מסוים מתוך ההנחה שתוכל לבחור לא לענות על שאלות בנושא, אני ממליץ לא לעשות את זה (כנראה שלא תהיה בחירה, וגם אם כן לא נאפשר לבחור בין נושאים שונים)
+
שאלה:איך מוגדר אינטגרל של פונקציה ממינוס אינסוף לאינסוף? הגבול כאשר c רץ לאינסוף של אינטגרל של הפונקציה מ c- עד c או פשוט פיצול לשני אינטגרלים לא אמיתיים ואז כל אחד שואף בקצב שלו? זה משנה כי במקרה של פונקציה איזוגית-למשל x באפשרות הראשונה זה 0 ובשניה אינסוף פחות אינסוף שזה מתבדר.....(נכון?)תודה.
  
::הסיבה היא בעיקר להרגיע אותנו - יהיה לך קשה למצוא סטודנטים רציניים שלא לחוצים מהבוחן הקרוב. אח"כ, המטרה שלשמה שאלתי את השאלה היא כדי לנסות ולמקד את תהליך הלמידה - בבחנים משנים קודמות קשה מאוד למצוא שאלות 'תאורטיות' או שאלות מסוג 'הוכח או הפרך', כך שמלבד חישוב אינטגרלים, חקירת פונקציות וחזרה עמוקה על החומר והתרגילים אין יותר מדי דרכים להתכונן לבוחן...
+
*הוא מוגדר בתור הסכום של שני אינטגרלים לא אמיתיים. האינטגרל על הפונקציה x למשל מתבדר.
  
==לקראת הבוחן==
+
 
יש מצב שיועלו לאתר בחנים לדוגמא / שאלות לתרגול?
+
למה אם f פונקציה רציפה, מחזורית ואי-שלילית בממשיים(f אינה זהותית אפס) אז הגבול של f(x)/x^3 אינו אפס כאשר x שואף לאינסוף?? הרי f  חסומה מהנתונים,לא? רוני נתן שאלה כזאת ואמר להוכיח שהאינטרגל של f(x)/x מ1 עד אינסוף מתבדר. ואם הגבול שאמרתי מקודם שווה ל0 אז לפי מבחן ההשוואה האינטגרל מתכנס, אז כנראה שהגבול איננו 0,למה???
  
 
===תשובה===
 
===תשובה===
אולי יעלו שאלות לדוגמא, בינתיים תרגילי הבית הם הדוגמאות (והתרגילים שביצענו בכיתה)
 
  
==תרגיל 8 שאלה 6==
+
תומר - כמה שאלות , כמה שאלות ! :)
אם אני אקח
+
לשאלה הראשונה על התכנסות עם ערך מוחלט גוררת התכנסות בלי , במידה שווה - ראה משפט שהוכחתם . או - אפשר לנסות לבד פשוט ביישום של קריטריון קושי להתכנסות במ"ש ! .
f(x)= 1/delta כאשר X=0
+
 
ואחרת
+
אינטגרל ממינוס אינס' לאינס' מוגדר על ידי פיצול באיזו נקודת ביניים - אבל בכל אופן כאשר הגבולות שלהם - אחד עם פרמטר לאינסוף ושני עם פרמטר למינוס אינסוף - הם לא תלויים אחד בשני ! ובטח לא ממינוס סי לסי כאשר סי שואף לאינסוף . זהו אינטגרל שקיים בשימושים אבל יש לו שם - PRINCIPAL VALUE - אבל זה לא האינטגרל בקורס שלנו !!! .
f(x)= x/sin(x*delda
+
 
אז f גזירה ברציפות ועונה על נתוני השאלה אך הגבול שמופיע  בשאלה אינו שווה ל-0 כאשר ניקח למשל גבולות אינטגרציה מ-2 ל-1.  
+
לגבי שאלה אחרונה - תן בבקשה את ניסוח השאלה המלא כדי שאוכל להתייחס .
אז איך מוכיחים דבר שניתן להפרכה?
+
 
 +
==שאלה מסודרת ==
 +
נתונה פונקציה fרציפה,מחזורית ואי-שלילית ב-R. היא אינה זהותית 0.הוכח: האינטגרל של f(x)/x מ-1 לאינסוף מתבדר. תוכל גם להגיד לי למה אי אפשר להוכיח שזה מתכנס עם שימוש במבחן ההשוואה השני? כי f לפי הנתונים חסומה,לא? ואז הגבול של (f(x)/x)/x^2 שווה לאפס ולפי המבחן f(x)/x מתכנס, כי האינטגרל של x^2 מתכנס...
  
 
===תשובה===
 
===תשובה===
מה זאת אומרת <math>f=\frac{1}{\lambda}</math>? זה אומר למעשה שאתה משנה את f יחד עם הגבול. אבל f הינה פונקציה של x בלבד, היא לא אמורה להשתנות לפי <math>\lambda</math>.
+
(לא ארז/תומר) נראה לי שהטעות שלך היא כזו , כשאתה עשית את מבחן ההשוואה, עשית את זה עם הפונ' x^2 והאינטרל של זה מתבדר בקטע 1 עד אינסוף (אתה מתבלבל עם 1/x^2).
  
===שאלה===
+
:אבל אמרתי בקטע 1 עד אינסוף...לא מאפס!
<math>\lambda</math> זה לא סקלאר?
+
::הוא העיר לך על הפונקציה ולא על הקטע. x^2 זו פונקציה ששואפת לאינסוף ובפרט אינה אינטגרבילית על הקטע האינסופי.
  
:זה לא לינארית, מה זה אומר סקאלר? הוא משתנה גם כן, ועליו אנחנו לוקחים את הגבול. f הינה פונקציה של המשתנה x ואילו האינטגרל המסויים הינו פונקציה של המשתנה <math>\lambda</math>. לכן אפשר לקחת את הגבול של הפונקציה הזו באינסוף
+
ובנוגע להוכחה , אני עשיתי את זה בדרך הבאה:
  
==תרגיל 9==
+
נסמן את המחזור של F כ-T, אנחנו יודעים שהפונ' אינה זהותית אפס, לכן יש נקודה X0 בקטע [1,1+T] כך ש- (''f''(''x0'' שווה ל-M גדול ממש מאפס. מכיוון ש-F רציפה יש סביבה [a,b] של X0 כך שכל ס בקטע מקיים f(x)>M/2 (או אפילו גדול שווה, זה לא משנה) וכעת, מכיוון ש-F אישלילית , נגדיר פונקציה חדשה G להיות M/2x בכל קטע מהצורה [a+n*T,b+n*T] כאשר n טבעי ואפס בכל נקודה אחרת.
גם השבוע לקבוצה שמתרגלת בימי ראשון יהיה תרגיל נוסף, ולקבוצה השנייה לא, כתוצאה מחג שבועות. למתרגלים של הקבוצה הראשונה - ארז, למה שלא תתן שבוע חופש לקבוצה שלך מהגשת תרגילים (הכוונה לתרגיל 9 שעדיין לא פורסם), לקראת הבוחן שקרב ובא, וכך גם לא יווצר פער נוסף בהגשת התרגילים לקבוצה השנייה?
+
 
 +
ברור כי שתי הפונ' אי שליליות, אינטגרביליות בכל קטע מהצורה [one,R] כש- R>1 (F רציפה בכל קטע כזה, ול-G יש מספר סופי של נקודות אי רציפות מהסוג המתאים) ולכן אם האינטגרל של G בטע 1 עד אינסוף מתבדר, כך גם האינטגרל הלא אמיתי של F.
 +
 
 +
ועכשיו, להראות שהאינטגרל של G בקטע 1 עד אינסוף מתבדר, זה לא כזה מסובך (אני עשיתי לפי קריטריון קושי, אבל אני בטוחשאפשר בעוד דרכים, ואין לי כח לכתוב את זה) ובסה"כ קיבלנו שהאינטגרל של f(x)/x
 +
 
 +
==שאלה==
 +
למה במבחן ההשוואה הראשון רוני ציין שאם 0<g  ו f>g והאינטגרל של f מתכנס(לא אמיתי, בשנ הסוגים הוא אמר ככה...) אז האינטגרל של g מתכנס. הוא לא אמר שאם g מתבדר גם f מתבדר,זה לא נכון??
  
 
===תשובה===
 
===תשובה===
זה אכן התכנון, תנו לנו קצת קרדיט.
+
המשפט השני הוא היקש לוגי מהראשון. לא יכול להיות שf יתכנס אבל g יתבדר, לכן אם g מתבדר אזי f מתבדר.
  
 +
==שאלה==
  
 +
בתרגיל 11 שאלה 3 - לעוד מישהו יצא רדיוס התכנסות אפס?
 +
:: [לא תומר או ארז] לי דווקא יצא 1
 
==שאלה==
 
==שאלה==
יכול להיות שבשאלה 5 (תרגיל 8) בהגדרה של rn, בסיגמה k צריך לרוץ רק עד n-1?
+
אם אני צריכה להוכיח שפונק' כלשהי היא אינטגברילית רימן, והראיתי שהסכום רימן שלה לכל חלוקה מתאימה ולכל בחירה אלפא חסומה בין הסכום רימן של פונק' אינטגרבילית(!) אחרת פחות אפסילון, ואותו סכום ועוד אפסילון. האם זה מראה לי שהפונק' שלי אינטגרבילית גם? ויותר מזאת, שואפת לסכום I של אותה הפונקציה השניה?
תומר '''טקסט מודגש''' - נכון , זה מה שצריך להיות . יתוקן !
+
:הסכום רימן של הפונקציה האחרת עבור אותה חלוקה? ומה זה האפסילון הזה? במה הוא תלוי?
  
==שאלות==
+
==שאלה==
1. בתרגיל 8, שאלה 3 - נניח שיש לי פונקצייה רציפה f, אזי יש לה קדומה F. אפשר להסיק שגם ל-F יש קדומה (כי היא גזירה, ולכן רציפה), נכון?
+
נתון כי f אינטגרבילית וחסומה ע"י  M. צ"ל שf^2  אינטגרבילית באותו קטע.
 +
יש דרך להראות את זה לא ע"י הרכבת פונקציות (שבדרך זו הנתון ע"י החסימות מיותר)?
 +
מהי הדרך?
  
2. בשאלה 4 - האם הגיוני שהתשובה שלי תכלול 2-3 שורות? (כשאני מנמק)
+
:הנתון על חסימות מיותר איך שלא תסתכל על זה, שכן זו פונקציה אינטגרבילית (ולכן חסומה)
  
===תשובה===
+
אבל יש דרך להראות את זה חוץ מהרכבה של פונקציה רציפה ופונקציה אינטגרבילית?
יותר מזה, האינטגרל מאפס עד x של כל פונקציה אינטגרבילית הוא פונקציה רציפה ולכן יש לו קדומה.
+
  
לא יודע, התשובה הנכונה אכן לא ארוכה מידי, צריך לוודא שאתה מציין את כל הפרטים החשובים.
+
תומר - מידת קבוצת נקודות אי הרציפות  של הפונקציה החדשה היא אפס ? ...
  
==תרגיל 8==
+
(לא ארז/תומר) כן יש פיתרון אחר, והוא בעזרת תנאי רימן לאינטגרביליות.
בשאלה 6, יכול להיות שהנתון גזירה ברציפות מיותר? לא מספיק להניח שהיא רק רציפה ב- [a,b]? (זאת מסקנה ישירה מהנתון על הגזירות, אבל האם כל השאר באמת הכרחי?)
+
f^2 חסומה (ברור), ונותר להראות את התנאי השני.
 +
בקשר אליו, קל להראות ש
  
'''תומר''' - אגלה לך רמז ואל תגלה לאף אחד ! - בעיקרון מספיק להניח שהפונקציה "רק" אינטגרבילית , אבל אז ההוכחה לטענה קצת יותר מורכבת . אבל לך על זה ! :) - מה אמרת לגבי "מסקנה ישירה מהגזירות " ? - ראינו שהתנאי שפונקציה גזירה , לא אומר שנגזרתה רציפה , ובטח לא אומר שנגזרתה אינטגרבילית ...
+
w(f^2)<= w(f)*2*M (כאשר w הוא התנודה בקטע), ומכאן  קל להמשיך.
  
:לדעתי מספיק להניח שהיא רציפה בקע, לכן היא אינטגרבילית שם וחסומה, וההמשך ע"י הסנדוויץ'... לא? זה הפתרון המסובך?
+
מראים את זה כך, לכל x1,x2 בקטע כלשהו מתקיים:
'''תומר''' - לא מגלה ...:) יכול להגיד שלפי הנתון בשאלה , ההוכחה היא די פשוטה . בהמשך אפרסם לכם הוכחה למקרה הכללי , כשהפונקציה רק אינטגרבילית !
+
f(x1)^2-f(x2)^2<=(f(x1)-f(x2))*(f(x1)+f(x2)), ומכאן זה ברור
'''תומר''' - שוב אני . ראה , כשאתה אומר "לדעתי " - תן לדיעה הזו נימוק מתמטי או - מצא בסופו של דבר שזה לא נכון . אין הגיון כאשר אתה עוד בשלב ה"לדעתי " - שאני אפסול לך את הכיוון או אאשר אותו ,כי אתה צריך לבנות אינטואיציה ולהוכיח אותה או להפריך מתמטית . עדיף לך (!) שלא אכוון אותך בשלב זה , אלא ש"תתלכלך " קצת עם ניר ועיפרון  . אמרתי לכם שעוד תודו לי יום אחד :) בהצלחה !
+
  
==תרגיל 8==
+
==שאלה==
בשאלה 1 b כיצד אפשר לדעת משהו על התחום בין Pi/2 ל-Pi?
+
התבקשתי להביא דוגמה לסדרת פונק' fn רציפות ב[0,1] כך שfn(x)-->0 לכל X בתחום, אך האינטגרל של fn מ0 עד 1 אינו שווה ל0. 
 +
- האם הפונקציה x^n(x^n-1)  qq  מקיימת את הדרוש? הפונק' אכן רציפות ב[0,1], פונקצית הגבול היא 0, אבל האינטגרל יוצא, אם אני לא טועה, 1/n פחות 1/(2n+1)..
  
