הבדלים בין גרסאות בדף "אינטגרל לא מסויים/דוגמאות"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(פתרון)
(9)
 
(גרסת ביניים אחת של אותו משתמש אינה מוצגת)
שורה 169: שורה 169:
 
כעת נחשב את האינטגרל השני שקיבלנו:
 
כעת נחשב את האינטגרל השני שקיבלנו:
  
<math>\int \frac{dx}{x\sqrt{1-x^{2}}}=\begin{Bmatrix}
+
<math>\int\frac{dx}{x\sqrt{1-x^2}}=\begin{Bmatrix}x=\cos(u)\\dx=\sin(u)du\end{Bmatrix}=\int\dfrac{\sin(u)}{\cos(u)\sqrt{1-\cos^2(u)}}du=\int \frac{du}{\cos(u)}</math>
x=cosu\\  
+
dx=sinudu
+
\end{Bmatrix}=
+
\int \frac{sinu}{cosu\sqrt{1-cos^{2}u}}du=\int \frac{du}{cosu}=</math>
+
  
  
 
וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:
 
וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:
  
<math>\int \frac{du}{cosu}=\int \frac{2}{1+t^{2}}\cdot \frac{1+t^{2}}{1-t^{2}}dt=\int \frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}=ln|1+t|-ln|1-t|+c=ln\frac{1+t}{1-t}+c</math>
+
<math>\begin{align}\int\frac{du}{\cos(u)}&=\int\frac{2}{1+t^2}\cdot\frac{1+t^2}{1-t^2}dt=\int\frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}\\&=\ln\big(|1+t|\big)-\ln\big(|1-t|\big)+C=\ln\left(\left|\frac{1+t}{1-t}\right|\right)+C\end{align}</math>
  
 
כרגיל להחזיר ולהנות (:
 
כרגיל להחזיר ולהנות (:
שורה 277: שורה 273:
 
ונשים לב כי מתקיים (באופן די מגניב):
 
ונשים לב כי מתקיים (באופן די מגניב):
  
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx=\int\frac{dx}{\ln(x)}-\int\frac{dx}{\ln(x)^2}=\frac{x}{\ln(x)}+C</math>
+
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx={\color{blue}\int\frac{dx}{\ln(x)}}-\int\frac{dx}{\ln(x)^2}={\color{blue}\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}}-\int\frac{dx}{\ln(x)^2}</math>
 +
 
 +
לבסוף:
 +
 
 +
<math>\int\frac{\ln(x)-1}{\ln(x)^2}dx=\frac{x}{\ln(x)}+C</math>
  
 
==16==
 
==16==

גרסה אחרונה מ־22:41, 10 בינואר 2017

1

\int\frac{dx}{x}=\ln(|x|)+C

2

\int\frac{dx}{\sqrt{x^2-4x-5}}

פתרון

השלמה לריבוע והצבה ראשונה

הדבר הראשון שנעשה הוא התהליך של השלמה לריבוע, שבסופו נקבל כי:

x^2-4x-5=(x-2)^2-9

ולכן ההצבה הראשונה שנעשה תהא: u=x-2 , וכמובן קל להבין כי dx=du .

\int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}}


פונקציות טריגונומטריות היפרבוליות (הערה)

ניעזר בתכונות של \sinh(x) ושל \cosh(x) :

(\cosh(x))'=\sinh(x)=\int\cosh(x)dx

וכן בזהות: \cosh^2(x)=\sinh^2(x)+1


הצבה שניה

נציב: u=3\cosh(t)\Rightarrow du=3\sinh(t)dt

\int\frac{dx}{\sqrt{x^2-4x-5}}=\int\frac{du}{\sqrt{u^2-9}}=\int\frac{3\sinh(t)}{\sqrt{9\cosh^2(t)-9}}dt=\int\frac{3\sinh(t)}{3\sinh(t)}dt=\int dt=t+C

