הבדלים בין גרסאות בדף "אנליזת פורייה - ארז שיינר"
מתוך Math-Wiki
(←טור הסינוסים וטור הקוסינוסים) |
(←טור הסינוסים וטור הקוסינוסים) |
||
שורה 647: | שורה 647: | ||
− | *את ההמשך הזוגי אפשר לפתח לטור קוסינוסים, שמתכנס במ"ש בקטע. זה נקרא '''טור הקוסינוסים''' של הפונקציה <math>f</math>. | + | *את ההמשך הזוגי אפשר לפתח לטור קוסינוסים, שמתכנס במ"ש בקטע <math>[0,\pi]</math>. זה נקרא '''טור הקוסינוסים''' של הפונקציה <math>f</math>. |
*הוכחה: | *הוכחה: | ||
**<math>f^+</math> רציפה ב<math>[-\pi,\pi]</math>, בעלת נגזרת רציפה למקוטעין, ומתקיים כמובן ש<math>f(-\pi)=f(\pi)</math>. | **<math>f^+</math> רציפה ב<math>[-\pi,\pi]</math>, בעלת נגזרת רציפה למקוטעין, ומתקיים כמובן ש<math>f(-\pi)=f(\pi)</math>. | ||
− | *את ההמשך האי זוגי אפשר לפתח לטור סינוסים, זה נקרא '''טור הסינוסים'' של הפונקציה <math>f</math>. | + | *את ההמשך האי זוגי אפשר לפתח לטור סינוסים, שמתכנס אל הפונקציה בקטע <math>[0,\pi]</math>. זה נקרא '''טור הסינוסים'' של הפונקציה <math>f</math>. |
*אם <math>f(\pi)=f(0)=0</math> אזי טור הסינוסים מתכנס במ"ש בקטע. | *אם <math>f(\pi)=f(0)=0</math> אזי טור הסינוסים מתכנס במ"ש בקטע. | ||
*הוכחה: | *הוכחה: | ||
**<math>f^-</math> רציפה כיוון ש<math>f(0)=0</math>, ומתקיים כי <math>f(-\pi)=-f(\pi)=0=f(\pi)</math>. | **<math>f^-</math> רציפה כיוון ש<math>f(0)=0</math>, ומתקיים כי <math>f(-\pi)=-f(\pi)=0=f(\pi)</math>. | ||
+ | |||
+ | |||
+ | *חישוב המקדמים: | ||
+ | *עבור טור הקוסינוסים: | ||
+ | **<math>a_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f^+\cos(nx) dx = \frac{2}{\pi}\int_{0}^{\pi}f\cos(nx)dx </math> | ||
+ | *עבור טור הסינוסים: | ||
+ | **<math>b_n=\frac{1}{\pi}\int_{-\pi}^{\pi} f^-\cos(nx) dx = \frac{2}{\pi}\int_{0}^{\pi}f\sin(nx)dx </math> | ||
+ | |||
+ | |||
+ | ====דוגמאות==== | ||
+ | |||
+ | *נחשב טור קוסינוסים של <math>e^x</math>: | ||
+ | **<math>a_0 = \frac{2}{\pi}\int_0^{\pi} e^xdx = \frac{2}{\pi}(e^\pi-1)</math> | ||
+ | **<math>a_n = \frac{2}{\pi}\int_0^{\pi} e^x\cos(nx)dx = \frac{2}{\pi}\frac{e^\pi(-1)^n-1}{n^2+1}</math> | ||
+ | **הטור מתכנס במ"ש לפונקציה בקטע <math>[0,\pi]</math>: | ||
+ | :<math>e^x=\frac{e^\pi-1}{\pi}+ \frac{2}{\pi}\sum_{n=1}^\infty \frac{e^\pi(-1)^n-1}{n^2+1}\cos(nx) </math> | ||
+ | |||
+ | |||
+ | *נציב למשל <math>x=0</math> ונקבל את השיוויון: | ||
+ | :<math>\sum_{n=1}^\infty \frac{e^\pi(-1)^n-1}{n^2+1} = \frac{\pi}{2} - \frac{e^\pi-1}{2}</math> | ||
===פתרון משוואת החום=== | ===פתרון משוואת החום=== |
גרסה מ־09:20, 28 במרץ 2019
תוכן עניינים
- 1 מבחנים לדוגמא
- 2 תקציר ההרצאות
- 2.1 הרצאה 1 - הקדמה ומקדמי פוריה
- 2.2 הרצאה 2 - למת רימן לבג, גרעין דיריכלה
- 2.3 הרצאה 3 התכנסות נקודתית של טורי פוריה
- 2.4 הרצאה 4 - התכנסות במ"ש ושיוויון פרסבל
- 2.5 הרצאה 5
מבחנים לדוגמא
תקציר ההרצאות
- ההרצאות מבוססות בחלקן על הספר המצויין 'טורי פוריה' של זעפרני ופינקוס.