 
===תשובה===
 
===תשובה===
 +
אתה בטוח שהאינטגרל שונה מאפס ולא '''שואף''' לאפס? כי כמעט כל סדרה שתבחר תעמוד בתנאי הראשון (למשל הסדרה של הפונקציות הקבועות <math>\frac{1}{n}</math>).
  
צודק, יש טעות בשאלה, אני מיד מעלה תיקון
+
אם אתה רוצה סדרה שהאינטגרל עליה אינו שואף לאפס, קח סדרה של פונקציות הבאה: הגרף של הפונקציה ה-n הוא משולש עם בסיס <math>\frac{1}{n}</math> בגובה 2n וכל שאר הפונקציה היא אפס. הסדרה הזו שואפת לאפס (כמובן שלא במ"ש) והאינטגרל על כל פונקציה בסדרה הוא תמיד 1.
  
==שאלה - הבוחן הקרוב==
+
==שאלה==
לארז ותומר - יש לי בקשה קטנה אליכם, אתם לא חייבים להיענות לה אבל בבקשה תקראו אותה: בסמסטר הקודם הבוחן בלינארית אמנם לא היה קשה בצורה רצחנית, אבל שאלת ההוכחה יחד עם כמה שאלות טריקיות הביאו למצב שהממוצע שלו היה די נמוך, ולא מעט תלמידים ששפרו משמעותית את ציוניהם במבחן הסופי נאלצו לאבד מספר לא מבוטל של נקודות. בקורס אינפי 1 הסיפור דומה, רק שכאן הציונים בבוחן היו נמוכים כ"כ, וכן התרגילים שהגשנו לא נבדקו בזמן, עד שהוחלט שהציון ייקבע באופן שונה מהצפוי. כמעט כולם בתוכנית הזו שואפים לציון כמה שיותר גבוה, והלב כואב כשאחרי שבועות של למידה למבחן הסופי מצליחים להוציא בו ציון גבוה, אך כתוצאה מהבוחן יורדות להן 4-5 נקודות.
+
נראית נחמדה. f:[0,1] ---> R היא פונקציה רציפה אי שלילית המקיימת f(x)<=sinx לכל x בתחום. צריך למצוא את כל פתרונות המשוואה:  
 +
cosx+quad(f,0,x)-1=0.
 +
(קוסינוסX ועוד האינטגרל של f מ0 עד x פחות 1 = 0.)
 +
מעבר לעובדה שx=0 הוא פתרון אחד של המשוואה, לא הצלחתי להוכיח שלא קיימים עוד פתרונות/למצוא פתרון נוסף. ניסיתי להניח שקיים ולהשתמש במשפט רול, ניסיתי להשתמש בזה שאי שיוויון ברמת הפונק' ==> אי שיוויון ברמת האינטגרל אבל בסופו של דבר לא הגעתי למשהו שמוכיח. יש רעיון למישהו?
 +
::מישהו??
  
לכולנו (יותר נכון ל-95% וקצת יותר מאתנו שלומדים בתיכון) יש עומס עצום, ובכל שלושה ימים יש בביה"ס מתכונת נוספת או בגרות כזו או אחרת. על כל חופש אפשרי שיש לנו ב"חגי ישראל" מצמידים מיד אחריו איזו מתכונת (למשל ל"ג בעומר, או שבועות), ונכון שאנחנו אמורים להתמודד עם העומס הזה, אבל אני בספק אם מישהו באמת מרגיש מוכן לבוחן, או שבאמת יהיה לו זמן (מלבד ארבעת הימים שלפני הבוחן - שישי, שבת, ראשון ושני) לחזור על כל החומר ולהבין באמת עד רמה של תרגילים לבוחן.
 
  
בתודה רבה, ואני מצפה לתגובה מכם, ומקווה שלכולנו יילך כמה שיותר טוב :)
+
:::אם f=sinx אזי זו הפונקציה הקבועה אפס. אם f קטן ממש מהסינוס אזי הנגזרת בעלת סימן קבוע (שלילי) והפתרון היחיד הוא אפס
  
===תשובה===
+
==שאלה==
הציונים חשובים לכם וזה טוב מאדאבל אם כולם יקבלו 100 לציון לא תהיה משמעות רבה, נכון? בלינארית המבחן היה עם ממוצע גבוה במיוחד (אפשר לדבר על הסיבות, אני חושב שהיה שילוב של מבחן לא מסובך וסטודנטים שידעו את החומר). אין לנו מטרה לעשות בוחן מכשיל שיוריד נקודות במכוון, אך הוא כן צריך להיות ברמה מספקת.
+
מישהו מוכן להסביר לי באילו מקרים כדאי לעשות גזירה איבר איבר, ומתי לעשות אינטגרציה איבר איבר? תודה.
 +
:כדאי? תמיד. מותר? כאשר יש התכנסות במ"ש לפי המשפטים שלמדתם בכיתה.
  
אני אגלה סוד מקצועי, מבחן טוב הוא מבחן עם ממוצע 70. מכיוון שאתם תלמידים טובים, אפשר גם לכוון לממוצע 80. כך היה בבוחן בלינארית 1, הממוצע שלו לא היה נמוך בכלל. הבוחן הוריד לכם נקודות כי המבחן היה עם ממוצע גבוה מידי. כמובן שאנו לא נותנים שאלות קשות במיוחד על מנת להוריד אתכם ל80, אבל זה המצב באופן טבעי כאשר נותנים שאלות הוגנות (בכל זאת אתם לא גאונים בחמש רמות מעל כל שאר תלמידי המתמטיקה בעולם).
+
==שאלות מעניינות==
:ארז, אני לא בטוח שהיה בוחן בלינארית אחד.
+
* הוכח או הפרך:
 +
תהי <math>f_n(x)</math> סדרה של פונקציות גזירות ברציפות המתכנסות במ"ש לפוקציה <math>f</math>, אשר גם גזירה ברציפות,ב-<math>[a,b]</math>.
 +
אזי ש- <math>f_n' \rightarrow f'</math> במ"ש על הקטע <math>[a,b]</math>.
 +
* בנוגע למשפט דיני לטורים, נניח שיש לי טור <math>u(x)=\sum_{n=1}^{\infty}a_n(x)</math>, כך ש-<math>a_n(x)>0</math> והטור מתכנס ב-I.  
 +
מתי אני יודע אם הפונקציה הגבולית רציפה, כך שאוכל להישתמש בדיני ולקבוע שההתכנסות במ"ש.
 +
נשמח לתשובה ממישהו,די דחוף! תודה!!! :)
  
==שאלה - תרגיל 8==
+
תומר - אם ניקח את הסידרה cosnx ונחלק הכל ב n . האם קיבלת סידרה שמתכנסת במ"ש ? ומה עם נגזרותיה ? ...
בתרגיל 8, בשאלה 7 - בסעיף הראשון, האם מותר להסתמך על קיומה של פונקצייה קדומה ל-f, ורק להראות שנגזרת כזו קיימת לפי כללי נגזרת? (ולא לפי הגדרת הנגזרת שכוללת גבולות)
+
לגבי דיני - פשוט לבדוק רציפות לפי הגדרה - גם לא אמרת שהפונקציות בסידרה רציפות - שים לב לתנאי המשפט ! .
 +
 
 +
==שאלה==
 +
 
 +
שאלה שנתקעתי עליה ואשמח לכיוון:
 +
 
 +
int(arctan(x)/[(x*(ln(x+1))^2)], x = 0 .. infinity)
 +
 
 +
ניסיתי דיריכלה, חשבתי על השוואה, ופשוט לא מצאתי. אשמח לעזרה
 +
 
 +
::מצטרף לשאלה!! איך פותרים את הדבר הזה?
 +
 
 +
 
 +
(לא ארז/תומר) תנסה השוואה עם אחד חלקי [x*ln(x)^2]. שים לב ש arctanx שואף באינסוף לחצי פאי, ושעם קצת אלגברה אפשר להוכיח שמנת ה-ln-ים שואפת לאחד. כדי להראות התכנסות של האינטגרל החדש, אפשר להשתמש בהצבה t=ln(x), או לחילופין להשתמש במבחן האינטגרל+מבחן העיבוי לטורים
 +
 
 +
תודה רבה :)
 +
 
 +
זה לא נכון, כי יש בעיתיות גם בנקודה x=1 וגם באינסוף. ההשואה שנתת עוזרת רק לחלק של האינסוף
 +
 
 +
: אבל אני לא חושב שאמורה להיות בעיה, כי זאת בעיה בנקודה, וזה לא אינטגרל לא אמיתי מסוג שני.
 +
 
 +
::אתה מפצל את זה לשני אינטגרלים: האינטגרל מ-1 עד אינסוף מתכנס (כי מורידים את ה-ln בעזרת אי שוויון והאינטרגל (arctanx/x^2) מתכנס (השוואה עם 1/x^2)...
 +
::עכשיו בקשר לאינטגרל מ-0 עד 1 אתה יודע ש- ln(1+x)<x לכל x ב-[0,1] ולכן האינטרגל שלנו גדול מהאינטגרל של arctan(x)/x^4 וזה מתבדר ע"פ השוואה עם 1/x^4 שמתבדר בקטע [0,1], ולכן זה גדול מאינטגרל מתבדר וזה סה"כ מתבדר. (אשמח לקבל אישור מאחד המתרגלים =) ).
 +
 
 +
:(לא ארז/תומר) עבור האינטגרל מ-0 עד 1, תנסה מבחן השוואה גבולי עם אחד חלקי x^2 . שים לב ש arctanx/x שואף לאחד וש ln(1+x)/x גם שואף לאחד כאשר x שואף לאפס.
 +
ובקשר לזה שכתב מעלי- ה-x במכנה הוא לא בריבוע...
 +
 
 +
:: האמת שהאינטגרל המקורי היה בין 1 לאין סוף וזאת טעות שלי שכתבתי אפס, אבל זה באמת יהיה טוב לדעת מה קורה גם אם זה היה אפס.
 +
:: תודה לשניכם :)
 +
 
 +
==שאלות.==
 +
*arctanx  חיובי בקטע 1,infinity לא? היה תרגיל באחד המבחנים ששמו ערך מוחלט מסביב לarctan, באנטגרל שהתחום שלו הוא תהחום המצוין..
 +
*במבחן ההשוואה הגבולי. מותר לי להשוות פונק' חיובית עם פונק' שלילית, אם הגבול יוצא חיובי? לדוגמה, הפונקציה sinx חלקי x*lnx. בתחום [0.5,1], נניח ואני רוצה להשוות עם sinx חלקי x-1..
 +
*כאשר אני מפצלת אינטגרלים ל2 תחומים שונים [עם דגש על השונים!]. אם אחד מהם מתבדר, כל האינטגרל המקורי מתבדר, נכון? בלי קשר לחיוביות/שליליות של אחת הפונקציות..
 +
*בהמשך לשאלה שלמעלה - אם יש לי שאלה של 'לאילו ערכי אלפא', כאשר יש לי חיבור של 2 אינטגרלים - אחד ל"א מסוג ראשון והשני ל"א מסוג שני.. אז אם למשל עבור alpha>1 האינטגרל מסוג 1 מתבדר, אין מה לבדוק את האינטגרל השני גם?
 +
 
 +
וזהו, תודה רבה!
  
