הבדלים בין גרסאות בדף "אנליזת פורייה - ארז שיינר"
מתוך Math-Wiki
(←מקדמי הטור) |
(←דוגמא) |
||
שורה 102: | שורה 102: | ||
====דוגמא==== | ====דוגמא==== | ||
− | *נחשב את מקדמי הפורייה של | + | *נחשב את מקדמי הפורייה של ההמשך המחזורי של <math>x^2</math> |
+ | *שימו לב, מקדמי הפורייה של פונקציה וההמשך המחזורי שלה זהים, כיוון שערך הפונקציה בנקודה אחת לא משפיע על האינטגרל. | ||
+ | |||
+ | |||
+ | :<math>b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}x^2\sin(nx)dx=0</math>. | ||
+ | *שימו לב: מקדמי הפורייה של הסינוסים תמיד יתאפסו עבור פונקציה זוגית, ומקדמי הפורייה של הקוסינוסים תמיד יתאפסו עבור פונקציה אי זוגית. | ||
+ | |||
+ | |||
+ | :<math>a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}x^2dx =\frac{2}{\pi}\int_{0}^{\pi}x^2dx= \frac{2}{\pi}\left[\frac{1}{3}x^3\right]_{0}^{\pi} = \frac{2\pi^2}{3}</math> | ||
+ | |||
+ | |||
+ | :<math>a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}x^2\cos(nx)dx=\frac{2}{\pi}\int_{0}^{\pi}x^2\cos(nx)dx =\left\{\begin{array}{lr}f'=\cos(nx) & g=x^2\\ f= \frac{\sin(nx)}{n} & g'=2x\end{array}\right\}=</math> | ||
+ | :<math>=\frac{2}{\pi}\left[\frac{x^2\sin(nx)}{n}\right]_0^{\pi} - \frac{4}{n\pi}\int_{0}^{\pi}x\sin(nx)dx = - \frac{4}{n\pi}\int_{0}^{\pi}x\sin(nx)dx= | ||
+ | \left\{\begin{array}{lr}f'=\sin(nx) & g=x\\ f= -\frac{\cos(nx)}{n} & g'=1\end{array}\right\}=</math> | ||
+ | :<math>- \frac{4}{n\pi}\left[\frac{-x\cos(nx)}{n}\right]_0^\pi + \frac{4}{n^2\pi}\int_0^\pi \cos(nx)dx=\frac{4\pi\cos(\pi n)}{n^2\pi}+\frac{4}{n^3\pi}\left[sin(nx)\right]_0^\pi = \frac{4(-1)^n}{n^2}</math> | ||
+ | |||
+ | |||
+ | *שימו לב כי לכל <math>n\in\mathbb{N}</math> מתקיים כי <math>cos(n\pi)=(-1)^n</math> | ||
+ | |||
+ | |||
+ | *סה"כ אם ההמשך המחזורי של <math>x^2</math> שווה לטור פורייה שמתכנס במ"ש, אזי טור זה הוא: | ||
+ | :<math>\frac{\pi^2}{3} + \sum_{n=1}^\infty \frac{4(-1)^n}{n^2}cos(nx)</math> | ||
+ | |||
+ | |||
+ | *נניח (ונוכיח בהמשך) שטור זה אכן שווה לפונקציה ונציב <math>\pi</math>. | ||
+ | *<math>\pi^2 = \frac{\pi^2}{3} + \sum_{n=1}^\infty \frac{4}{n^2}</math> | ||
+ | *ונקבל את הסכום המפורסם | ||
+ | ::<math>\sum_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}</math> |
גרסה מ־13:56, 20 בפברואר 2019
תוכן עניינים
מבחנים לדוגמא
תקציר ההרצאות
הקדמה
גלים
- מבלי להגדיר גל במפורש, גל הוא תופעה מחזורית.
- לגל שהוא פונקציה במשתנה אחד של ציר הזמן יש שלוש תכונות:
- תדר או אורך גל (אחד חלקי המחזור או המחזור)
- אמפליטודה (מרחק בין המקסימום למינימום)
- פאזה (מהי נק' ההתחלה של המחזור).
- אנחנו נתרכז כמעט באופן בלעדי בפונקציות הטריגונומטריות סינוס וקוסינוס, ונקרא להם גלים טריגונומטריים.
- מדוע דווקא סינוס וקוסינוס?
- למדנו במד"ר על המשוואה המתארת תנועה על מסה המחוברת לקפיץ
- זו למעשה תנועה כללית של גל - ככל שהוא מתרחק, גדל הכוח שמושך אותו למרכז. מיתר גיטרה הוא דוגמא טובה נוספת.
