הבדלים בין גרסאות בדף "פולינום מינימלי"
מתוך Math-Wiki
(←תרגילים) |
|||
שורה 23: | שורה 23: | ||
אכן, נסמן <math>f(x)=a_nx^n+...+a_0</math> ונסמן <math>A=P^{-1}BP</math>. לכן: | אכן, נסמן <math>f(x)=a_nx^n+...+a_0</math> ונסמן <math>A=P^{-1}BP</math>. לכן: | ||
+ | |||
+ | |||
+ | ::<math>f(A)=f(P^{-1}BP)=a_n(P^{-1}BP)^n+...+a_0I = a_nP^{-1}B^nP+...+a_0P^{-1}P = P^{-1}f(B)P</math> | ||
שורה 33: | שורה 36: | ||
===ב=== | ===ב=== | ||
− | + | ||
[[קטגוריה:אלגברה לינארית]] | [[קטגוריה:אלגברה לינארית]] |
גרסה מ־07:35, 13 בנובמבר 2012
הגדרה
תהי A מטריצה ריבועית. אזי הפולינום המינימלי של A, מסומן הוא הפולינום המתוקן מהדרגה הנמוכה ביותר המקיים
הערה: פולינום מתוקן הינו פולינום מהצורה , כלומר המקדם של המונום בעל החזקה הגבוהה ביותר הינו אחד.
תכונות
- לכל פולינום f כך ש מתקיים . בפרט ממשפט קיילי-המילטון נובע כי הפולינום המינימלי מחלק את הפולינום האופייני
- לפולינום האופייני והפולינום המינימלי בדיוק אותם גורמים אי פריקים. בפרט, השורשים של הפולינום המינימלי הם הערכים העצמיים של המטריצה.
תרגילים
א
הוכח כי למטריצות דומות אותו פולינום מינימלי
הוכחה.
ראשית נשים לב לעובדה הבאה- יהי פולינום f ותהיינה מטריצות דומות A,B אזי גם המטריצות דומות.
אכן, נסמן ונסמן . לכן:
מסקנה: נניח A,B מטריצות דומות, אזי לכל פולינום f מתקיים אם"ם .
אכן, המטריצה היחידה הדומה למטריצת האפס הינה מטריצת האפס עצמה. כיוון ש דומות, המסקנה נובעת.
בסה"כ, כיוון שהפולינומים המאפסים מטריצות דומות הם אותם פולינומים, בפרט המינימלי המתוקן מבינהם הוא אותו אחד.