 
===תשובה===
 
===תשובה===
כן
+
*כן הוא חיובי.
 +
*אם בתחום הפונקציה אי חיובית אז אם תכפלי אותה במינוס תקבל פונקציה אי שלילית. כמובן שמכפלה במינוס לא משנה התכנסות אינטגרל
 +
*נכון.
 +
*נכון
 +
 
 +
::כן, אבל כשהפונק' הייתה שלילית, הגבול יצא לי חיובי. אם אני כופלת במינוס 1, הגבול יוצא שלילי..
 +
:::לא יכול להיות שהגבול של המנה של שתי פונקציות אי שליליות יהיה שלילי
 +
::::::: כעיקרון אני מדברת על הפונקציה sinx חלקי x*lnx. בתחום [0.5,1] אני משווה אותה עם sinx חלקי (1 פחות X). (יום יבוא ואני אלמד להשתמש בכתיב המתמטי של ויקיפדיה... מצטערת על הסרבול). בכל מקרה, שתי הפונקציות חיוביות בתחום הזה. אבל הגבול של המנה, כאשר X שואף ל1 מצד שמאל, הוא מינוס אחת..
 +
 
 +
:כי ln שלילית בקטע הזה.
 +
::אוקי, אז בעצם מכפילים את הפונק' המקורית ב1- ואז מקבלים גבול חיובי, ואומרים שבגלל שהפונק' עם המינוס מתכנסת/מתבדרת ==> כך גם הפונק' המקורית?
 +
 
 +
:נכון
  
 
==שאלה==
 
==שאלה==
כשמבקשים ממני למצוא גבול של סדרה (כמו בשאלה 5 - בתרגיל 7). נניח לקחתי את הקטע [0,1] ואני רוצה לחלק אותו לn קטעים שווים. יש רק דרך אחת לחלק אותו.. לא? כלומר אני לוקחת רק חלוקה אחת כזו?
+
התכנסות במ"ש של ערך מוחלט של טור הפונק' גוררת התכנסות במ"ש של טור הפונק'?
 +
:כבר נשאל בעמוד זה. כן מכיוון שהשארית של טור קטנה או שווה לשארית של הטור בהחלט
  
===תשובה===
+
==שאלה==
ההגדרה של אינטגרביליות לפי רימן אומרת של'''כל''' חלוקה עם פרמטר חלוקה מספיק קטן, סכום הרימן קרוב לאינטגרל המסויים עד כדי אפסילון.
+
*הסתבכתי,אפשר עזרה?
 +
*נניח שהפונקציה f  מוגדרת ורציפה בקטע סגור x=a..b הוכח כי הסכום מאחד עד אינסוף של f^n מתכנס במ"ש בקטע זה אם ורק אם הסכום הנל(f^n) מתכנס נקודתית בקטע זה.
  
אני לא בטוח מה כוונת השאלה בדיוק, אבל את הקטע אפשר לחלק בהרבה דרכים. דרך אחת תוביל לפתרון התרגיל.
 
:אם למשל n=4. יש רק דרך אחת לחלק את הקטע [0,1] לn קטעים לא? (זאת שאלתי.)
 
::ועוד שאלה. בנוגע לאינטגרציה בהצבה - באינטגרל מסוים. למדנו את המקרה כאשר ההצבה היא x=g(t). אך מה קורה כאשר t=g(x)? מהם גבולות האינטגרציה??
 
  
:::בוודאי שלא, מי אמר שהחלקים צריכים להיות שווים? למשל חלק באורך חצי ושלושה חלקים באורך שישית, או ארבע חלקים באורך רבע וכו'.
+
:השאלה לא מנוסחת טוב. מה זה f ומה הוא קשור? מה ההבדל בין סכום מאחד עד אינסוף לבין טור?
:::::סליחה - התכוונתי לn חלקים שווים :-) אז זו בעצם דרך החלוקה שאבחר בשאלה על מנת להתאים את האיבר הכללי לסכום רימן.
+
תיקנתי... מה הבעייה בהגדרה של f פשוט פונקציה f(x)
::::::לא כדאי להסתבך יותר מידי עם התרגיל הספציפי הזה אבל...
+
  
 +
::שאלתי מה הקשר של f. גם g היא פונקציה אבל היא קשורה לשאלה בדיוק כמו f... האם היא פונקצית הגבול של הטור? האם הפונקציות בסדרה רציפות?
  
:::דיברנו כבר על העניין הזה. ההצבה ההפוכה היא למעשה הצבה מהאינטרגל החדש בחזרה לישן, וכך אפשר גם להבין מה יהיה גבולות האינטגרציה. (בכל מקרה מסתכלים על התחום של המשנה הידוע, ורואים באיזה תחום נמצא המשתנה החדש).
+
: (לא ארז וגם לא תומר) בעצם הכיוון המעניין היחיד הוא מהתכנסות נקודתית לבמ"ש. אם f^n מתכנס נקודתית אפשר לראות כי לכל x נקבל f(x<1 (בערך מוחלט, הלוואי שזה לא היה קופץ כל הזמן). f רציפה לכן הערכים שהיא מקבלת מהווים קטע סגורc,d  בתוך [-1,1), קטע בו הטור x^n מתכנס במ"ש. לכן כל סדרת נקודות אינסופית שתבחר בa,b עבור הטור לפי f שקולה בעצם לבחירת נקודות בc,d עבור הטור של x המתכנס שם במ"ש (ולפי מבחן הLIMSUP בעצם זה כל מה שצריך).
  
==פתרונות==
 
היי תומר/ארז. תרגילים 7 ו8 כלולים בחומר של הבוחן.. אני מודע לכך שקבוצה אחת לא תגיש את תרגיל 7 עד הבוחן ואולי אף שתי הקבוצות לא יגישו את 8?.. אבל תוכל בבקשה להעלות את הפתרונות שלהם לקראת הבוחן? זה חשוב.
 
  
==שאלה קטנה==
+
 
ב1a (תרגיל 7). החלק הראשון של ההוכחה טריוויאלי לא? פשוט 'הראיתי' (טריוויאלי כשלעצמו - בדקתי בקצוות) שg(x)=f(y) כאשר g בתחום a-alpha, b-alpha וf בתחום a,b..
+
אבל למה f(x) בערך מוחלט קטן מ-1?
 +
:הסברתי במפורט בתשובה. לא בהכרח f<1 פשוט אם הוא מתכנס הוא קטן מאחד ולכן מתכנס במ"ש. אם הוא מתכנס במ"ש ברור שהוא מתכנס. זה כל מה שצריך להוכיח.
  
 
===תשובה===
 
===תשובה===
האם בדיקה בקצוות מוכיחה שהפונקציה אינטגרבילית?
+
אה.... התבלבלתי בין f_n לf^n.... מצטער.  
:לא. אבל הראיתי שהפונקציות שוות על ידי בדיקה בקצוות.. (זה טריוויאלי.. אני לא ממש יודעת איך להראות את זה בדרך אחרת..)
+
::הפונקציות בוודאי לא שוות. הן מקבלות את אותם הערכים בקטעים השונים. אפשר להראות את זה בעזרת הגדרת האינטגרל המסוים לפי סכומי רימן.
+
  
==תרגיל 8==
+
הכותב מעליי צודק שהטור מתכנס כאשר <math>|f(x)|<1</math>, והוא מתכנס במ"ש כאשר <math>|f(x)|<r<1</math> אבל בגלל שהפונקציה רציפה על קטע סגור ונניח מתכנסת בו אזי היא מקבלת מינימום ומקסימום ושניהם חייבים להיות קטנים ממש מאחד (אחרת היא לא הייתה מתכנסת בהם) ולכן התנאי מתקיים.
בשאלה 1 a, האם מספיק להצביע על טעות אחת שעשה דני?
+
או שצריך להראות את כולן?
+
  
===תשובה===
+
 
צריך לעלות על הנקודה העיקרית, סעיף ב' קצת עוזר להבין את זה אני חושב.
+
* על מנת להוכיח שהוא מתכנס במ"ש בתנאי למעלה <math>|f(x)|<r<1</math> כל שצריך הוא מבחן הM
 +
<math>|f(x)^n|<r^n</math>.
 +
 
 +
* על מנת להוכיח שהוא מתכנס עבור התנאי <math>|f(x)|<1</math> כל מה שצריך הוא להסתכל נקודתית על הטור <math>\sum |f^n(x)|=\sum a^n</math> כאשר <math>|f(x)|=a<1</math> וזה כמובן מתכנס.
 +
 
 +
* טריוויאלי שהוא יתבדר בכל מקום אחר.
 +
 
 +
* על מנת להוכיח שהוא לא מתכנס במ"ש אם לפונקציה לא היה מקסימום אבל הsup שלה היה אחד: ניקח סדרה <math>x_n</math> כך ש <math>f(x_n) \rightarrow 1</math> ולכן
 +
<math>\lim_{k\rightarrow \infty} sup|S(x)-S_k(x)|>\lim_{k\rightarrow \infty} |S(x_{n_k})-S_n(x_{n_k)}| = \infty</math>
 +
 
 +
(נבחר את n_k על מנת שההפרשים ישאפו לאינסוף. אנחנו יודעים שזה מותר כי
 +
<math>f(x_n)\rightarrow 1</math>)
  
 
==שאלה==
 
==שאלה==
אני חושב שהשאלה הזו נשאלה פה כבר בעבר.. אבל לא בדיוק הבנתי. אם נתון לי שf(x)>0 (כלומר, גדול ממש) אז גם האינטגרל שלו גדול ממש?
+
אם יש לי פונקציה ואני מפתח לה טור חזקות נניח עם רדיוס 1, איך אני מוודא לאחר הפיתוח שהפונקציה שווה לטור בקטע?
או למשל f(x)>g(x).. זה אומר שהאינטגרל גדול ממש?
+
וגם פה שאלה 4 כוון כללי אם אפשר...http://moodle.technion.ac.il/file.php/1098/Exams/2004-2005-spring-test-a.pdf
:ועוד שאלה.. כדי להשתמש בנוסחה של אורך עקומה של פונקציה צריך לדרוש שהפונקציה תהיה רק גזירה (כמו שכתוב בדף העזר שהועלה לאתר) או גזירה ברציפות?
+
::ועוד שאלה קטנה :P אם פונקציה רציפה ב[a,b] וב[b,c], אפשר לומר שהיא רציפה ב[a,c]?
+
  
 
===תשובה===
 
===תשובה===
הםונקציה גדולה מאפס בכל הקטע? אם כן היא רציפה (לפי לבג) בנקודה כלשהיא, ולכן בסביבת דלתא שלה היא גדולה מאיזה ערך חיובי ולכן האינטרגל שלה גדול מערך חיובי כפול דלתא ולכן גדול ממש מאפס.
+
הוא שווה לפונקציה רק ברדיוס ההתכנסות. מה הכוונה איך אתה מוודה? אם פתחת נכון זה חייב להיות שווה - הצעדים שלמדנו לפיתוח פונקציה לטור חזקות הם צעדים בהם השיוון בסוף חייב להתקיים (למשל פונקציה קדומה ששווה בנקודה אחת לטור החזקות [עדיף לבדוק את הנקודה אפס כמובן])
  
נניח כרגע גזירה ברציפות, אני אבדוק אם אפשר להניח פחות
 
  
כן כי הגבול שלה משמאל ומימין בנקודה b הוא הערך של הפונקציה בנקודה b ולכן גם הגבול בנקודה
+
לגבי השאלה השנייה כבר שאלו אותה, תסתכל בארכיון 17
:תודה רבה
+
  
==הבוחן==
+
אבל אתה יודע שאם קיים טור חזקות המקדמים הם אלו של טיילור, למשל הפונקציה f(0)=0 f(x)=exp(-1/x^2)    s
מומלץ לעבור שוב על הוכחות המשפטים מההרצאה לקראת הבוחן, או שהדגש יהיה על יישום כפי שעשינו בתרגול?
+
היא שווה לטור החזקות רק באפס למרות שהטור מתכנס בכל הישר (הוא תמיד אפס כי כל הנגזרות באפס הן אפס)
כלומר, הבוחן יכלול שאלות תיאורטיות, מעשיות, או גם וגם? הוכחות או חישובים?
+
מה שאני שואל זה איך הייתי יודע להבחין שהם שווים רק באפס למרות שהטור מתכנס תמיד, רק שזה לא תמיד לערך הפונקציה?
תודה.
+
'''תומר''' - נכתוב את הבוחן בימים הקרובים וניידע אתכם בהקדם האפשרי. עם זאת יש שאלות "תיאורטיות" שאינן הוכחת משפט אלא למשל "הוכח או הפרך " ...
+
:::צריך לדעת חקירת פונקציות? כי לפי מה שהבנתי זה לא ממש בסילבוס הקורס..
+
  
::::כל מה שלומדים זה חלק מהקורס.
 
