הבדלים בין גרסאות בדף "88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 3"
מתוך Math-Wiki
(יצירת דף עם התוכן "==יחסי סדר== '''הגדרה:''' יחס R על A נקרא '''אנטי-סימטרי''' אם מתקיים <math>\forall x,y\in A:[(x,y)\in R]\and[(y,x)\in R] \ri...") |
(←יחסי סדר) |
||
שורה 9: | שורה 9: | ||
*היחס 'קטן-שווה' על המספרים | *היחס 'קטן-שווה' על המספרים | ||
*היחס 'מוכל-שווה' על הקבוצות | *היחס 'מוכל-שווה' על הקבוצות | ||
+ | |||
+ | הגדרה: דיאגרמת הסה Hassse | ||
+ | |||
+ | '''הגדרות. יהיו A קבוצה וR יחס סדר חלקי על הקבוצה:''' | ||
+ | *איבר <math>x\in A</math> נקרא מינמלי ביחס לR אם <math>\forall y\in A:(y,x)\in R \rightarrow y=x</math>. כלומר, אין איבר 'קטן' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו. | ||
+ | *איבר <math>x\in A</math> נקרא מקסימלי ביחס לR אם <math>\forall y\in A:(x,y)\in R \rightarrow y=x</math>. כלומר, אין איבר 'גדול' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו. | ||
+ | *איבר <math>x\in A</math> נקרא מינמימום ביחס לR אם <math>\forall y\in A:(x,y)\in R</math>. כלומר, x 'קטן' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה הריקה תחת יחס הכלה) | ||
+ | *איבר <math>x\in A</math> נקרא מקסימום ביחס לR אם <math>\forall y\in A:(y,x)\in R</math>. כלומר, x 'גדול' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה B תחת יחס ההכלה על קבוצת החזקה של B) |
גרסה מ־10:54, 30 ביולי 2011
יחסי סדר
הגדרה: יחס R על A נקרא אנטי-סימטרי אם מתקיים
כלומר, אם אז לא יכול להיות שמתקיים היחס בין x לבין y וגם היחס בין y לx.
הגדרה: יחס R על A נקרא יחס סדר חלקי אם R רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
דוגמאות ליחסי סדר חלקי:
- היחס 'קטן-שווה' על המספרים
- היחס 'מוכל-שווה' על הקבוצות
הגדרה: דיאגרמת הסה Hassse
הגדרות. יהיו A קבוצה וR יחס סדר חלקי על הקבוצה:
- איבר נקרא מינמלי ביחס לR אם . כלומר, אין איבר 'קטן' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מקסימלי ביחס לR אם . כלומר, אין איבר 'גדול' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מינמימום ביחס לR אם . כלומר, x 'קטן' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה הריקה תחת יחס הכלה)
- איבר נקרא מקסימום ביחס לR אם . כלומר, x 'גדול' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה B תחת יחס ההכלה על קבוצת החזקה של B)