הבדלים בין גרסאות בדף "קוד:מבחן המנה של דלאמבר לטורים"
Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "\underline{משפט:} נתון טור $\sum_{n=1}^\infty a_n $ שכל איבריו חיוביים. נניח שקיים $\lim_{n\to \infty} \frac{a_{n+1}}{a_n} =q...") |
מ (2 גרסאות יובאו) |
||
(גרסת ביניים אחת של משתמש אחר אחד אינה מוצגת) | |||
שורה 1: | שורה 1: | ||
− | \ | + | \begin{thm} |
+ | נתון טור $\sum_{n=1}^\infty a_n $ שכל איבריו חיוביים. נניח שקיים $\lim_{n\to \infty} \frac{a_{n+1}}{a_n} =q $ אזי | ||
+ | \begin{enumerate} | ||
+ | \item אם $q<1 $ הטור מתכנס | ||
− | + | \item אם $q>1 $ (אפשר גם אינסופי) הטור מתבדר | |
+ | \end{enumerate} | ||
+ | \end{thm} | ||
− | + | \begin{proof} | |
+ | \begin{enumerate} | ||
+ | \item | ||
+ | $\exists_{n_0} \forall_{n\geq n_0} \frac{a_{n+1}}{a_n} <q' $ עבור $ q<q'<1 $ ואז $\forall n\geq n_0: a_{n+1}\leq q' a_n $ . מכאן ש-$$a_{n+1}\leq a_n \cdot q' \leq a_{n-1}\cdot q'^2 \leq \cdots \leq a_{n_0} \cdot q'^{n+1-n_0} =a_{n_0} q'^{1-n_0} \cdot q'^n $$ | ||
+ | נסיק ש- $\sum_{n=n_0}^\infty a_n \leq a_{n_0} q'^{1-n_0} \cdot \sum_{n=1}^\infty q'^n $ אבל זהו טור הנדסי שמתכנס, ולכן, ממבחן ההשווא ההראשון, נקבל את הדרוש. | ||
− | \ | + | \item |
+ | מוכיחים את זה באופן אנלוגי ל-1 רק שצריך לקחת $1<q'<q $ ואי השיוויונים מתהפכים. | ||
+ | \end{enumerate} | ||
+ | \end{proof} | ||
− | + | \begin{example} | |
− | + | אם $q=1 $ אי אפשר לדעת, לדוגמה אם ניקח את הטור $\sum_{n=1}^\infty \frac{1}{n^p} $ אז בכל מקרה נקבל $q=1 $ אבל עבור $p$ים שונים נקבל התכנסות/התבדרות | |
− | + | \end{example} | |
− | + | ||
− | + | ||
− | + |
גרסה אחרונה מ־20:16, 4 באוקטובר 2014
\begin{thm} נתון טור $\sum_{n=1}^\infty a_n $ שכל איבריו חיוביים. נניח שקיים $\lim_{n\to \infty} \frac{a_{n+1}}{a_n} =q $ אזי \begin{enumerate} \item אם $q<1 $ הטור מתכנס
\item אם $q>1 $ (אפשר גם אינסופי) הטור מתבדר \end{enumerate} \end{thm}
\begin{proof} \begin{enumerate} \item $\exists_{n_0} \forall_{n\geq n_0} \frac{a_{n+1}}{a_n} <q' $ עבור $ q<q'<1 $ ואז $\forall n\geq n_0: a_{n+1}\leq q' a_n $ . מכאן ש-$$a_{n+1}\leq a_n \cdot q' \leq a_{n-1}\cdot q'^2 \leq \cdots \leq a_{n_0} \cdot q'^{n+1-n_0} =a_{n_0} q'^{1-n_0} \cdot q'^n $$ נסיק ש- $\sum_{n=n_0}^\infty a_n \leq a_{n_0} q'^{1-n_0} \cdot \sum_{n=1}^\infty q'^n $ אבל זהו טור הנדסי שמתכנס, ולכן, ממבחן ההשווא ההראשון, נקבל את הדרוש.
\item מוכיחים את זה באופן אנלוגי ל-1 רק שצריך לקחת $1<q'<q $ ואי השיוויונים מתהפכים. \end{enumerate} \end{proof}
\begin{example} אם $q=1 $ אי אפשר לדעת, לדוגמה אם ניקח את הטור $\sum_{n=1}^\infty \frac{1}{n^p} $ אז בכל מקרה נקבל $q=1 $ אבל עבור $p$ים שונים נקבל התכנסות/התבדרות \end{example}