  
==שאלה כללית==
+
:אל תבלבל. הקטע עם הבדיקה בנקודה זה רק כאשר הוכחת שהפונקציה שלך היא קדומה של טור חזקות כלשהוא ועשית אינטגרציה איבר איבר. באופן כללי למדתם משפט אחד שמאפשר לכם להניח שטור החזקות עם מקדמי טיילור הוא אכן הפונקציה וזה כאשר הנגזרות חסומות (ראה את ההשלמה). במקרים אחרים (כמו זה שתארת) אסור סתם להניח שיהיה שיוויון.
איך אני מוכיח שלפונ' לא קיימת קדומה? פשוט המרצה נתן דוגמא לפונ': 1 כשX>0 ו1- כשX<=0  ואמר שלא קיימת לה קדומה, ואני גם חושב שהוא אמר שאם לא היינו מגדירים אותה ב0, היה לה קדומה והיא |X|. אז יש לי 2 שאלות: 1) איך הוא ידע שאין לה קדומה? 2) אם היא אינה מוגדרת ב0, היא בכלל לא פונ'? (או שאני טועה, לדוגמא, האם y=1/x אינה בכלל מוגדרת כפונ' כי היא לא מוגדרת ל0?) בכל מקרה, אשמח אם מישהו יסביר לי את מקור הבלבול. תודה!
+
::(לא תומר/ארז). לפונקציה שקיימת לה קדומה (כלומר, היא נגזרת של פונקציה אחרת) יש נק' אי רציפות רק מסוג שני..
+
::::אני לא מבין למה. זה משפט?
+
::::: כן זה משפט. זה נובע ממשפט ערך הביניים על נגזרות
+
::::::אבל אם לא היינו מגדירים את הפונקציה ב-0, עדיין הייתה לה ב-0 נקודת אי רציפות ממין ראשון, ובכל זאת הייתה לה קדומה...
+
  
'''תומר'''  - חברים , אני ניסחתי לכם את המשפטים המתאימים הקשורים לתכונות הנגזרת ( תכונת ערך הביניים והעובדה שנקודות אי רציפות של נגזרת הן מסוג שני בלבד ) . כדי שתוכלו להתרשם יותר מהמשפטים עצמם - אכתוב לכם את הוכחתם ואפרסם כאן באתר - אני מקווה שקריאת הוכחתם תעשה יותר סדר בעניין . כרגע חשוב שתבינו את התכונות האלו אפילו בלי הוכחתן .
+
כן, אבל בתכלס אם קיים טור חזקות המקדמים שווים למקדמי טיילור
 +
מה שאתה אומר זה להתייחס "כאילו" אנחנו לא יודעים את זה ולעבוד בשיטות אחרות כן? (במקרה והנגזרות לא בהכרח חסומות)
  
מישהו אחר: אני אחדד את השאלה הקודמת, גם אני מתקשה בזה: האם יש קריטריון שאומר איזו פונקצי היא בעלת קדומה ואיזו פונקציה אינה בעלת קדומה? כלומר, אמרנו שכל הפונקציות שיש להם קדומה אז אם יש להן אי רציפות זה ממין שני. אבל יש פונקציות שיש להן נקודות אי רציפות ממין שני ובכל זאת אין להן קדומה? ותומר- לא ראיתי שענית- אם את הפונקציה שהוא הגדיר למעלה לא היינו מגדירים באפס, אז היה לי אי רציפות ממין ראשון ובכל זאת הייתה לה קדומה....
+
:כן. יכול להיות שתשתמש בטריק כי אתה לא יודע להוכיח שהפונקציה שווה לטור חזקות, אבל גם יכול להיות שזה פשוט יהיה קל יותר מאשר לחשב את הנגזרות מכל סדר...
  
תודה רבה!
+
סבבה תודה רבה
  
'''תומר''' - הממ , לגבי הפונקציה עם הקפיצה - יש לה קדומות בתחומי הגדרה שונים שלה - למשל לx>0 בנפרד , ולשליליים בנפרד - אבל להגיד שיש קדומה הכוונה כל תחום הגדרתה . וזה לא לא מתקיים בגלל אי הרציפות באפס שלא משנה איך תגדיר את הפונקציה באפס - לא תוכל לגשר על הפער של הקפיצה בה ("אי רציפות מסוג ראשון " ) . לגבי אחד חלקי איקס - אם נגדיר את ערכה באפס להיות מינוס 3 למשל , עדיין היא תהיה לא חסומה עבור הקטע [0,1] , ולכן לא אינטגרבילית רימן . היום אנו מכירים אינטגרל לא אמיתי וניתן להתייחס אליה במובן זה ...
+
==שאלה==
  
==שאלה בנוגע לטורי טיילור==
+
המבחן ב15:30 נכון? כמה זמן הוא יארך???
היי. קצת ישן אבל לא נורא.. בנוגע לטורי טיילור. אם אני רוצה למשל לפתח את הפונקציה e^(-x^2/2). האם אני צריכה להתייחס למשתנה כx? כלומר, ברור לי שהגזירה היא של e^(-x^2/2), אבל בנוסחת טיילור המשתנה עצמו הוא x והביטוי (x-x0) מופיע בחזקות שונות. אז האם במקרה הזה, זה (-x^2/2-x0) או (x-x0?)  תודה מראש :)
+
  
(זה לא ארז/תומר) x-x0, כמובן...
+
כן, שעתיים
  
 
==שאלה==
 
==שאלה==
אני לא מבין איך עוד לא העלו את הנושא, כאילו, אני היחיד שסובל?
+
 
השיעורי בית ק ש י ם. אני עשיתי חזרה על ההרצאות, עשיתי חזרה על התרגולים בכיתה, והקשר מבחינת הרמה בינם ובין השיעורי בית (תרגילים 7,8) מקריים בהחלט. אני אפילו לא יודע איך להתחיל אותם. זה לא הגיוני שאני יושב כבר 4 שעות על דף של שיעורי בית ולא מצליח אפילו תרגיל אחד בלי להתקשר למישהו. זה אומר שאני מטומטם? XD
+
למה הסיגמה של 2*(n+1)*3^n חלקי שורש שלישי של n! מתכנס?
:מסכים בכל לבי.
+
:אתה מתכוון ל<math>\sum \frac{2(n+1)3^n}{\sqrt[3]{n!}}</math>? תקח את השורש הn-י ותקבל 3 חלקי אינסוף כלומר שואף לאפס (הרי <math>\sqrt[n]{n!}\rightarrow \infty</math>)
::מסכימה לגמרי.. הקשר בין התרגולים לש.ב בהחלט מקרי
+
 
:::מסכים בלב מיואש... ואני לא רוצה כבר לבקש עזרה מאחרים - לא כי לא נעים לי, אלא כי אני מרגיש שאני אידיוט אם אני לא מסוגל להתמודד עם זה לבד (וחרשתי על מייזלר, על כמה עשרות עמודים ועל המון דוגמאות).
+
==התכנסות אינטגרלים==
 +
האם האינטגרלים הבאים מתכנסים???
 +
* <math>\int_{0}^{1} \frac{\theta}{\ln(\theta)}d\theta</math>.
 +
* <math>\int_0^1 \frac{dx}{\ln(x)}</math>
 +
* <math>\int_{r=0}^{r=1} \frac{\sin(r^2)}{r}dr</math>.
 +
האם אפשר לומר באינטגרל השלישי ש-
 +
<math>\int_{0}^{1} \frac{\sin(r^2)}{r}dr \leq \int_{0}^{1} \frac{r^2}{r}dr = \int_0^1 rdr = 1/2</math>, ואז עפ"י השוואה???
 +
 
  
 
===תשובה===
 
===תשובה===
הקשר בין תרגילי השיעור לתרגילי הבית הוא שעליכם להבין מה שנעשה בשיעור וליישם אותו על תרגילים '''שונים''' בבית. אתם באמת חושבים שהייתם מסתדרים יותר טוב אם היינו פותרים את תרגילי הבית בכיתה, ואת תרגילי הכיתה משאירים הבייתה? כנראה שלא...
+
לא לשכוח לבדוק אם האינטגרל הוא אמיתי בכלל או לא. למשל השלישי הוא פשוט בעל אי רציפות סליקה באפס ולכן אינטגרבילי (גם מה שרשמת נכון אבל בלי קשר)
  
תרגילי הבית נלקחים בחלקם הגדול מתרגילים של קורסים מקבילים באוניברסיטת תל אביב. למעשה הם מקבלים תרגילים ארוכים יותר, ואנחנו מקצרים אותם.
+
בראשון ובשני הצד הבעייתי הינו 1. ניתן לבצע מבחן ההשוואה עם <math>\frac{1}{1-x}</math>
  
מסקנה: התרגילים מאתגרים, וטוב שכך. יש לכם את הכלים להתמודד איתם.
+
==שאלה==
 +
 
 +
נתונה פונקציה f(x) בקטע [a,b] ונתון שהיא חסומה על ידי M.
 +
 
 +
צריך להוכיח שאם f אינטגרבילית זה גורר ש-f^2 אינטגרבילית.
 +
 
 +
חסימות זה לא בעיה, אבל הסתבכתי עם התנאי השני
 +
 
 +
 
 +
אני יכול להשתמש במשפט שאם הפונקציות f,g אינטגרביליות בקטע כלשהו אז גם f כפול g אנטגרבילית שם, כאשר במקרה הזה g=f?
 +
 
 +
:(לא ארז/תומר) ענו כבר על השאלה הזאת... לדעתי אי אפשר להשתמש במשפט, למרות שהוא נכון, כי אז התרגיל טריוויאלי.
 +
:הנה ההוכחה- יהי אפסילון גדול מאפס. בכל קטע  g(x1)-g(x2)=(f(x1)+f(x2))*(f(x1)-f(x2)<2M*W כאשר W היא התנודה של f בקטע. (g מוגדרת כ f בריבוע). מאינטגרביליות f קיימות חלוקה עבורה סכום התנודות קטן מאפסילון חלקי 2M. ועבור אותה חלוקה בפונקציה g סכום התנודות יהיה קטן מאפסילון.
 +
 
 +
תומר - ומה עם מידת נקודות אי רציפות ? אם אתם יודעים שהפונקציה אינטגרבילית זה אומר שמידת קבוצת נקודות האי רציפות שלה היא אפס . מה עם נקודות האי רציפות של הפונקציה בריבוע ? האם היא מוכלת בזו של הפונקציה המקורית ? ואם כן מה זה אומר על מידתה ? ...
  
 
==שאלה==
 
==שאלה==
האם יש בבוחן דף נוסחאות של האינטגרלים?
+
צריך להוכיח שהטור הבא מתכנס במ"ש.
תודה
+
f(x)= sum from 0 to infinity of (e^-nx)* cos(nx) s
 +
 
 +
בכל קטע (a, infinity] כאשר a>0
 +
 
 +
ניסיתי עם מבחן ה- m ולא הצלחתי.
 +
מישהו?
 +
אפשר להשוות עם e^-n במבחן הM לא?
 +
 
 +
:(לא ארז/תומר) אני חושב שצריך להשוות עם e^-an ...
 +
 
 +
עם e^-n וזה עובד. עכשיו בסעיף הבא הם רוצים להוכיח/להפריך שf(x) שזה הסכום הוא פונקציה רציפה ב(o, infinity). הבעיה זה שזה קטע פתוח ולא סופי.. עדין אפשר להשתמש במשפט על טור של פונקציות רציפות המתכנס במ"ש?
 +
 
 +
:תמיד משתמשים באותו טריק (לא התעמקתי בשאלה, מקווה שרלוונטי) אם ההתכנסות היא במ"ש על כל תת קטע סגור וסופי אז יוצא שפונקצית הגבול רציפה בכל נקודה בלי שתהיה התכנסות במ"ש על הקטע האינסופי/פתוח כולו.
 +
 
 +
== תרגיל 11 ==
 +
מישהו יכול לכתוב שוב את הלינקים לתרגילים שבתרגיל 11, הלינקים לא עובדים לי. 
 +
 
 +
:ארכיון 16...
  
 
==שאלה==
 
==שאלה==
(השאלה מדברת על תרגיל 8 בלבד) בתרגיל 1 סעיף ב', הגדרתם את F,G להיות אינטגרלים לא מסויימים, שזה קצת מוזר. זה לא טעות?
+
מתי יפורסמו ציוני התרגיל והבוחן (אני יודע שיש לנו אותם, הכוונה עם פקטור, וציוני תרגיל 8/10 אם אני לא טועה) והאחוזים מהציון הסופי?
ועוד שאלה: בתרגיל 2, הניסוח של משפט ערך הביניים בבן ציון מופיע כך: "תהי F רציפה ב[a,b], ויהי y0 מס' ממשי בין f(a),f(b) אז קיימת נק' a<x0<b כך שf(x0)=y0. זה לא עושה את התרגיל טריויאלי?
+
  
===תשובה===
+
מצטרף!!
בהנתן פונקציה קדומה, קל לחשב את האינטגרל המסוים (אם הוא קיים).
+
  
כמובן שלא אמורים להסתמך על משפט שאומר אותו דבר, אלא להוכיח את התרגיל מאפס (אין צורך להשתמש באף גרסא של משפט ערך הביניים)
+
תומר - יפורסם בשעות הקרובות . אני עצמי עוד בודק תרגילים שהוגשו באיחור(!) . סבלנות .
 +
יש חדש?
  
 
==שאלה==
 
==שאלה==
בקשר להצבות. כשמדובר על אינטגרל מסוים, תמיד דורשים שהפונקציה שאנו מציבים תהיה הפיכה וגזירה. אבל כשמדובר על אינטגרל לא מסוים, מהן הדרישות בדיוק? אודה מאוד אם ארז/תומר יוכלו להבהיר את הנקודה..
+
אוקי, נניח ויש לי סדרת פונקציות, ואני צריכה לבדוק לאילו ערכי אלפא הסדרה מתכנסת במ"ש ב0,אינסוף (חצי סגור) וב[0,1]. קודם כל בדקתי את 0 אינסוף, והגעתי לזה שעבור אלפא קטן מ2 ==> הסדרה מתכנסת במש.
 +
התחום השני, [0,1], מוכל בתחום הראשון - ונניח שהגעתי לזה שהסדרה מתכנסת במש בתחום זה עבור אלפא גדול מ2-. מכיוון שהתחום מוכל, זה אומר לי גם שבפרט הסדרה מתכנסת במש גם עבור אלפא קטן מ2, וביחד - עם שתי המסקנות האלה - מתכנס לכל אלפא?
 +
 
  
 
===תשובה===
 
===תשובה===
קודם כל אני מציע שתקרא בתשובות קודמות כי כבר ענינו על הנקודה הזו. אין הכרח תמיד שהפונקציה תהיה הפיכה בהצבה. צריך להבין מהו מקרה ההצבה הספציפי, הכל נובע מהנוסחא <math>f(g)'=f'(g)g'</math>. צריך להבין איך להגיע לנוסחא הנ"ל במקרה הנתון, לפעמים צריך לגזור, לפעמים צריך להפוך ולגזור.  
+
לכאורה כן, אני לא מבין מה השאלה. הרי ברור שאם זה מתכנס במ"ש לכל אלפא גדול ממינוס 2 או קטן משתים בפרט זה מתכנס לכל אלפא. השאלה האמיתי היא אם החישובים שלך נכונים.
 +
:השאלה היא כזו - הוכחתי שעבור אלפא קטן מ2 זה מתכנס במ"ש ב0,infinity. רק רציתי לוודא שזה אומר שעבור אלפא קטן מ2 זה מתכנס במ"ש גם ב[0,1]. זה נכון?
  