הרצאה 1 - הקדמה ומקדמי פוריה
הקדמה - גלים
- מבלי להגדיר גל במפורש, גל הוא תופעה מחזורית.
- לגל שהוא פונקציה במשתנה אחד של ציר הזמן יש שלוש תכונות:
- תדר או אורך גל (אחד חלקי המחזור או המחזור)
- אמפליטודה (מרחק בין המקסימום למינימום)
- פאזה (מהי נק' ההתחלה של המחזור).
- אנחנו נתרכז כמעט באופן בלעדי בפונקציות הטריגונומטריות סינוס וקוסינוס, ונקרא להם גלים טריגונומטריים.
- מדוע דווקא סינוס וקוסינוס?
- למדנו במד"ר על המשוואה המתארת תנועה על מסה המחוברת לקפיץ
- זו למעשה תנועה כללית של גל - ככל שהוא מתרחק, גדל הכוח שמושך אותו למרכז. מיתר גיטרה הוא דוגמא טובה נוספת.
- הפתרון הכללי למד"ר הוא .
- הקבוע קובע את התדר של כל גל.
- הקבועים קובעים את האמפליטודה של כל גל.
- מה לגבי הפאזה?
- בפונקציה , הקבוע קובע את הפאזה.
- ניתן להציג כל גל כזה באמצעות סינוס וקוסינוס ללא פאזה:
- האם גם ההפך נכון? כלומר האם כל צירוף לינארי ניתן להציג כגל יחיד?
- תשובה: כן.
- הוכחה:
- נסמן
- כלומר
- שימו לב:
- סכמנו שני גלים מאותו תדר עם פאזה אפס, וקיבלנו גל חדש.
- הגל החדש הוא מאותו תדר כמו שני הגלים.
- לגל החדש יש פאזה שאינה אפס.
- האפליטודה של הגל החדש היא .
- האם כל פונקציה היא סכום של גלים?
- בהנתן פונקציה שהיא סכום של גלים, כיצד נמצא מיהם הגלים המרכיבים אותה?
- האם יש דרך יחידה להרכיב פונקציה מגלים? (למעשה כבר ראינו שלא באופן כללי - הרי הצלחנו להציג גל אחד כסכום של שני גלים אחרים).
- למה בכלל מעניין אותנו לפרק פונקציה לגלים?
- במהלך ההרצאות נענה (לפחות חלקית) על השאלות הללו.
טורי פורייה ומקדמי פוריה
- טור פורייה הוא טור מהצורה
- אם פונקציה שווה לטור פורייה שלה, מהם המקדמים ?
חישובים להקדמה
- ראשית נזכור את הנוסחאות הטריגונומטריות:
- כעת, לכל נקבל:
- עבור נקבל:
- שימו לב כי השתמשנו כאן בעובדה ש.
- באופן דומה, לכל נקבל:
- עבור נקבל:
- שימו לב כי השתמשנו כאן בעובדה ש.
- עבור נקבל:
- כיוון שמדובר באינטגרל בקטע סימטרי על פונקציה אי זוגית.
- ולבסוף, עבור נקבל
- שימו לב שכאשר מציבים 0 בsin מקבלים אפס, ולכן אין צורך בבדיקה הזו.
- הערה חשובה:
- למעשה כלל החישובים שעשינו לעיל מוכיחים שהקבוצה מהווה קבוצה אורתונורמלית לפי המכפלה הפנימית
מקדמי הטור
- כעת תהי פונקציה ששווה לטור פורייה, ועוד נניח שהטור מתכנס במ"ש.
