הבדלים בין גרסאות בדף "88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 11"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(הגדרות בסיסיות)
(הגדרות בסיסיות)
שורה 9: שורה 9:
  
  
דוגמא: <math>V=\{1,2,3\}, E=\big\{ \big\}</math>
+
דוגמא: <math>V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\}</math> מייצג משולש.
<math>V=\{1,2,3\}, E=\big\{\{1,2\},\{2,3\},\{1,3\}\big\}</math>  
+
מייצג משולש.
+
  
 
'''הגדרה''' הסדר של גרף <math>G=(V,E)</math> הוא <math>|V|</math>. גרף יקרא סופי אם הסדר שלו סופי (וגם <math>E</math> סופית)
 
'''הגדרה''' הסדר של גרף <math>G=(V,E)</math> הוא <math>|V|</math>. גרף יקרא סופי אם הסדר שלו סופי (וגם <math>E</math> סופית)

גרסה מ־08:27, 14 באוגוסט 2014

חזרה למערכי התרגול

הגדרות בסיסיות

הגדרה יהיה V קבוצה לא ריקה. יהא E קבוצה המכילה זוגות לא סדורים מאיברי V אזי G=(V,E) נקרא גרף לא מכוון.

חושבים על V כקודקודים של הגרף ועל E כקשתות/צלעות של הגרף. את האיברים ב E נהוג לרשום כקבוצה \{v,w\}\in E (בגלל שזה זוגות לא סדורים)


דוגמא: V=\{1,2,3\}, E=\Big\{\{1,2\},\{2,3\},\{1,3\}\Big\} מייצג משולש.

הגדרה הסדר של גרף G=(V,E) הוא |V|. גרף יקרא סופי אם הסדר שלו סופי (וגם E סופית)

אנחנו נעסוק בגרפים לא מכוונים בלי לולאות כלומר המקיימים \forall v\in V : \{v,v\}\not\in E

הגדרה יהיה G=(V,E) נאמר כי v,w\in V שכנים אם \{v,w\}\in E.

במקרה זה נאמר כי הצלע \{v,w\}\in E חלה ב w (או חלה ב v)