בכוונה שאלנו את השאלה עם דני על מנת שתחשבו בעצמכם מה ההצבה אומרת ולא תנסו סתם לשנן כללים.
+
::הדגש הוא על הקטע הסגור? אם יש התכנסות באפס אז כן, אם לא אז לא
:כן, אז חשבתי שברגע שמציבים x=f(t) דורשים גזירות וגם הפיכות. אבל לפי השאלה של דני, גם במקרה השני של t=f(x), דורשים הפיכות!
+
:::כן, מדובר על קטעים סגורים. תודה:)
::תלוי במקרה הספציפי!
+
::::::הסתכלתי בארכיון. אבל שם אתה מדבר רק על הצבות מהסוג u=g(x). מה עם הצבות מהסוג x=g(t)??
+
  
הכל אותו רעיון. אתה חייב להגיע לאינטגרל של נוסחא <math>f(g)'=f'(g)g'</math>, יכול להיות שתצטרך להשתמש בהופכית על מנת להגיע לנוסחא הזו. תוכל לראות את הפתרון המדויק לתרגיל מחר בערב.
+
אני טועה או שבהתחלת ההרצאה האחרונה רוני אמר שבטווח שבין רדיוס ההתכנסות לבין המינוס שלו(לא כולל הוא עצמו)- הפונקציה מתכנסת, ואח"כ הוא  אמר שהיא גם מתכנסת במ"ש בכל קטע סגור שמוכל בקטע הזה.....?
 +
:זה נכון לגבי טור חזקות, אני לא בטוח איך זה קשור פה.
 +
 
 +
::יש עוד מקום עם רדיוס התכנסות חוץ מטור חזקות??? ושאלתי כי זה נראה לי מוזר להוכיח משהו ואז להוכיח משהו ותר חזק במקום להוכיח ביחד. למה פה? איפה עוד אני יכול לכתוב???
 +
 
 +
:::לא פה בפורום, התכוונתי פה בשאלה הזו... רדיוס התכנסות זה מושג של טור חזקות, וכאן מדובר על סדרת פונקציות.
  
 
==שאלה==
 
==שאלה==
כדי להוכיח רציפות לא מספיק להראות שהגבולות מימין ומשמאל לנק' שווים, צריך גם להראות שהם שווים לערך בנקודה. אבל כשאנחנו רוצים להוכיח (כמו בתרגיל 4 למשל) שלפונקציה מסוימת (שמחולקת לקטעים) יש קדומה, אנחנו רק דורשים שיוויון של הגבולות מימין ומשמאל. למה זה מספיק?
+
מצטער על הבורות רגע לפני המבחן- מה זה גזירה איבר-איבר? ואינטגרציה איבר איבר? בבקשה שלא יהיה מסובך....
  
 
===תשובה===
 
===תשובה===
אני לא בטוח לאיזו שאלה בתרגיל 4 אתה מתכוון. בכל אופן אם הגבולות קיימים משמאל ומימין אבל לא שווים לערך בנקודה זו אי רציפות סליקה או ממין ראשון. ולכן בוודאי אין פונקציה קדומה (כי לנגזרת יש הכי הרבה אי רציפות ממין שני).
+
נניח ויש לך טור מתכנס <math>g=\sum f_n</math>. השאלה היא מהי הנגזרת של g. אם מותר לגזור איבר-איבר אזי <math>g' = \sum f_n'</math>. שים לב שזה לא תמיד נכון, רק כאשר המשפטים מאפשרים לגזור איבר-איבר.
  
לכן כן יש להוכיח שהגבולות החד צדדים שווים לערך בנקודה על מנת להראות שלפונקציה יש קדומה (לאינטיגרביליות הערך בנקודה מסויימת אינו קריטי).
+
אינטגרציה זה דומה <math>\int g = \sum \int f_n</math>
:התכוונתי לשאלה 2. בפתרונות שהעלתם.. הבדיקה היא רק של הגבולות מימין ומשמאל..
+
::לא רשום במפורש שנעשתה הבדיקה, אבל כן רשום במפורש (ועם קו תחתון) שהפונקציה שקיבלנו רציפה. לא תמיד אנחנו רושמים את כל הפרטים, יש חלקים שצריך להשלים לבד. כמובן שבכדי שהפונקציה תהא רציפה הערך בנקודה חייב להיות שווה לגבול בנקודה.
+
  
 
==שאלה==
 
==שאלה==
בתרגיל 8 שאלה 2, האם מותר להשתמש במשפט הערך הממוצע, ואז להראות שזה פשוט לא יכול להיות a או b?
+
אם טור חזקות מתכנס גם בR וגם בR-, זה אומר שהוא מתכנס במ"ש ב[0,R] וב[-R,0] ואז זה אומר שהוא מתכנס במ"ש ב[-R,R]?
  
 
===תשובה===
 
===תשובה===
לא כי זה פשוט לא נכון. קח את הפונקציה הקבועה. קח פונקציה אחרת שבמקרה מקבלת את הממוצע בקצוות...
+
כן. באופן כללי אם טור מתכנס במ"ש בשני קטעים סגורים צמודים הוא מתכנס במ"ש באיחוד הקטעים. כי מהירות ההתכנסות עבור אפסילון היא המקסימום בין שני הn_0 של שני הקטעים.
  
==שאלונת==
+
== :)==
האם אינטגרביליות של פונקציה בקטע [a,b] גוררת קיום של פונקציה קדומה בקטע זה? (ברור לי שההפך לא נכון, אבל בקשר לכיוון הזה אני לא בטוחה..)
+
שיהיה בהצלחה לכולם! לא פחות מ100 :)
 +
 
 +
תומר - מצטרף ! שיהיה בהצלחה לכולכם - במבחן הזה ובכל אלו אחריו :)
 +
:תודה, ותודה לכם על סמסטר נפלא (עד כמה שהיה אפשר. אינפי, אתם יודעים). תודה על התרגולים המצויינים, אפילו שהיו יותר מידי אנשים בכיתה... ותודה על ההשקעה בנו ועל כל העזרה (האתר, וכל דבר אחר). אולי תהיו מתרגלים שלנו באינפי 3?
 +
:ושיהיה בהצלחה לכולם!
 +
 
 +
==לארז ולתומר==
 +
רגע אחרי המבחן, וכמה ימים לפני שהאתר יתחיל לשמש, כנראה, תיכוניסטים תמימים שצעירים מאתנו בשנה, ואתם אורזים את הכל בשבילם, רציתי לומר לכם, לשניכם במ"ש, ת-ו-ד-ה  ר-ב-ה!! על כל ההשקעה, הזמן, הרצון והכוח שהיה לכם להתמודד עם שתי קבוצות רועשות כמו שלנו, ועוד בקורס קשה כמו אינפי 2! שיהיה לכולנו המון בהצלחה בהמשך!
 +
 
 +
 
 +
מצטרף בהחלט, המון תודה לשניכם, ואולי נתראה בהמשך...
 +
:מצטרפת.. ממש תודה על הכול! מה נעשה בלי Math-wiki..
 +
מצטרף! זה לא מובן מאליו... ועם זאת, מתי נדע כמה פקטור יהיה(בטוח יהיה...!!)
 +
 
 +
::תודה רבה על כל האיחולים - המתרגלים. (בלי קשר, אני אפרסם עוד כמה דקות פתרון למבחן בדף הקורס)
 +
 
 +
 
 +
אני מסכים לגמרי עם כל השאר. אתם באמת השקעתם את כל כולכם בנו ובהצלחה שלנו. באמת רואים שאכפת לכם מאיתנו למרות כל הקיטורים, בקשות לדחיות, התחננויות ולפעמים אף בכי P=
 +
אני רק לא מבין משהו אחד. ניסיתי להבין מה הייתה התועלת בשיעורי חזרה ובתרגולים הנוספים שעשיתם, ואני לא מוצא בהם תועלת למבחן... לא עשינו אפילו תרגיל אחד שהיה אפילו דומה לשאלות שהיו במבחן (אני לא מתכוון לשאלות בדיוק כמו שהיו במבחן, אבל לפחות בסגנון ובנושאים)...  כאילו שמתם דגש בשאלות לא דומות למבחן בשביל מה? הרי ראיתם את המבחן כבר...  לי אישית היה די קשה להגיע לבר אילן,לתירגולים, באותו היום אבל הגעתי בכל זאת כי חשוב לי להצליח במבחנים (כמו לכולנו), אבל בתכלס שאני מסתכל על היעילות שלהם לאחר המבחן לא עזר בכלל, אלא להיפך.
 +
כל מה שאני מנסה להגיד, זה שבתרגולי חזרה לפני מבחן, תעזרו קצת יותר בכך שתתרגלו אותנו נכון, ולא לבלבל לנו את השכל עם שאלות לא קשורות בכלל... אחר כך מתלוננים שאנחנו לא מקבלים ציונים נורמלים ואתם נאלצים לעשות פקטור סתם!
 +
תודה על הכול (וזה בשיא הכנות) כי באמת השקעתם בנו 
  
 
===תשובה===
 
===תשובה===
בוודאי שלא, כי יכול להיות שהאינטגרבילית מכילה אי רציפות סליקה או ממין ראשון ולכן אין לה קדומה. למשל פונקציה קבועה עם קפיצה בנקודה אחת, אין לה קדומה.
+
אני אענה לשאלה שלך בשני מישורים
 +
* הראשון והחשוב יותר: מטרתנו הראשונה והעיקרית כמורים הינה ללמד אתכם מתמטיקה ו'''לא''' להכין אתכם למבחן. הכנה למבחן הינה משנית (אמנם חשובה גם כן). קשה להגיע לבר אילן גם במהלך הסמסטר, אך אתם מגיעים על מנת ללמוד. הסיבה שאנו רואים את המבחן קודם לכן היא בעיקר על מנת לוודא איכות שלו (שאין טעויות, רמה סבירה וכדומה), עלינו להעביר שיעורי חזרה כאילו לא ראינו את המבחן.
 +
 
 +
*שנית, אני אפריך לחלוטין את הטענות שהעלאת:
 +
**שיעור ההשלמה היה חלק מחומר הקורס וכלל שאלה שהופיעה כלשונה במבחן! (הוא היה לפני שראינו את המבחן). אז כבר 20 נקודות מתנה על שיעור ההשלמה והחומר שהועלאה לאתר (אני לא העברתי את השאלה פרונטלית אבל תומר כן). אמרנו לכם לקרוא את שיעור ההשלמה.
 +
**שיעור החזרה כלל שאלה כמעט זהה לחלוטין לשאלה 3 מהמבחן (אני העברתי אותה ותומר לא).
 +
**יום או יומיים לפני המבחן עניתי באתר על שאלה דומה לשאלה 2 במבחן, והדגשתי דברים שלא היו בשאלה המקורית כי ידעתי שזה יעזור למבחן.
 +
**שאר השאלות, בוודאי היו דומות והתעסקו בנושאים דומים...
 +
 
 +
 
 +
מעבר לכך, תודה על ההכרה בעבודה שלנו. תאמינו לנו שמה שעכשיו נראה לכם לא כיף, בעתיד אתם תראו כאתגר שהצלחתם בו. החיים הם לא מיטת שושנים, ומי היה רוצה לישון במיטת שושנים בכלל? זה דוקר!
 +
:זה לא רק דוקר, זה גם צמיגי :P
 +
::מתי יעלו ציוני תרגיל?
 +
 
 +
:::אנחנו נעלה אותם היום
 +
==יש לי שאלה==
 +
האם בשאלה 4ב במבחן היה אפשר להגיד שההתכנסות היא ל0 כי תנאי הכרחי להתכנסות הטור היא שאיפת האיבר הכללי לאפס
 +
(הוכחה של התכנסות לאפס לא התכנסות במש)?
 +
 
 +
===תשובה===
 +
כן, זה מוכיח בהחלט התכנסות נקודתית לאפס (ולא במ"ש כפי שציינת)
 +
 
 +
==שאלה==
 +
 
 +
למה מופיע לי ציון 0 בתרגיל מספר 2 אם הגשתי אותו? :S
 +
 
 +
:זו שאלה פילוסופית?
 +
 
 +
==הודעה==
 +
 
 +
יש ציונים!!
 +
== מבחן ==
 +
היה פקטור במבחן? ואם כן של כמה?
 +
 
 +
מצטרף לשאלה... מאוד חשוב לנו לדעת האם להגיש ערעור או שלא.... והאם לגשת למועד ב או לא
 +
בקיצור ממש חשוב לנו לעת האם היה פקטור...
 +
 
 +
:תשאלו את המרצים, אנחנו (המתרגלים) לא יודעים.