- כיוון שהטור מתכנס במ"ש, מותר לנו לעשות אינטגרציה איבר איבר
- לפי חישובי האינטגרלים לעיל, כמעט הכל מתאפס וסה"כ נקבל:
- שימו לב שחישוב זה נכון בפרט עבור .
- באופן דומה נקבל כי
- הוכחנו שאם פונקציה שווה לטור פורייה, והטור מתכנס במ"ש, אזי הוא יחיד והמקדמים שלו נקבעים על ידי הנוסחאות לעיל.
- השאלה היא אילו פונקציות שוות לטור פורייה.
- באופן מיידי, ברור שטור פורייה הוא פונקציה עם מחזור .
- לכן בדר"כ אנו שואלים האם ההמשך המחזורי של הפונקציה שווה לטור פורייה:
- תהי פונקציה , נגדיר את ההמשך המחזורי שלה על ידי:
- לכל ולכל נגדיר .
- ברור ש , כלומר קיבלנו פונקציה מחזורית.
- ניתן גם לרשום בנוסחא מקוצרת
- לדוגמא, ההמשך המחזורי של :
דוגמא
- נחשב את מקדמי הפורייה של ההמשך המחזורי של
- שימו לב, מקדמי הפורייה של פונקציה וההמשך המחזורי שלה זהים, כיוון שערך הפונקציה בנקודה אחת לא משפיע על האינטגרל.
- .
- שימו לב: מקדמי הפורייה של הסינוסים תמיד יתאפסו עבור פונקציה זוגית, ומקדמי הפורייה של הקוסינוסים תמיד יתאפסו עבור פונקציה אי זוגית.
- שימו לב כי לכל מתקיים כי
- סה"כ אם ההמשך המחזורי של שווה לטור פורייה שמתכנס במ"ש, אזי טור זה הוא:
- נניח (ונוכיח בהמשך) שטור זה אכן שווה לפונקציה ונציב .
- ונקבל את הסכום המפורסם
הרצאה 2 - למת רימן לבג, גרעין דיריכלה
מרחבי מכפלה פנימית שאינם ממימד סופי והיטלים
- פונקציה נקראת רציפה למקוטעין בקטע סופי אם:
- 1. היא רציפה פרט אולי למספר סופי של נקודות.
- 2. הגבולות החד צדדיים הרלוונטיים בכל נקודה הם סופיים.
- למעשה נקודות אי הרציפות היחידות של פונקציה רציפה למקוטעין הן ממין ראשון (קפיצתיות).
- פונקציה נקראת רציפה למקוטעין בקטע כללי, אם ניתן לחלק אותו לקטעים סופיים בהן הפונקציה רציפה למקוטעין.
- E הוא המרחב הוקטורי של כל הפונקציות הרציפות למקוטעין מעל השדה , המקיימות בנוסף שבכל נקודה ערך הפונקציה שווה לממוצע בין הגבולות החד צדדיים שלה, ובקצוות ערך הנקודה שווה לגבול החד צדדי המוגדר.
- לא קשה להוכיח שאכן מדובר במרחב וקטורי. בעיקר יש לשים לב לכך שסכום פונקציות בקבוצה נשאר בקבוצה.
- היא מכפלה פנימית מעל E.
-
- בכל קטע רציפות האינטגרל על פונקציה חיובית הוא אפס אם ורק אם היא אפס.
- כיוון שהפונקציה בכל נקודה שווה לאחד הגבולות החד צדדיים או לממוצע בניהם, נובע שאם האינטגרל לעיל מתאפס הפונקציה חייבת להתאפס לחלוטין.
-
- נביט בנורמה המושרית
- כעת נוכיח מספר תכונות של היטלים במרחבי מכפלה פנימית.
- יש לנקוט בזהירות מיוחדת בנושא זה, כיוון שאנו עוסקים במרחבים שאינם נוצרים סופית (אין להם בסיס סופי או מימד).
- ייתכן שהוכחתם חלק מהמשפטים הבאים רק עבור מרחבים נוצרים סופית.
- תהי קבוצה אורתונורמלית סופית , ונקרא למרחב שהיא פורשת W.
- לכל וקטור נגדיר את ההיטל של על W על ידי
- נוכיח מספר תכונות לגבי ההיטל הזה:
- מתקיים כי
- הוכחה:
- המעבר האחרון נכון כיוון ש אורתונורמלית.
- מתקיים כי
- הוכחה:
- נזכור כי .