ולהחזיר את t ל-x, אני משאיר לכם (:

3

האינטגרל הבא לקוח מספר התרגילים של בועז צבאן (1.24, אם אינני טועה)

\int\frac{\sin^2(x)}{\cos^6(x)}dx

פתרון

\int\frac{\sin^2(x)}{\cos^6(x)}dx=\begin{Bmatrix}t=\tan(x)\\ dt=\frac{dx}{\cos^2(x)}\end{Bmatrix}=\begin{Bmatrix}\sin^2(x)=\frac{t^2}{t^2+1}\\ \cos^2(x)=\frac{1}{t^2+1}\end{Bmatrix}=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt=

\int\frac{\sin^2(x)}{\cos^6(x)}dx=\int\frac{\frac{t^2}{t^2+1}}{\frac{1}{(t^2+1)^2}}dt=\int t^2(t^2+1)dt=\cdots=\frac{t^5}{5}+\frac{t^3}{3}+C

יש טעות בהצבה של \cos^2(x) , שכן \cos^6(x)=(\cos^2(x))^3=\frac{1}{(t^2+1)^3}
אבל צריך לקחת בחשבון גם את ה-dt
צודק. נראה לי שאם אני לא ראיתי את זה, גם אחרים לא יראו ;)

4

בדומה לאינטגרל הקודם, לקוח מבועז צבאן (1.27)

\int\sqrt{2-x-x^2}dx

דרך א'

א. ניתן להשתמש בהצבת אוילר, אבל אנחנו ננקוט בטקטיקה שונה.

\int\sqrt{2-x-x^2}dx=\int\sqrt{1.5^2-(x+0.5)^2}dx=\int\sqrt{1.5^2-u^2}du

הצבה ראשונה: u=x+0.5\Rightarrow dx=du


הצבה שניה: u=1.5\sin(t)\Rightarrow du=1.5\cos(t)dt


ואם נחזור לחישוב האינטגרל,

\int\sqrt{1.5^2-u^2}du=\int 1.5\sqrt{1-\sin^2(t)}\cdot1.5\cos(t)dt=2.25\int\cos^2(t)dt=2.25\int\frac{\cos(2t)+1}{2}dt=2.25\left(\frac{\sin(2t)}{4}+\frac{t}{2}\right)+C

ומכאן מעבירים את t ל-x.

דרך ב'

ההצבה הראשונה נשארת כפי שהייתה, אך הפעם לא נעשה הצבה שניה אלא נשתמש באינטגרציה בחלקים:

\int\sqrt{1.5^2-u^2}du=\int (u)'\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+\int\frac{u^2du}{\sqrt{1.5^2-u^2}}

כעת נוכל להבחין כי מתקיים:

\int\frac{u^2}{\sqrt{1.5^2-u^2}}du=\int\frac{u^2-1.5^{2}+1.5^2}{\sqrt{1.5^2-u^2}}du=\int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du-\int\sqrt{1.5^2-u^2}du

כעת נביט רק על האינטגרל הראשון ונציב: 1.5v=u

\int\frac{1.5^2}{\sqrt{1.5^2-u^2}}du=1.5^2\int\frac{1.5}{1.5\sqrt{1-v^2}}dv=1.5^2\arcsin(v)=2.25\arcsin\left(\frac{2u}{3}\right)+C

אם נחזור לאינטגרל המקורי נקבל:

\int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)-\int\sqrt{1.5^2-u^2}du

2\int\sqrt{1.5^2-u^2}du=u\sqrt{1.5^2-u^2}+2.25\arcsin\left(\frac{2u}{3}\right)+C

וסיימנו (:

5

אינטגרל חביב שנלקח ממבחן בחדו"א בב"ג (של מדעי המחשב)

\int\frac{dx}{x+\sqrt[n]{x}} כאשר n\in\N .

פתרון

הכוונה היא עבור n>1 , עבור n=1 תסתכלו בדוגמא הראשונה.