גרסה אחרונה מ־11:47, 1 בספטמבר 2010

\lim_{n\rightarrow\infty}f_n

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין

ארכיון

ארכיון 1 - תרגיל 1 ו2

ארכיון 2 - תרגיל 3

ארכיון 3 - תרגיל 3

ארכיון 4 - תרגיל 4

ארכיון 5 - תרגיל 4,5

ארכיון 6 - תרגיל 6

ארכיון 7 - (מי עוקב)

ארכיון 8

ארכיון 9 - לקראת הבוחן

ארכיון 10 - פוסט בוחן

ארכיון 11 - תרגיל 9

ארכיון 12 - תרגיל 9

ארכיון 13 - תרגיל 10

ארכיון 14 - תרגיל 10

ארכיון 15 - תרגיל 10

ארכיון 16 - לקראת המבחן

ארכיון 17 - לקראת המבחן

שאלות

שאלה

יהיה במבחן פונקציות עם שתי משתנים?

לא שידוע לי, אם המרצה אמר שיהיה אז יהיה, אם לא אז לא

תומר - מה פתאום שיהיה משהו שלא למדתם ??? הגיון חבר"ה , הגיון !

שאלה

תחת אילו תנאים ניתן לומר שאינטגרל על סכום אינסופי של פונקציות שווה לסכום האינסופי של האינטגרלים של הפונקציות? תודה

תומר - מפנה אותך לנוסח משפטים המתאימים ! יש משפטים שמתארים תנאים מספיקים לכך . ייתכן שיהיו מצבים נוספים שזה יתקיים אבל אז צריך לבדוק כל מקרה לגופו.

שאלה

נניח יש לי טור פונקציות שרץ על fn (הסדרה המזהה שלו). למה אם הטור |fn| מתכנס במ"ש בI, אז גם הטור המקורי מתכנס במ"ש בI?

  • נקודתית זה ברור מאינפי 1. לבמ"ש ההוכחה דומה. שארית הטור לא בהחלט קטנה משארית הטור בהחלט, כלומר הטור לא בהחלט מתכנס מהר יותר מאשר הטור בהחלט.

ועוד שאלה: אם יש לי סדרת פונ' fn כך ש|fn| מתכנסת לפונ' גבול כלשהי f במ"ש, האם זה אומר שfn המקורית מתכנסת לf1 כלשהי במ"ש?

  • ברור שלא.... אינפי 1. fn=(-1)^n לא מתכנס בכלל, אבל הערך המוחלט מתכנס במ"ש.

יש טעות בסיכום במשפט פרמה, לא? המשפט הראשון בעמוד הראשון של הסיכום...התנאים לא צריעכים להיות הפוכים???

  • נכון מאד, הסרתי את הסיכום. המשפט אומר שאם יש מקסימום/מינימום והפונקציה גזירה הנגזרת הינה אפס. בוודאי שאם הנגזרת אפס אין שום הכרח שיהיה מינימום/מקסימום (לדוגמא x^3).

שאלה:איך מוגדר אינטגרל של פונקציה ממינוס אינסוף לאינסוף? הגבול כאשר c רץ לאינסוף של אינטגרל של הפונקציה מ c- עד c או פשוט פיצול לשני אינטגרלים לא אמיתיים ואז כל אחד שואף בקצב שלו? זה משנה כי במקרה של פונקציה איזוגית-למשל x באפשרות הראשונה זה 0 ובשניה אינסוף פחות אינסוף שזה מתבדר.....(נכון?)תודה.

  • הוא מוגדר בתור הסכום של שני אינטגרלים לא אמיתיים. האינטגרל על הפונקציה x למשל מתבדר.


למה אם f פונקציה רציפה, מחזורית ואי-שלילית בממשיים(f אינה זהותית אפס) אז הגבול של f(x)/x^3 אינו אפס כאשר x שואף לאינסוף?? הרי f חסומה מהנתונים,לא? רוני נתן שאלה כזאת ואמר להוכיח שהאינטרגל של f(x)/x מ1 עד אינסוף מתבדר. ואם הגבול שאמרתי מקודם שווה ל0 אז לפי מבחן ההשוואה האינטגרל מתכנס, אז כנראה שהגבול איננו 0,למה???

תשובה

תומר - כמה שאלות , כמה שאלות ! :) לשאלה הראשונה על התכנסות עם ערך מוחלט גוררת התכנסות בלי , במידה שווה - ראה משפט שהוכחתם . או - אפשר לנסות לבד פשוט ביישום של קריטריון קושי להתכנסות במ"ש ! .

אינטגרל ממינוס אינס' לאינס' מוגדר על ידי פיצול באיזו נקודת ביניים - אבל בכל אופן כאשר הגבולות שלהם - אחד עם פרמטר לאינסוף ושני עם פרמטר למינוס אינסוף - הם לא תלויים אחד בשני ! ובטח לא ממינוס סי לסי כאשר סי שואף לאינסוף . זהו אינטגרל שקיים בשימושים אבל יש לו שם - PRINCIPAL VALUE - אבל זה לא האינטגרל בקורס שלנו !!! .

לגבי שאלה אחרונה - תן בבקשה את ניסוח השאלה המלא כדי שאוכל להתייחס .

שאלה מסודרת

נתונה פונקציה fרציפה,מחזורית ואי-שלילית ב-R. היא אינה זהותית 0.הוכח: האינטגרל של f(x)/x מ-1 לאינסוף מתבדר. תוכל גם להגיד לי למה אי אפשר להוכיח שזה מתכנס עם שימוש במבחן ההשוואה השני? כי f לפי הנתונים חסומה,לא? ואז הגבול של (f(x)/x)/x^2 שווה לאפס ולפי המבחן f(x)/x מתכנס, כי האינטגרל של x^2 מתכנס...

תשובה

(לא ארז/תומר) נראה לי שהטעות שלך היא כזו , כשאתה עשית את מבחן ההשוואה, עשית את זה עם הפונ' x^2 והאינטרל של זה מתבדר בקטע 1 עד אינסוף (אתה מתבלבל עם 1/x^2).

אבל אמרתי בקטע 1 עד אינסוף...לא מאפס!
הוא העיר לך על הפונקציה ולא על הקטע. x^2 זו פונקציה ששואפת לאינסוף ובפרט אינה אינטגרבילית על הקטע האינסופי.

ובנוגע להוכחה , אני עשיתי את זה בדרך הבאה:

נסמן את המחזור של F כ-T, אנחנו יודעים שהפונ' אינה זהותית אפס, לכן יש נקודה X0 בקטע [1,1+T] כך ש- (f(x0 שווה ל-M גדול ממש מאפס. מכיוון ש-F רציפה יש סביבה [a,b] של X0 כך שכל ס בקטע מקיים f(x)>M/2 (או אפילו גדול שווה, זה לא משנה) וכעת, מכיוון ש-F אישלילית , נגדיר פונקציה חדשה G להיות M/2x בכל קטע מהצורה [a+n*T,b+n*T] כאשר n טבעי ואפס בכל נקודה אחרת.

ברור כי שתי הפונ' אי שליליות, אינטגרביליות בכל קטע מהצורה [one,R] כש- R>1 (F רציפה בכל קטע כזה, ול-G יש מספר סופי של נקודות אי רציפות מהסוג המתאים) ולכן אם האינטגרל של G בטע 1 עד אינסוף מתבדר, כך גם האינטגרל הלא אמיתי של F.

ועכשיו, להראות שהאינטגרל של G בקטע 1 עד אינסוף מתבדר, זה לא כזה מסובך (אני עשיתי לפי קריטריון קושי, אבל אני בטוחשאפשר בעוד דרכים, ואין לי כח לכתוב את זה) ובסה"כ קיבלנו שהאינטגרל של f(x)/x

שאלה

למה במבחן ההשוואה הראשון רוני ציין שאם 0<g ו f>g והאינטגרל של f מתכנס(לא אמיתי, בשנ הסוגים הוא אמר ככה...) אז האינטגרל של g מתכנס. הוא לא אמר שאם g מתבדר גם f מתבדר,זה לא נכון??

תשובה

המשפט השני הוא היקש לוגי מהראשון. לא יכול להיות שf יתכנס אבל g יתבדר, לכן אם g מתבדר אזי f מתבדר.

שאלה

בתרגיל 11 שאלה 3 - לעוד מישהו יצא רדיוס התכנסות אפס?

[לא תומר או ארז] לי דווקא יצא 1

שאלה

אם אני צריכה להוכיח שפונק' כלשהי היא אינטגברילית רימן, והראיתי שהסכום רימן שלה לכל חלוקה מתאימה ולכל בחירה אלפא חסומה בין הסכום רימן של פונק' אינטגרבילית(!) אחרת פחות אפסילון, ואותו סכום ועוד אפסילון. האם זה מראה לי שהפונק' שלי אינטגרבילית גם? ויותר מזאת, שואפת לסכום I של אותה הפונקציה השניה?

הסכום רימן של הפונקציה האחרת עבור אותה חלוקה? ומה זה האפסילון הזה? במה הוא תלוי?

שאלה

נתון כי f אינטגרבילית וחסומה ע"י M. צ"ל שf^2 אינטגרבילית באותו קטע. יש דרך להראות את זה לא ע"י הרכבת פונקציות (שבדרך זו הנתון ע"י החסימות מיותר)? מהי הדרך?

הנתון על חסימות מיותר איך שלא תסתכל על זה, שכן זו פונקציה אינטגרבילית (ולכן חסומה)

אבל יש דרך להראות את זה חוץ מהרכבה של פונקציה רציפה ופונקציה אינטגרבילית?

תומר - מידת קבוצת נקודות אי הרציפות של הפונקציה החדשה היא אפס ? ...

(לא ארז/תומר) כן יש פיתרון אחר, והוא בעזרת תנאי רימן לאינטגרביליות. f^2 חסומה (ברור), ונותר להראות את התנאי השני. בקשר אליו, קל להראות ש

w(f^2)<= w(f)*2*M (כאשר w הוא התנודה בקטע), ומכאן קל להמשיך.

מראים את זה כך, לכל x1,x2 בקטע כלשהו מתקיים: f(x1)^2-f(x2)^2<=(f(x1)-f(x2))*(f(x1)+f(x2)), ומכאן זה ברור

שאלה

התבקשתי להביא דוגמה לסדרת פונק' fn רציפות ב[0,1] כך שfn(x)-->0 לכל X בתחום, אך האינטגרל של fn מ0 עד 1 אינו שווה ל0. - האם הפונקציה x^n(x^n-1) qq מקיימת את הדרוש? הפונק' אכן רציפות ב[0,1], פונקצית הגבול היא 0, אבל האינטגרל יוצא, אם אני לא טועה, 1/n פחות 1/(2n+1)..

תשובה

אתה בטוח שהאינטגרל שונה מאפס ולא שואף לאפס? כי כמעט כל סדרה שתבחר תעמוד בתנאי הראשון (למשל הסדרה של הפונקציות הקבועות \frac{1}{n}).

אם אתה רוצה סדרה שהאינטגרל עליה אינו שואף לאפס, קח סדרה של פונקציות הבאה: הגרף של הפונקציה ה-n הוא משולש עם בסיס \frac{1}{n} בגובה 2n וכל שאר הפונקציה היא אפס. הסדרה הזו שואפת לאפס (כמובן שלא במ"ש) והאינטגרל על כל פונקציה בסדרה הוא תמיד 1.

שאלה

נראית נחמדה. f:[0,1] ---> R היא פונקציה רציפה אי שלילית המקיימת f(x)<=sinx לכל x בתחום. צריך למצוא את כל פתרונות המשוואה: cosx+quad(f,0,x)-1=0. (קוסינוסX ועוד האינטגרל של f מ0 עד x פחות 1 = 0.) מעבר לעובדה שx=0 הוא פתרון אחד של המשוואה, לא הצלחתי להוכיח שלא קיימים עוד פתרונות/למצוא פתרון נוסף. ניסיתי להניח שקיים ולהשתמש במשפט רול, ניסיתי להשתמש בזה שאי שיוויון ברמת הפונק' ==> אי שיוויון ברמת האינטגרל אבל בסופו של דבר לא הגעתי למשהו שמוכיח. יש רעיון למישהו?

מישהו??


אם f=sinx אזי זו הפונקציה הקבועה אפס. אם f קטן ממש מהסינוס אזי הנגזרת בעלת סימן קבוע (שלילי) והפתרון היחיד הוא אפס

שאלה

מישהו מוכן להסביר לי באילו מקרים כדאי לעשות גזירה איבר איבר, ומתי לעשות אינטגרציה איבר איבר? תודה.

כדאי? תמיד. מותר? כאשר יש התכנסות במ"ש לפי המשפטים שלמדתם בכיתה.

שאלות מעניינות

  • הוכח או הפרך:

תהי f_n(x) סדרה של פונקציות גזירות ברציפות המתכנסות במ"ש לפוקציה f, אשר גם גזירה ברציפות,ב-[a,b]. אזי ש- f_n' \rightarrow f' במ"ש על הקטע [a,b].