- לכן קיבלנו כי
- מסקנה מיידית:
אי שיוויון בסל
- כעת תהי קבוצה אורתונורמלית אינסופית .
- לכל מתקיים כי
- הוכחה:
- ראינו שלכל n מתקיים כי .
- כלומר סדרת הסכומים החלקיים של הטור החיובי חסומה על ידי ולכן הטור מתכנס למספר שקטן או שווה לו.
- בפרט נובע כי
למת רימן לבג
- ראינו כי היא קבוצה אורתונורמלית ב (כרגע אנו לא צריכים את הפונקציה הקבועה).
- כמו כן לכל פונקציה f הגדרנו מקדמי פורייה ע"י:
- לכל הגדרנו , ו
- נובע מאי שיוויון בסל כי המקדמים שואפים לאפס.
- כלומר:
- למת רימן-לבג: תהי רציפה למקוטעין בקטע , אזי:
- הוכחה:
- נגדיר את שתי הפונקציות ו
- קל לראות כי שתי הפונקציות רציפות למקוטעין. לכן פרט לשינוי במספר סופי של נקודות שלא משפיע על האינטגרל, ניתן להניח כי .
- ביחד נקבל כי
גרעין דיריכלה
- גרעין דיריכלה הוא הפונקציה
- טענה: בכל נקודה
- הוכחה:
- נכפל ב ונקבל בצד שמאל:
- נבחין בזהות הטריגונומטרית
- ובפרט
- ביחד נקבל
- נשים לב כי הפונקציה מתאפסת בנקודות , בנקודות אלו לגרעין דיריכלה יש אי רציפות סליקה.
- זה נכון כיוון שפרט לנקודות אלו מדובר בפונקציה רציפה.
- כמו כן, גרעין דיריכלה מחזורי כיוון שהוא סכום של פונקציות מחזוריות .
- נחשב את האינטגרל על גרעין דיריכלה:
- ראשית, לכל מתקיים:
- לכן נקבל:
הסכומים החלקיים של טור פוריה
- תהיה נקודה x, נביט בסדרת הסכומים החלקיים של טור הפוריה המתאים לפונקציה שהיא מחזורית :
- נציב את מקדמי פוריה ונקבל כי:
- זה בעצם גרעין דיריכלה, כלומר קיבלנו כי:
- שימו לב ששינוי מספר סופי של נקודות לא משפיע על האינטגרל, ולכן נקודות אי הרציפות הסליקות של גרעין דיריכלה לא פוגעות בהוכחה.
- טענה: תהי פונקציה מחזורית . אזי לכל מתקיים כי:
- כלומר, השטח מתחת לגרף הפונקציה שווה על כל קטע באורך .
- הוכחה:
- נבצע הצבה באינטגרל השני ונקבל:
- ביחד נקבל כי:
- נחזור לסכומים החלקיים ונבצע הצבה:
- כיוון שגרעין דיריכלה ו הן מחזוריות, נקבל:
הרצאה 3 התכנסות נקודתית של טורי פוריה
סימונים והגדרות
- נסמן את הגבול החד צדדי מימין ב.
- נסמן את הגבול החד צדדי משמאל ב.
- שימו לב: אם הפונקציה רציפה למקוטעין, הערכים הללו תמיד מוגדרים.
- נגדיר את הנגזרת הימנית ע"י .
- נגדיר את הנגזרת השמאלית ע"י .
- שימו לב: ייתכן ש אך הפונקציה אינה גזירה בd. זה יקרה אם היא לא רציפה בנקודה.
דוגמא:
- נביט בפונקציה
- מתקיים כי , ו.
- כמו כן מתקיים כי .
כמובן שהפונקציה אינה רציפה ואינה גזירה ב0.
משפט דיריכלה - התכנסות נקודתית של טור פוריה
- תהי פונקציה מחזורית , רציפה למקוטעין כך שבכל נקודה הנגזרות החד צדדיות שלה קיימות וסופיות.
- אזי לכל הטור עם מקדמי הפוריה של מתכנס:
- בפרט, בכל נקודה בה הפונקציה רציפה טור הפוריה מתכנס נקודתית לפונקציה, ובכל נקודה בה יש אי רציפות קפיצתית טור הפוריה מתכנס לממוצע הגבולות מימין ומשמאל.