\int\frac{dx}{x+\sqrt[n]{x}}=\begin{Bmatrix}t^n=x\\nt^{n-1}dt=dx\end{Bmatrix}=\int\frac{nt^{n-1}}{t^n+t}dt=n\int\frac{t^{n-2}}{t^{n-1}+1}dt=\begin{Bmatrix}k=t^{n-1}+1\\dk=(n-1)t^{n-2}dt\end{Bmatrix}=

\int\frac{dx}{x+\sqrt[n]{x}}=\frac{n}{n-1}\int\frac{dk}{k}=\frac{n}{n-1}\ln(|k|)+c=\frac{n}{n-1}\ln\Big(|x^{\frac{n-1}{n}}+1|\Big)+C

6

\int\frac{\arctan(e^x)}{e^x}dx

פתרון

נעזר באינטגרציה בחלקים.

\int\frac{\arctan(e^{x})}{e^{x}}dx=\int\arctan(e^{x})e^{-x}dx=\begin{Bmatrix}du=e^{-x}dx\Rightarrow u=-e^{-x}\\ v=\arctan(e^{x})\Rightarrow dv=\frac{e^x}{1+e^{2x}}dx\end{Bmatrix}=-e^{-x}\arctan(e^x)+\int\frac{dx}{1+e^{2x}}

פתאום זה נראה יותר אנושי, כעת נסתכל על האינטגרל שנותר:

\int\frac{dx}{1+e^{2x}}=\begin{Bmatrix}t=e^{2x}\\dt=2t\,dx\end{Bmatrix}=\int\frac{dt}{2t(1+t)}=
\int\frac{dt}{2t}-\int\frac{dt}{2t+2}=0.5\big(\ln(|t|)-\ln(|t+1|)\big)+C=0.5\ln\left(\frac{e^{2x}}{1+e^{2x}}\right)+C

לבסוף:

\int\frac{\arctan(e^x)}{e^x}dx=\ln\left(\frac{e^x}{\sqrt{1+e^{2x}}}\right)-e^{-x}\arctan(e^x)+C

7

\int\frac{\sqrt{x^2-16}}{x}dx

פתרון

נעשה את ההצבה הבאה: x=\frac{4}{\cos(u)}\Rightarrow dx=\frac{4\sin(u)}{\cos^2(u)}du

\int\frac{\sqrt{x^2-16}}{x}dx=\int\frac{\sqrt{\frac{16}{\cos^2(u)}-16}}{\frac{4}{\cos(u)}}\cdot\frac{4\sin(u)}{\cos^2(u)}du=
\int 4\tan^2(u)du=4\int\big(\sec^2(u)-1\big)du

=4\int\sec^2(u)du-4\int du=4\big(\tan(u)-u\big)+C

מההצבה הראשונית מתקבל:

x=\frac{4}{\cos(u)}\Rightarrow u=\arccos\left(\frac{4}{x}\right)

לבסוף (אחרי פענוח):

\int\frac{\sqrt{x^2-16}}{x}dx=\sqrt{x^2-16}-4\arccos\left(\frac{4}{|x|}\right)+C

8

אחד קליל מהחוברת של בועז (:,

\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx

פתרון

נעזר באינטגרציה בחלקים:

\begin{Bmatrix}u=-\ln(x)\\dv=\frac{1}{x}\end{Bmatrix}\qquad\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx={\color{blue}-\int\frac{\ln(x)}{x}dx=-\ln(x)^2+\int\frac{\ln(x)}{x}dx}

קיבלנו:

-2\int\frac{\ln(x)}{x}dx=-\ln(x)^2

לבסוף:

\int\frac{\ln\left(\frac{1}{x}\right)}{x}dx=-\frac{\ln(x)^2}{2}+C

9

\int\frac{\arcsin(x)}{x^2}dx

פתרון

ראשית נפעיל אינטגרציה בחלקים כאשר: v=\arcsin(x)\ ,\ du=\dfrac{dx}{x^2}

\int\frac{\arcsin(x)}{x^2}dx=-\frac{\arcsin(x)}{x}+\int\frac{dx}{x\sqrt{1-x^2}}


כעת נחשב את האינטגרל השני שקיבלנו:

\int\frac{dx}{x\sqrt{1-x^2}}=\begin{Bmatrix}x=\cos(u)\\dx=\sin(u)du\end{Bmatrix}=\int\dfrac{\sin(u)}{\cos(u)\sqrt{1-\cos^2(u)}}du=\int \frac{du}{\cos(u)}


וכעת ניעזר בהצבה האוניברסלית כדי למצוא את האינטגרל החדש:

\begin{align}\int\frac{du}{\cos(u)}&=\int\frac{2}{1+t^2}\cdot\frac{1+t^2}{1-t^2}dt=\int\frac{2dt}{(1+t)(1-t)}=\int\frac{dt}{1-t}+\frac{dt}{1+t}\\&=\ln\big(|1+t|\big)-\ln\big(|1-t|\big)+C=\ln\left(\left|\frac{1+t}{1-t}\right|\right)+C\end{align}

כרגיל להחזיר ולהנות (:

10

\int x^2\sqrt{a^2-x^2}dx

נציב x=a\sin(u)\ ,\ dx=a\cos(u)du


\int x^2\sqrt{a^2-x^2}dx=\int a^2\sin^2(u)\sqrt{a^2-a^2\sin^2(u)}a\cos(u)du=a^4\int\big(\sin(u)\cos(u)\big)^2du


=\dfrac{a^4}{4}\int\sin^2(2u)du=\dfrac{a^4}{4}\int\frac{1-\cos(4u)}{2}du=\dfrac{a^4}{8}\left(\int du-\int\cos(4u)du\right)=\dfrac{a^4}{8}\left(u-\dfrac{\sin(4u)}{4}\right)+C


=\dfrac{a^4\big(u-\sin(u)\cos(u)\cos(2u)\big)}{8}+C

מההצבה הראשונית מתקבל:

x=a\sin(u)\Rightarrow u=\arcsin\left(\frac{x}{a}\right)

לבסוף:

\int x^2\sqrt{a^2-x^2}dx=\dfrac{a^4\arcsin\left(\frac{x}{a}\right)+x(2x^2-a^2)\sqrt{a^2-x^2}}{8}+C

11

\int x^2\sqrt{a^2+x^2}dx

הצבה היפרבולית x=a\sinh(u)\ ,\ dx=a\cosh(u)du

נוסחאות לפונקציות היפרבוליות

12

\int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx

פתרון

\int\frac{\sin(x)\cos(x)}{\sqrt{a\sin^2(x)+b\cos^2(x)}}dx=\int\frac{\sin(x)\cos(x)}{\sqrt{(a-b)\sin^2(x)+b}}dx=\begin{Bmatrix}t=\sin(x)\\dt=\cos(x)dx\end{Bmatrix}=\int\frac{t}{\sqrt{(a-b)t^2+b}}dt=\begin{Bmatrix}u=(a-b)t^{2}+b\\ du=2(a-b)tdt\end{Bmatrix}=


\frac{1}{2a-2b}\int\frac{du}{\sqrt u}=\frac{\sqrt u}{a-b}+C=\frac{\sqrt{(a-b)t^2+b}}{a-b}+C=\frac{\sqrt{(a-b)\sin^2(x)+b}}{a-b}+C

פתרון (יותר מוצלח כמסתבר)

להציב t=a\sin^2(x)+b\cos^2(x)

13

\int\sqrt{\tan^2(x)+2}dx

פתרון (לא מלא)

זה לקח לי שני עמודים בכתב יד, זה נורא (אני בטוח שיש פתרון יותר חכם)

הצבה 1: t=\tan(x)


הצבה 2: t=\sqrt2\sinh(u)


אח"כ צריך לשחק עם מה שמקבלים (לפי תכונות של קוסינוס וסינוס היפרבולי), ואז להעביר את זה לייצוג המקורי.


ואז, הצבה 3: k=e^{2u}


מכאן זו פונקציה רצינואלית של לינארי חלקי פולינום ממעלה 2, זה לא בעיה בהשוואה למה שהלך למעלה.

במקרה הכי גרוע, תהיה הצבה 4.

14

\int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}}

פתרון

\int\frac{dx}{\sqrt[4]{\sin^3(x)\cos^5(x)}}=\int\frac{dx}{\cos(x)\sqrt{\sin(x)}\sqrt[4]{\sin(x)\cos(x)}}=\int\frac{\sqrt{\sin(x)}}{\cos(x)\sin(x)\sqrt[4]{\sin(x)\cos(x)}}dx

=2\int\frac{\sqrt[4]{\sin^2(x)}}{\sin(2x)\sqrt[4]{\sin(x)\cos(x)}}dx=2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx


כעת נציב: t^4=\tan(x)


2\int\frac{\sqrt[4]{\tan(x)}}{\sin(2x)}dx=2\int\frac{t}{\frac{2t^4}{t^8+1}}\cdot\frac{4t^3}{(t^8+1)}dt=2\int\frac{4t^4}{2t^4}dt=4\int dt=4\sqrt[4]{\tan(x)}+C

15

\int\frac{\ln(x)-1}{\ln(x)^2}dx

פתרון

(קרדיט מלא לסורקין) תוקן! סורקין לא סרוקין ולא צריך קרדיט...


\int\frac{\ln(x)-1}{\ln(x)^2}dx=\int\frac{\ln(x)}{\ln(x)^2}dx-\int\frac{dx}{\ln(x)^2}=\int\frac{dx}{\ln(x)}-\int\frac{dx}{\ln(x)^2}


כעת נתמקד באינטגרל הראשון, נפעיל אינטגרציה בחלקים:

\int\frac{dx}{\ln(x)}=\begin{Bmatrix}u=x&du=dx\\v=\frac{1}{\ln(x)}&dv=-\frac{dx}{x\ln(x)^2}\end{Bmatrix}=\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}


ונשים לב כי מתקיים (באופן די מגניב):

\int\frac{\ln(x)-1}{\ln(x)^2}dx={\color{blue}\int\frac{dx}{\ln(x)}}-\int\frac{dx}{\ln(x)^2}={\color{blue}\frac{x}{\ln(x)}+\int\frac{dx}{\ln(x)^2}}-\int\frac{dx}{\ln(x)^2}

לבסוף:

\int\frac{\ln(x)-1}{\ln(x)^2}dx=\frac{x}{\ln(x)}+C

16

\int \frac {\sqrt{1-\sqrt[3]{x}}}{x\cdot \sqrt{1+\sqrt[3]{x}}}dx

פתרון

הצבה 1-\sqrt[3]{x}=t^2

לאחר מכן הצבה טריגונומטרית t=\sqrt{2}sin(u)

ולאחר מכן ההצבה האוניברסאלית של טאנגנס חצי זוית

17

I_m=\int sin^m(x)dx

אם m=2k+1 הינו אי זוגי, אזי:

I_m=\int (sin^2(x))^ksin(x)dx

נבצע את ההצבה t=cosx לקבל

I_m=\int -(1-t^2)^kdt וזה פתיר וקל.


כעת, נניח כי m=2k זוגי:

I_m=\int sin^{2k}(x)dx = \int (sin^2(x))^kdx = \int (\frac{1-cos2x}{2})^k dx

וזו בעייה במעלה נמוכה יותר של אינטגרל על קוסינוס

אם k אי זוגי אז פותרים באופן דומה להתחלה, ואם לא שוב מקטינים את החזקה על ידי זהות זוית כפולה של קוסינוס.