  • בנוגע למשפט דיני לטורים, נניח שיש לי טור u(x)=\sum_{n=1}^{\infty}a_n(x), כך ש-a_n(x)>0 והטור מתכנס ב-I.

מתי אני יודע אם הפונקציה הגבולית רציפה, כך שאוכל להישתמש בדיני ולקבוע שההתכנסות במ"ש. נשמח לתשובה ממישהו,די דחוף! תודה!!! :)

תומר - אם ניקח את הסידרה cosnx ונחלק הכל ב n . האם קיבלת סידרה שמתכנסת במ"ש ? ומה עם נגזרותיה ? ... לגבי דיני - פשוט לבדוק רציפות לפי הגדרה - גם לא אמרת שהפונקציות בסידרה רציפות - שים לב לתנאי המשפט ! .

שאלה

שאלה שנתקעתי עליה ואשמח לכיוון:

int(arctan(x)/[(x*(ln(x+1))^2)], x = 0 .. infinity)

ניסיתי דיריכלה, חשבתי על השוואה, ופשוט לא מצאתי. אשמח לעזרה

מצטרף לשאלה!! איך פותרים את הדבר הזה?


(לא ארז/תומר) תנסה השוואה עם אחד חלקי [x*ln(x)^2]. שים לב ש arctanx שואף באינסוף לחצי פאי, ושעם קצת אלגברה אפשר להוכיח שמנת ה-ln-ים שואפת לאחד. כדי להראות התכנסות של האינטגרל החדש, אפשר להשתמש בהצבה t=ln(x), או לחילופין להשתמש במבחן האינטגרל+מבחן העיבוי לטורים

תודה רבה :)

זה לא נכון, כי יש בעיתיות גם בנקודה x=1 וגם באינסוף. ההשואה שנתת עוזרת רק לחלק של האינסוף

אבל אני לא חושב שאמורה להיות בעיה, כי זאת בעיה בנקודה, וזה לא אינטגרל לא אמיתי מסוג שני.
אתה מפצל את זה לשני אינטגרלים: האינטגרל מ-1 עד אינסוף מתכנס (כי מורידים את ה-ln בעזרת אי שוויון והאינטרגל (arctanx/x^2) מתכנס (השוואה עם 1/x^2)...
עכשיו בקשר לאינטגרל מ-0 עד 1 אתה יודע ש- ln(1+x)<x לכל x ב-[0,1] ולכן האינטרגל שלנו גדול מהאינטגרל של arctan(x)/x^4 וזה מתבדר ע"פ השוואה עם 1/x^4 שמתבדר בקטע [0,1], ולכן זה גדול מאינטגרל מתבדר וזה סה"כ מתבדר. (אשמח לקבל אישור מאחד המתרגלים =) ).
(לא ארז/תומר) עבור האינטגרל מ-0 עד 1, תנסה מבחן השוואה גבולי עם אחד חלקי x^2 . שים לב ש arctanx/x שואף לאחד וש ln(1+x)/x גם שואף לאחד כאשר x שואף לאפס.

ובקשר לזה שכתב מעלי- ה-x במכנה הוא לא בריבוע...

האמת שהאינטגרל המקורי היה בין 1 לאין סוף וזאת טעות שלי שכתבתי אפס, אבל זה באמת יהיה טוב לדעת מה קורה גם אם זה היה אפס.
תודה לשניכם :)

שאלות.

  • arctanx חיובי בקטע 1,infinity לא? היה תרגיל באחד המבחנים ששמו ערך מוחלט מסביב לarctan, באנטגרל שהתחום שלו הוא תהחום המצוין..
  • במבחן ההשוואה הגבולי. מותר לי להשוות פונק' חיובית עם פונק' שלילית, אם הגבול יוצא חיובי? לדוגמה, הפונקציה sinx חלקי x*lnx. בתחום [0.5,1], נניח ואני רוצה להשוות עם sinx חלקי x-1..
  • כאשר אני מפצלת אינטגרלים ל2 תחומים שונים [עם דגש על השונים!]. אם אחד מהם מתבדר, כל האינטגרל המקורי מתבדר, נכון? בלי קשר לחיוביות/שליליות של אחת הפונקציות..
  • בהמשך לשאלה שלמעלה - אם יש לי שאלה של 'לאילו ערכי אלפא', כאשר יש לי חיבור של 2 אינטגרלים - אחד ל"א מסוג ראשון והשני ל"א מסוג שני.. אז אם למשל עבור alpha>1 האינטגרל מסוג 1 מתבדר, אין מה לבדוק את האינטגרל השני גם?

וזהו, תודה רבה!

תשובה

  • כן הוא חיובי.
  • אם בתחום הפונקציה אי חיובית אז אם תכפלי אותה במינוס תקבל פונקציה אי שלילית. כמובן שמכפלה במינוס לא משנה התכנסות אינטגרל
  • נכון.
  • נכון
כן, אבל כשהפונק' הייתה שלילית, הגבול יצא לי חיובי. אם אני כופלת במינוס 1, הגבול יוצא שלילי..
לא יכול להיות שהגבול של המנה של שתי פונקציות אי שליליות יהיה שלילי
כעיקרון אני מדברת על הפונקציה sinx חלקי x*lnx. בתחום [0.5,1] אני משווה אותה עם sinx חלקי (1 פחות X). (יום יבוא ואני אלמד להשתמש בכתיב המתמטי של ויקיפדיה... מצטערת על הסרבול). בכל מקרה, שתי הפונקציות חיוביות בתחום הזה. אבל הגבול של המנה, כאשר X שואף ל1 מצד שמאל, הוא מינוס אחת..
כי ln שלילית בקטע הזה.
אוקי, אז בעצם מכפילים את הפונק' המקורית ב1- ואז מקבלים גבול חיובי, ואומרים שבגלל שהפונק' עם המינוס מתכנסת/מתבדרת ==> כך גם הפונק' המקורית?
נכון

שאלה

התכנסות במ"ש של ערך מוחלט של טור הפונק' גוררת התכנסות במ"ש של טור הפונק'?

כבר נשאל בעמוד זה. כן מכיוון שהשארית של טור קטנה או שווה לשארית של הטור בהחלט

שאלה

  • הסתבכתי,אפשר עזרה?
  • נניח שהפונקציה f מוגדרת ורציפה בקטע סגור x=a..b הוכח כי הסכום מאחד עד אינסוף של f^n מתכנס במ"ש בקטע זה אם ורק אם הסכום הנל(f^n) מתכנס נקודתית בקטע זה.


השאלה לא מנוסחת טוב. מה זה f ומה הוא קשור? מה ההבדל בין סכום מאחד עד אינסוף לבין טור?

תיקנתי... מה הבעייה בהגדרה של f פשוט פונקציה f(x)

שאלתי מה הקשר של f. גם g היא פונקציה אבל היא קשורה לשאלה בדיוק כמו f... האם היא פונקצית הגבול של הטור? האם הפונקציות בסדרה רציפות?
(לא ארז וגם לא תומר) בעצם הכיוון המעניין היחיד הוא מהתכנסות נקודתית לבמ"ש. אם f^n מתכנס נקודתית אפשר לראות כי לכל x נקבל f(x<1 (בערך מוחלט, הלוואי שזה לא היה קופץ כל הזמן). f רציפה לכן הערכים שהיא מקבלת מהווים קטע סגורc,d בתוך [-1,1), קטע בו הטור x^n מתכנס במ"ש. לכן כל סדרת נקודות אינסופית שתבחר בa,b עבור הטור לפי f שקולה בעצם לבחירת נקודות בc,d עבור הטור של x המתכנס שם במ"ש (ולפי מבחן הLIMSUP בעצם זה כל מה שצריך).


אבל למה f(x) בערך מוחלט קטן מ-1?

הסברתי במפורט בתשובה. לא בהכרח f<1 פשוט אם הוא מתכנס הוא קטן מאחד ולכן מתכנס במ"ש. אם הוא מתכנס במ"ש ברור שהוא מתכנס. זה כל מה שצריך להוכיח.

תשובה

אה.... התבלבלתי בין f_n לf^n.... מצטער.

הכותב מעליי צודק שהטור מתכנס כאשר |f(x)|<1, והוא מתכנס במ"ש כאשר |f(x)|<r<1 אבל בגלל שהפונקציה רציפה על קטע סגור ונניח מתכנסת בו אזי היא מקבלת מינימום ומקסימום ושניהם חייבים להיות קטנים ממש מאחד (אחרת היא לא הייתה מתכנסת בהם) ולכן התנאי מתקיים.


  • על מנת להוכיח שהוא מתכנס במ"ש בתנאי למעלה |f(x)|<r<1 כל שצריך הוא מבחן הM

|f(x)^n|<r^n.

  • על מנת להוכיח שהוא מתכנס עבור התנאי |f(x)|<1 כל מה שצריך הוא להסתכל נקודתית על הטור \sum |f^n(x)|=\sum a^n כאשר |f(x)|=a<1 וזה כמובן מתכנס.
  • טריוויאלי שהוא יתבדר בכל מקום אחר.
  • על מנת להוכיח שהוא לא מתכנס במ"ש אם לפונקציה לא היה מקסימום אבל הsup שלה היה אחד: ניקח סדרה x_n כך ש f(x_n) \rightarrow 1 ולכן

\lim_{k\rightarrow \infty} sup|S(x)-S_k(x)|>\lim_{k\rightarrow \infty} |S(x_{n_k})-S_n(x_{n_k)}| = \infty

(נבחר את n_k על מנת שההפרשים ישאפו לאינסוף. אנחנו יודעים שזה מותר כי f(x_n)\rightarrow 1)

שאלה

אם יש לי פונקציה ואני מפתח לה טור חזקות נניח עם רדיוס 1, איך אני מוודא לאחר הפיתוח שהפונקציה שווה לטור בקטע? וגם פה שאלה 4 כוון כללי אם אפשר...http://moodle.technion.ac.il/file.php/1098/Exams/2004-2005-spring-test-a.pdf

תשובה

הוא שווה לפונקציה רק ברדיוס ההתכנסות. מה הכוונה איך אתה מוודה? אם פתחת נכון זה חייב להיות שווה - הצעדים שלמדנו לפיתוח פונקציה לטור חזקות הם צעדים בהם השיוון בסוף חייב להתקיים (למשל פונקציה קדומה ששווה בנקודה אחת לטור החזקות [עדיף לבדוק את הנקודה אפס כמובן])


לגבי השאלה השנייה כבר שאלו אותה, תסתכל בארכיון 17

אבל אתה יודע שאם קיים טור חזקות המקדמים הם אלו של טיילור, למשל הפונקציה f(0)=0 f(x)=exp(-1/x^2) s היא שווה לטור החזקות רק באפס למרות שהטור מתכנס בכל הישר (הוא תמיד אפס כי כל הנגזרות באפס הן אפס) מה שאני שואל זה איך הייתי יודע להבחין שהם שווים רק באפס למרות שהטור מתכנס תמיד, רק שזה לא תמיד לערך הפונקציה?


אל תבלבל. הקטע עם הבדיקה בנקודה זה רק כאשר הוכחת שהפונקציה שלך היא קדומה של טור חזקות כלשהוא ועשית אינטגרציה איבר איבר. באופן כללי למדתם משפט אחד שמאפשר לכם להניח שטור החזקות עם מקדמי טיילור הוא אכן הפונקציה וזה כאשר הנגזרות חסומות (ראה את ההשלמה). במקרים אחרים (כמו זה שתארת) אסור סתם להניח שיהיה שיוויון.

כן, אבל בתכלס אם קיים טור חזקות המקדמים שווים למקדמי טיילור מה שאתה אומר זה להתייחס "כאילו" אנחנו לא יודעים את זה ולעבוד בשיטות אחרות כן? (במקרה והנגזרות לא בהכרח חסומות)

כן. יכול להיות שתשתמש בטריק כי אתה לא יודע להוכיח שהפונקציה שווה לטור חזקות, אבל גם יכול להיות שזה פשוט יהיה קל יותר מאשר לחשב את הנגזרות מכל סדר...

סבבה תודה רבה

שאלה

המבחן ב15:30 נכון? כמה זמן הוא יארך???

כן, שעתיים

שאלה

למה הסיגמה של 2*(n+1)*3^n חלקי שורש שלישי של n! מתכנס?

אתה מתכוון ל\sum \frac{2(n+1)3^n}{\sqrt[3]{n!}}? תקח את השורש הn-י ותקבל 3 חלקי אינסוף כלומר שואף לאפס (הרי \sqrt[n]{n!}\rightarrow \infty)

התכנסות אינטגרלים

האם האינטגרלים הבאים מתכנסים???

  • \int_{0}^{1} \frac{\theta}{\ln(\theta)}d\theta.
  • \int_0^1 \frac{dx}{\ln(x)}
  • \int_{r=0}^{r=1} \frac{\sin(r^2)}{r}dr.

האם אפשר לומר באינטגרל השלישי ש- \int_{0}^{1} \frac{\sin(r^2)}{r}dr \leq \int_{0}^{1} \frac{r^2}{r}dr = \int_0^1 rdr = 1/2, ואז עפ"י השוואה???


תשובה

לא לשכוח לבדוק אם האינטגרל הוא אמיתי בכלל או לא. למשל השלישי הוא פשוט בעל אי רציפות סליקה באפס ולכן אינטגרבילי (גם מה שרשמת נכון אבל בלי קשר)

בראשון ובשני הצד הבעייתי הינו 1. ניתן לבצע מבחן ההשוואה עם \frac{1}{1-x}

שאלה

נתונה פונקציה f(x) בקטע [a,b] ונתון שהיא חסומה על ידי M.

צריך להוכיח שאם f אינטגרבילית זה גורר ש-f^2 אינטגרבילית.

חסימות זה לא בעיה, אבל הסתבכתי עם התנאי השני


אני יכול להשתמש במשפט שאם הפונקציות f,g אינטגרביליות בקטע כלשהו אז גם f כפול g אנטגרבילית שם, כאשר במקרה הזה g=f?

(לא ארז/תומר) ענו כבר על השאלה הזאת... לדעתי אי אפשר להשתמש במשפט, למרות שהוא נכון, כי אז התרגיל טריוויאלי.
הנה ההוכחה- יהי אפסילון גדול מאפס. בכל קטע g(x1)-g(x2)=(f(x1)+f(x2))*(f(x1)-f(x2)<2M*W כאשר W היא התנודה של f בקטע. (g מוגדרת כ f בריבוע). מאינטגרביליות f קיימות חלוקה עבורה סכום התנודות קטן מאפסילון חלקי 2M. ועבור אותה חלוקה בפונקציה g סכום התנודות יהיה קטן מאפסילון.

תומר - ומה עם מידת נקודות אי רציפות ? אם אתם יודעים שהפונקציה אינטגרבילית זה אומר שמידת קבוצת נקודות האי רציפות שלה היא אפס . מה עם נקודות האי רציפות של הפונקציה בריבוע ? האם היא מוכלת בזו של הפונקציה המקורית ? ואם כן מה זה אומר על מידתה ? ...

שאלה

צריך להוכיח שהטור הבא מתכנס במ"ש. f(x)= sum from 0 to infinity of (e^-nx)* cos(nx) s

בכל קטע (a, infinity] כאשר a>0

ניסיתי עם מבחן ה- m ולא הצלחתי. מישהו? אפשר להשוות עם e^-n במבחן הM לא?

(לא ארז/תומר) אני חושב שצריך להשוות עם e^-an ...

עם e^-n וזה עובד. עכשיו בסעיף הבא הם רוצים להוכיח/להפריך שf(x) שזה הסכום הוא פונקציה רציפה ב(o, infinity). הבעיה זה שזה קטע פתוח ולא סופי.. עדין אפשר להשתמש במשפט על טור של פונקציות רציפות המתכנס במ"ש?

תמיד משתמשים באותו טריק (לא התעמקתי בשאלה, מקווה שרלוונטי) אם ההתכנסות היא במ"ש על כל תת קטע סגור וסופי אז יוצא שפונקצית הגבול רציפה בכל נקודה בלי שתהיה התכנסות במ"ש על הקטע האינסופי/פתוח כולו.

תרגיל 11

מישהו יכול לכתוב שוב את הלינקים לתרגילים שבתרגיל 11, הלינקים לא עובדים לי. 

ארכיון 16...

שאלה

מתי יפורסמו ציוני התרגיל והבוחן (אני יודע שיש לנו אותם, הכוונה עם פקטור, וציוני תרגיל 8/10 אם אני לא טועה) והאחוזים מהציון הסופי?

מצטרף!!

תומר - יפורסם בשעות הקרובות . אני עצמי עוד בודק תרגילים שהוגשו באיחור(!) . סבלנות .

יש חדש?

שאלה

אוקי, נניח ויש לי סדרת פונקציות, ואני צריכה לבדוק לאילו ערכי אלפא הסדרה מתכנסת במ"ש ב0,אינסוף (חצי סגור) וב[0,1]. קודם כל בדקתי את 0 אינסוף, והגעתי לזה שעבור אלפא קטן מ2 ==> הסדרה מתכנסת במש. התחום השני, [0,1], מוכל בתחום הראשון - ונניח שהגעתי לזה שהסדרה מתכנסת במש בתחום זה עבור אלפא גדול מ2-. מכיוון שהתחום מוכל, זה אומר לי גם שבפרט הסדרה מתכנסת במש גם עבור אלפא קטן מ2, וביחד - עם שתי המסקנות האלה - מתכנס לכל אלפא?


תשובה

לכאורה כן, אני לא מבין מה השאלה. הרי ברור שאם זה מתכנס במ"ש לכל אלפא גדול ממינוס 2 או קטן משתים בפרט זה מתכנס לכל אלפא. השאלה האמיתי היא אם החישובים שלך נכונים.

השאלה היא כזו - הוכחתי שעבור אלפא קטן מ2 זה מתכנס במ"ש ב0,infinity. רק רציתי לוודא שזה אומר שעבור אלפא קטן מ2 זה מתכנס במ"ש גם ב[0,1]. זה נכון?
הדגש הוא על הקטע הסגור? אם יש התכנסות באפס אז כן, אם לא אז לא
כן, מדובר על קטעים סגורים. תודה:)

אני טועה או שבהתחלת ההרצאה האחרונה רוני אמר שבטווח שבין רדיוס ההתכנסות לבין המינוס שלו(לא כולל הוא עצמו)- הפונקציה מתכנסת, ואח"כ הוא אמר שהיא גם מתכנסת במ"ש בכל קטע סגור שמוכל בקטע הזה.....?

זה נכון לגבי טור חזקות, אני לא בטוח איך זה קשור פה.
יש עוד מקום עם רדיוס התכנסות חוץ מטור חזקות??? ושאלתי כי זה נראה לי מוזר להוכיח משהו ואז להוכיח משהו ותר חזק במקום להוכיח ביחד. למה פה? איפה עוד אני יכול לכתוב???
לא פה בפורום, התכוונתי פה בשאלה הזו... רדיוס התכנסות זה מושג של טור חזקות, וכאן מדובר על סדרת פונקציות.

שאלה

מצטער על הבורות רגע לפני המבחן- מה זה גזירה איבר-איבר? ואינטגרציה איבר איבר? בבקשה שלא יהיה מסובך....

תשובה

נניח ויש לך טור מתכנס g=\sum f_n. השאלה היא מהי הנגזרת של g. אם מותר לגזור איבר-איבר אזי g' = \sum f_n'. שים לב שזה לא תמיד נכון, רק כאשר המשפטים מאפשרים לגזור איבר-איבר.

אינטגרציה זה דומה \int g = \sum \int f_n

שאלה

אם טור חזקות מתכנס גם בR וגם בR-, זה אומר שהוא מתכנס במ"ש ב[0,R] וב[-R,0] ואז זה אומר שהוא מתכנס במ"ש ב[-R,R]?

תשובה

כן. באופן כללי אם טור מתכנס במ"ש בשני קטעים סגורים צמודים הוא מתכנס במ"ש באיחוד הקטעים. כי מהירות ההתכנסות עבור אפסילון היא המקסימום בין שני הn_0 של שני הקטעים.

:)

שיהיה בהצלחה לכולם! לא פחות מ100 :)

תומר - מצטרף ! שיהיה בהצלחה לכולכם - במבחן הזה ובכל אלו אחריו :)

תודה, ותודה לכם על סמסטר נפלא (עד כמה שהיה אפשר. אינפי, אתם יודעים). תודה על התרגולים המצויינים, אפילו שהיו יותר מידי אנשים בכיתה... ותודה על ההשקעה בנו ועל כל העזרה (האתר, וכל דבר אחר). אולי תהיו מתרגלים שלנו באינפי 3?
ושיהיה בהצלחה לכולם!

לארז ולתומר

רגע אחרי המבחן, וכמה ימים לפני שהאתר יתחיל לשמש, כנראה, תיכוניסטים תמימים שצעירים מאתנו בשנה, ואתם אורזים את הכל בשבילם, רציתי לומר לכם, לשניכם במ"ש, ת-ו-ד-ה ר-ב-ה!! על כל ההשקעה, הזמן, הרצון והכוח שהיה לכם להתמודד עם שתי קבוצות רועשות כמו שלנו, ועוד בקורס קשה כמו אינפי 2! שיהיה לכולנו המון בהצלחה בהמשך!


מצטרף בהחלט, המון תודה לשניכם, ואולי נתראה בהמשך...

מצטרפת.. ממש תודה על הכול! מה נעשה בלי Math-wiki..

מצטרף! זה לא מובן מאליו... ועם זאת, מתי נדע כמה פקטור יהיה(בטוח יהיה...!!)

תודה רבה על כל האיחולים - המתרגלים. (בלי קשר, אני אפרסם עוד כמה דקות פתרון למבחן בדף הקורס)


אני מסכים לגמרי עם כל השאר. אתם באמת השקעתם את כל כולכם בנו ובהצלחה שלנו. באמת רואים שאכפת לכם מאיתנו למרות כל הקיטורים, בקשות לדחיות, התחננויות ולפעמים אף בכי P= אני רק לא מבין משהו אחד. ניסיתי להבין מה הייתה התועלת בשיעורי חזרה ובתרגולים הנוספים שעשיתם, ואני לא מוצא בהם תועלת למבחן... לא עשינו אפילו תרגיל אחד שהיה אפילו דומה לשאלות שהיו במבחן (אני לא מתכוון לשאלות בדיוק כמו שהיו במבחן, אבל לפחות בסגנון ובנושאים)...  כאילו שמתם דגש בשאלות לא דומות למבחן בשביל מה? הרי ראיתם את המבחן כבר... לי אישית היה די קשה להגיע לבר אילן,לתירגולים, באותו היום אבל הגעתי בכל זאת כי חשוב לי להצליח במבחנים (כמו לכולנו), אבל בתכלס שאני מסתכל על היעילות שלהם לאחר המבחן לא עזר בכלל, אלא להיפך. כל מה שאני מנסה להגיד, זה שבתרגולי חזרה לפני מבחן, תעזרו קצת יותר בכך שתתרגלו אותנו נכון, ולא לבלבל לנו את השכל עם שאלות לא קשורות בכלל... אחר כך מתלוננים שאנחנו לא מקבלים ציונים נורמלים ואתם נאלצים לעשות פקטור סתם! תודה על הכול (וזה בשיא הכנות) כי באמת השקעתם בנו 

תשובה

אני אענה לשאלה שלך בשני מישורים

  • הראשון והחשוב יותר: מטרתנו הראשונה והעיקרית כמורים הינה ללמד אתכם מתמטיקה ולא להכין אתכם למבחן. הכנה למבחן הינה משנית (אמנם חשובה גם כן). קשה להגיע לבר אילן גם במהלך הסמסטר, אך אתם מגיעים על מנת ללמוד. הסיבה שאנו רואים את המבחן קודם לכן היא בעיקר על מנת לוודא איכות שלו (שאין טעויות, רמה סבירה וכדומה), עלינו להעביר שיעורי חזרה כאילו לא ראינו את המבחן.
  • שנית, אני אפריך לחלוטין את הטענות שהעלאת:
    • שיעור ההשלמה היה חלק מחומר הקורס וכלל שאלה שהופיעה כלשונה במבחן! (הוא היה לפני שראינו את המבחן). אז כבר 20 נקודות מתנה על שיעור ההשלמה והחומר שהועלאה לאתר (אני לא העברתי את השאלה פרונטלית אבל תומר כן). אמרנו לכם לקרוא את שיעור ההשלמה.
    • שיעור החזרה כלל שאלה כמעט זהה לחלוטין לשאלה 3 מהמבחן (אני העברתי אותה ותומר לא).
    • יום או יומיים לפני המבחן עניתי באתר על שאלה דומה לשאלה 2 במבחן, והדגשתי דברים שלא היו בשאלה המקורית כי ידעתי שזה יעזור למבחן.
    • שאר השאלות, בוודאי היו דומות והתעסקו בנושאים דומים...


מעבר לכך, תודה על ההכרה בעבודה שלנו. תאמינו לנו שמה שעכשיו נראה לכם לא כיף, בעתיד אתם תראו כאתגר שהצלחתם בו. החיים הם לא מיטת שושנים, ומי היה רוצה לישון במיטת שושנים בכלל? זה דוקר!

זה לא רק דוקר, זה גם צמיגי :P
מתי יעלו ציוני תרגיל?
אנחנו נעלה אותם היום

יש לי שאלה

האם בשאלה 4ב במבחן היה אפשר להגיד שההתכנסות היא ל0 כי תנאי הכרחי להתכנסות הטור היא שאיפת האיבר הכללי לאפס (הוכחה של התכנסות לאפס לא התכנסות במש)?

תשובה

כן, זה מוכיח בהחלט התכנסות נקודתית לאפס (ולא במ"ש כפי שציינת)

שאלה

למה מופיע לי ציון 0 בתרגיל מספר 2 אם הגשתי אותו? :S

זו שאלה פילוסופית?

הודעה

יש ציונים!!

מבחן

היה פקטור במבחן? ואם כן של כמה?

מצטרף לשאלה... מאוד חשוב לנו לדעת האם להגיש ערעור או שלא.... והאם לגשת למועד ב או לא בקיצור ממש חשוב לנו לעת האם היה פקטור...

תשאלו את המרצים, אנחנו (המתרגלים) לא יודעים.