הוכחה
- תהי נקודה .
- נביט בפונקציה
- כיוון שהנגזרות החד צדדיות קיימות וסופיות, קיבלנו ש רציפה למקוטעין בקטע .
- לפי למת רימן-לבג נובע כי:
- כלומר:
- כיוון ש
- נובע כי:
- באופן דומה לחלוטין ניתן להוכיח כי:
- ולכן סה"כ נקבל כי:
דוגמאות
דוגמא 1
- תהי ההמשך המחזורי של .
- כיוון שf רציפה למקוטעין ובעלת נגזרות חד צדדיות קיימות (כולן שוות 1), תנאי משפט דיריכלה מתקיימים.
- כיוון שf הינה אי-זוגית, לכל מתקיים כי .
- כעת נחשב את המקדמים של הסינוסים:
- לכן, בכל נקודת רציפות של f, כלומר בכל נקודה , מתקיים כי:
- .
- בפרט, לכל נקודה מתקיים כי:
- עבור נקודות אי הרציפות (הקפיצתיות), מתקיים כי הממוצע בין הגבולות החד צדדיים הוא אפס.
- קל לראות שאכן לכל נקבל שטור הפורייה מתכנס לאפס (למעשה כל הסינוסים מתאפסים).
- נציב לדוגמא ונקבל:
- לכל n זוגי הסינוס יתאפס, ולכן נקבל:
- שימו לב שהפעם לא קיבלנו טור חדש בזכות פורייה, כיוון שנקבל בדיוק את אותו הטור אם נציב 1 בטור הטיילור של .
דוגמא 2
- כעת, תהי ההמשך המחזורי של .
- הפונקציה g הינה רציפה בכל הממשיים.
- הפונקציה g גזירה בכל הממשיים פרט לנקודות .
- בנקודות אי הגזירות, הנגזרות החד צדדיות קיימות ושוות ל (כיוון שהנגזרת של היא ).
- סה"כ לפי משפט דיריכלה, טור הפוריה של g מתכנס אליה בכל הממשיים (כיוון שהיא רציפה בכל הממשיים).
- כלומר קיבלנו שלכל מתקיים כי:
- שימו לב שאם נגזור איבר איבר את טור הפוריה של , נקבל את טור הפורייה של .
- האם זה מפתיע?
דוגמא 3
- תהי ההמשך המחזורי של הפונקציה
- שוב, קיבלנו פונקציה רציפה למקוטעין עם נגזרות חד צדדיות קיימות וסופיות.
- נחשב את מקדמי הפורייה:
- סה"כ שלכל מתקיים כי:
- שימו לב: מצאנו שני טורי פורייה שמתכנסים ל בקטע .
- באופן דומה אפשר להראות שקיימים אינסוף טורי פורייה כאלה.
טור הנגזרת
- תהי רציפה בקטע כך שהנגזרת שלה רציפה למקוטעין בקטע.
שימוש בנוסחאת ניוטון לייבניץ לחישוב האינטגרל המסויים
- שימו לב שמותר לנו להשתמש בנוסחאת ניוטון לייבניץ:
- כיוון שהנגזרת רציפה למקוטעין, אפשר להראות בעזרת לופיטל שהנגזרות החד צדדיות בנקודות אי הגזירות של f קיימות.
- בעצם, זה מראה שf גזירה בקטעים סגורים בהם אפשר להפעיל את נוסחאת ניוטון לייבניץ.
- אם נחשב את האינטגרל על הנגזרת בכל הקטעים הסגורים, ערכי f יצטמצמו, פרט לקצוות.
- לדוגמא:
- כלומר קיבלנו כי , כאשר
חישוב מקדמי טור הפורייה של הנגזרת
- נסמן את מקדמי הפורייה של ב
- נחשב את מקדמי הפורייה של הנגזרת, נסמן אותם ב:
- כלומר, בתנאים הנתונים, אם טור הפוריה של f הינו:
- אזי טור הפורייה של הנגזרת הינו:
- במקרה המיוחד בו מתקיים כי ולכן נקבל את טור הפורייה הפשוט:
דוגמאות
דוגמא 1
- נזכר בטור הפורייה של :
- נרצה למצוא את מקדמי הפוריה של , נסמנם ב.