- הפתרון הכללי למד"ר הוא .
- הקבוע קובע את התדר של כל גל.
- הקבועים קובעים את האמפליטודה של כל גל.
- מה לגבי הפאזה?
- בפונקציה , הקבוע קובע את הפאזה.
- ניתן להציג כל גל כזה באמצעות סינוס וקוסינוס ללא פאזה:
- האם גם ההפך נכון? כלומר האם כל צירוף לינארי ניתן להציג כגל יחיד?
- תשובה: כן.
- הוכחה:
- נסמן
- כלומר
- שימו לב:
- סכמנו שני גלים מאותו תדר עם פאזה אפס, וקיבלנו גל חדש.
- הגל החדש הוא מאותו תדר כמו שני הגלים.
- לגל החדש יש פאזה שאינה אפס.
- האפליטודה של הגל החדש היא .
- האם כל פונקציה היא סכום של גלים?
- בהנתן פונקציה שהיא סכום של גלים, כיצד נמצא מיהם הגלים המרכיבים אותה?
- האם יש דרך יחידה להרכיב פונקציה מגלים? (למעשה כבר ראינו שלא באופן כללי - הרי הצלחנו להציג גל אחד כסכום של שני גלים אחרים).
- למה בכלל מעניין אותנו לפרק פונקציה לגלים?
- במהלך ההרצאות נענה (לפחות חלקית) על השאלות הללו.
טורי פורייה
- טור פורייה הוא טור מהצורה
- אם פונקציה שווה לטור פורייה שלה, מהם המקדמים ?
חישובים להקדמה
- ראשית נזכור את הנוסחאות הטריגונומטריות:
- כעת, לכל נקבל:
- עבור נקבל:
- שימו לב כי השתמשנו כאן בעובדה ש.
- באופן דומה, לכל נקבל:
- עבור נקבל:
- שימו לב כי השתמשנו כאן בעובדה ש.
- עבור נקבל:
- כיוון שמדובר באינטגרל בקטע סימטרי על פונקציה אי זוגית.
- ולבסוף, עבור נקבל
- שימו לב שכאשר מציבים 0 בsin מקבלים אפס, ולכן אין צורך בבדיקה הזו.
- הערה חשובה:
- למעשה כלל החישובים שעשינו לעיל מוכיחים שהקבוצה מהווה קבוצה אורתונורמלית לפי המכפלה הפנימית
מקדמי הטור
- כעת תהי פונקציה ששווה לטור פורייה, ועוד נניח שהטור מתכנס במ"ש.
- כיוון שהטור מתכנס במ"ש, מותר לנו לעשות אינטגרציה איבר איבר
- לפי חישובי האינטגרלים לעיל, כמעט הכל מתאפס וסה"כ נקבל:
- שימו לב שחישוב זה נכון בפרט עבור .
- באופן דומה נקבל כי
- הוכחנו שאם פונקציה שווה לטור פורייה, והטור מתכנס במ"ש, אזי הוא יחיד והמקדמים שלו נקבעים על ידי הנוסחאות לעיל.
- השאלה היא אילו פונקציות שוות לטור פורייה.
- באופן מיידי, ברור שטור פורייה הוא פונקציה עם מחזור .
- לכן בדר"כ אנו שואלים האם ההמשך המחזורי של הפונקציה שווה לטור פורייה:
- תהי פונקציה , נגדיר את ההמשך המחזורי שלה על ידי:
- לכל ולכל נגדיר .
- ברור ש , כלומר קיבלנו פונקציה מחזורית.
- ניתן גם לרשום בנוסחא מקוצרת
- לדוגמא, ההמשך המחזורי של :
דוגמא
- נחשב את מקדמי הפורייה של ההמשך המחזורי של
- שימו לב, מקדמי הפורייה של פונקציה וההמשך המחזורי שלה זהים, כיוון שערך הפונקציה בנקודה אחת לא משפיע על האינטגרל.
- .
- שימו לב: מקדמי הפורייה של הסינוסים תמיד יתאפסו עבור פונקציה זוגית, ומקדמי הפורייה של הקוסינוסים תמיד יתאפסו עבור פונקציה אי זוגית.
- שימו לב כי לכל מתקיים כי
- סה"כ אם ההמשך המחזורי של שווה לטור פורייה שמתכנס במ"ש, אזי טור זה הוא:
- נניח (ונוכיח בהמשך) שטור זה אכן שווה לפונקציה ונציב .
- ונקבל את הסכום המפורסם