הבדלים בין גרסאות בדף "משפט ז'ורדן"
מתוך Math-Wiki
(←דוגמאות) |
(←דוגמאות) |
||
שורה 38: | שורה 38: | ||
*שנית, נמצא את הפולינום המינימלי <math>m_A(x)=x^3</math>, בפרט המטריצה ניליפוטנטית מסדר 3 | *שנית, נמצא את הפולינום המינימלי <math>m_A(x)=x^3</math>, בפרט המטריצה ניליפוטנטית מסדר 3 | ||
− | *כעת נמצא בסיס ל <math>im(A^ | + | *כעת נמצא בסיס ל <math>im(A^{3-1})</math> מהצורה <math>A^2v_1,A^2v_2,...,A^2v_k</math> |
+ | |||
+ | |||
+ | |||
+ | :<math>A^2=\begin{pmatrix} | ||
+ | 1 & 0 & 1 & 0 & 1 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 \\ | ||
+ | -1 & 0 & -1 & 0 & -1 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & 0 & 0 \\ | ||
+ | |||
+ | \end{pmatrix}</math> |
גרסה מ־12:12, 3 בדצמבר 2012
תוכן עניינים
בלוק ז'ורדן
בלוק ז'ורדן הינו מטריצה ריבועית מהצורה
לדוגמא,
- ,
נזכר בסימון של סכום ישר של מטריצות, לדוגמא:
משפט ז'ורדן
תהי A מטריצה ריבועית, כך שהפולינום האופייני שלה מתפרק לגורמים לינאריים. אזי A דומה למטריצה אלכסונית בלוקים, כאשר כל בלוקיה הם בצורת ג'ורדן. בנוסף, צורה זו יחידה עד כדי סדר הבלוקים.
הוכחה ומציאת מטריצה מז'רדנת
סיכום בנושא משפט ז'ורדן על ידי דר' בועז צבאן
דוגמאות
מצא בסיס מז'רדן למטריצה הבאה:
- ראשית, נחשב את הפולינום האופייני , כלומר זוהי מטריצה ניליפוטנטית
- שנית, נמצא את הפולינום המינימלי , בפרט המטריצה ניליפוטנטית מסדר 3
- כעת נמצא בסיס ל מהצורה