- לכל נקבל כי:
- כמו כן נחשב את המקדם הראשון:
- נחלץ את המקדמים ונקבל כי טור הפורייה של הוא:
דוגמא 2
- נחשב את טור הפורייה של .
- נסמן את טור הפורייה של ב:
- כמובן שהנגזרת במקרה הזה שווה לפונקציה, ולכן יש לה בדיוק אותו טור פורייה.
- מצד שני, טור הפורייה של הנגזרת צריך להיות:
- כאשר
- ביחד נקבל את המשוואות:
- נציב את המשוואה השלישית בשנייה ונקבל:
- ולכן
- סה"כ קיבלנו כי טור הפורייה של הינו:
- כיוון שלהמשך המחזורי של יש אי רציפות קפיצתית ב, טור הפורייה שם מתכנס לממוצע
- כלומר, אם נציב נקבל:
- נפשט:
הרצאה 4 - התכנסות במ"ש ושיוויון פרסבל
תנאי להתכנסות במ"ש של טור פורייה
- תהי רציפה בקטע המקיימת , כך ש רציפה למקוטעין.
- אזי טור הפורייה של מתכנס אליה במ"ש בכל הממשיים.
- לפי משפט דיריכלה ידוע כי טור הפורייה של ההמשך המחזורי של f מתכנס אליה בכל נקודה.
- נסמן את טור הפורייה ב
- ברור כי
- לפי מבחן ה-M של ויירשטראס, מספיק להוכיח שטור המספרים מימין מתכנס על מנת להסיק שטור הפורייה מתכנס במ"ש.
- נסמן את מקדמי פורייה של הנגזרת ב.
- כבר חישבנו ש:
- לכן ביחד נקבל כי
- לפי אי שיוויון קושי שוורץ, נקבל כי לכל n מתקיים:
- לפי אי שיוויון בסל, אנו יודעים כי הטור מתכנס, כיוון שמדובר במקדמי פורייה של .
- (זכרו שמותר להניח כי על ידי שינוי מספר סופי של נקודות שלא משפיעות על חישוב מקדמי הפורייה.)
- לכן חסומות כסדרות סכומים חלקיים של טורים מתכנסים.
- לכן סה"כ חסומה, ולכן הטור האינסופי המתאים לה מתכנס.
- סה"כ קיבלנו כי מתכנס.
- לכן בוודאי גם הטורים הקטנים יותר ו מתכנסים, כפי שרצינו.
שיוויון פרסבל
- נביט במערכת האורתונורמלית , ותהי .
- ידוע לנו כי , ולכן
- נסמן את סדרת הסכומים החלקיים של טור הפורייה המתאים לפונקציה f ב .
- היא ההיטל של על הקבוצה האורתונורמלית
- נזכור כי
- לכן .
- כמו כן, נזכור כי
- לכן
- אי שיוויון בסל אומר כי
- כלומר:
- משפט שיוויון פרסבל אומר שבעצם מתקיים שיוויון:
- אם נוכיח ש , נסיק כי וזהו בדיוק שיוויון פרסבל.
הוכחת שיוויון פרסבל כאשר טור הפורייה מתכנס במ"ש
- תהי רציפה בקטע המקיימת , כך שהנגזרת שלה רציפה למקוטעין.
- נסמן
- הוכחנו כי טור הפורייה של f מתכנס אליה במ"ש, כלומר .
- לכן
דוגמא
- הפונקציה מקיימת את דרישות המשפט.
- נזכור כי טור הפורייה שלה הוא:
- לכן לפי שיוויון פרסבל נקבל כי:
- ולכן:
הוכחת שיוויון פרסבל במקרה הכללי
- תהי , אנחנו מעוניינים להוכיח כי .
- נבנה סדרת פונקציות רציפות בקטע המקיימות , כך שהנגזרות שלהן רציפות למקוטעין, המקיימות:
- יהי , נבחר כך ש .
- נסמן ב את סדרת הסכומים החלקיים של טור הפורייה של .
- ראינו כי .
- כיוון שההיטל הוא הוקטור הקרוב ביותר, נקבל:
- כמו כן,
- קיים מקום החל ממנו לכל מתקיים כי .
- לכן החל ממקום זה כפי שרצינו.
בניית סדרת הפונקציות
- f רציפה למקוטעין, ולכן רציפה במ"ש בכל קטע רציפות.
- לכן ניתן לבחור חלוקה הכוללת את נקודות אי הרציפות, עם פרמטר חלוקה מספיק קטן כך ש לכל זוג נקודות .
- נבחר נקודות כלשהן בכל קטע ונביט בפונקצית המדרגות g שבכל תת קטע שווה לקבוע .
- כעת האינטגרל תמיד קטן מסכום הדרבו העליון:
- לכן אפשר לבנות סדרת פונקציות מדרגות כנ"ל כך ש
- כעת נגדיר סדרת פונקציות להיות , פרט לשינויים הבאים:
- עבור שנקבע בהמשך, נחבר בקו ישר את הנקודות בקצוות המקטעים .
- נגדיר .
- נחבר בקו ישר את הנקודות בקצה הקטע .
- עבור קטנה מספיק, .
- סה"כ נקבל כי
- מורכבת מקטעים ישרים המחוברים זה לזה, ולכן מדובר בפונקציה רציפה, בעלת נגזרת רציפה למקוטעין.
- אכן מתקיים כי
יחידות טור פורייה
הם ישנן שתי פונקציות שונות בעלות אותו טור פורייה?
- תהיינה בעלות אותם מקדמי פורייה.
- אם טורי הפורייה מתכנסים לפונקציה, ברור שזו אותה הפונקציה, אבל אם לא?
- מקדמי הפורייה של הם אפס, ולכן לפי שיוויון פרסבל:
- לכן .
- שימו לב שעבור סתם פונקציות רציפות למקוטעין, זה אומר ש פרט למספר סופי של נקודות.
האם תתכן פונקציה אחת, בעלת שני טורים טריגונומטריים?
- קנטור הוכיח שאם טור טריגונומטרי שווה לאפס בכל הקטע , אזי כל מקדמי הטור הם אפס.
- יותר מאוחר הוכיחו כי אם הטור מתאפס בכל נקודה בקטע פרט לקבוצה בת מנייה של נקודות, עדיין כל מקדמי הטור הם אפס.
- מנשוב מצא ב1916 טור טריגונומטרי שמתכנס לאפס בכל נקודה פרט לקבוצה ממידה אפס של נקודות, אך לא כל מקדמי הטור הם אפס.
הרצאה 5
תופעת גיבס
- ראינו תנאים בהם טור הפורייה מתכנס במ"ש.
- כעת אנחנו רוצים לחקור מקרים בהם אין התכנסות במ"ש.
- נביט בטור פורייה של הפונקציה x:
- נסמן ב את סדרת הסכומים החלקיים של הטור ונביט ב:
- כעת,
- לכן סה"כ השגיאה בקירוב ע"י הסכומים החלקיים בסדרת הנקודות הללו היא:
- אם נחלק את זה בגודל הקפיצה בין הגבולות החד צדדים של ההמשך המחזורי של x בנקודה , נקבל בערך .
- לא נוכיח זאת, אבל יחס הטעות הזה בנקודות אי הרציפות נשמר באופן כללי עבור פונקציות בE שנגזרתן רציפה למקוטעין, ונקרא 'תופעת גיבס'.
טור הסינוסים וטור הקוסינוסים
- עבור פונקציה הרציפה בקטע ובעלת נגזרת רציפה למקוטעין, ניתן להשלים אותה לפונקציה הזוגית בקטע , או ל האי זוגית בקטע .
- את ההמשך הזוגי אפשר לפתח לטור קוסינוסים, שמתכנס במ"ש בקטע . זה נקרא טור הקוסינוסים של הפונקציה .
- הוכחה:
- רציפה ב, בעלת נגזרת רציפה למקוטעין, ומתקיים כמובן ש.
- את ההמשך האי זוגי אפשר לפתח לטור סינוסים, שמתכנס אל הפונקציה בקטע . זה נקרא 'טור הסינוסים של הפונקציה .
- אם אזי טור הסינוסים מתכנס במ"ש בקטע.
- הוכחה:
- רציפה כיוון ש, ומתקיים כי .
- חישוב המקדמים:
- עבור טור הקוסינוסים:
- עבור טור הסינוסים:
דוגמאות
- נחשב טור קוסינוסים של :
- הטור מתכנס במ"ש לפונקציה בקטע :
- נציב למשל ונקבל את השיוויון: