הבדלים בין גרסאות בדף "חתכי דדקינד"
מתוך Math-Wiki
(←כפל חתכי דדקינד) |
(←חתך היחידה) |
||
שורה 124: | שורה 124: | ||
===חתך היחידה=== | ===חתך היחידה=== | ||
− | *<math>1_D={x\in\ | + | *<math>1_D={x\in\mathbb{Q}|x<1}</math> |
=שדה הממשיים= | =שדה הממשיים= |
גרסה מ־10:16, 26 במרץ 2022
תוכן עניינים
הקדמה
- אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה (שורש שתיים).
- הרי אחרת, מה המרחק מהנקודה לראשית הצירים ?
- האם ייתכן שהפרבולה עולה מהנקודה אל הנקודה בלי לחתוך את ציר האיקס?
- כיוון שאין פתרון למשוואה זו בשדה הרציונאליים, אנחנו רוצים לבנות את שדה הממשיים.
- כיצד ניתן לתאר את נקודת החיתוך החיובית של הפרבולה עם ציר האיקס באמצעות המספרים הרציונאליים אם כך?
(נבנה באמצעות גאוגברה.)
- ובכן, ניתן לומר שציר המספרים מתחלק לשניים - לפני שורש שתיים ואחרי שורש שתיים.
- כלומר, אולי אנחנו יכולים לייצג את נקודת החיתוך על ידי אוסף הנקודות שקטנות ממנה , זו הקרן באיור.
- הרעיון הזה של חיתוך ציר הרציונאליים סביב נקודה בלתי קיימת הוליד את חתכי דדקינד.
חתכי דדקינד
- הגדרה: חתך דדקינד הוא קבוצה המקיימת:
- חסומה מלעיל.
- לכל מתקיים כי אם ורק אם חסם מלעיל של
- הערות ותזכורות:
- חסם מלעיל של קבוצה הוא מספר שגדול יותר מכל איברי הקבוצה.
- בחתך דדקינד אין מספר גדול ביותר, אחרת זה היה חסם מלעיל ששיך לקבוצה. זה משול לחצי האבוקדו ללא הגרעין.
- בחתך המייצג מספר שאינו רציונאלי, כמו שורש שתיים, גם במשלים של החתך אין מספר קטן ביותר, זה משול לשני חצאי אבוקדו ללא גרעין כלל.
- אם מספר שייך לחתך, בוודאי כל מספר נמוך ממנו שייך לחתך הרי לא ייתכן שמספר נמוך ממנו הוא חסם מלעיל.
- הקרן באיור לעיל היא חתך דדקינד שתפקידו להגדיר את שורש שתיים.
- כיצד ניתן להתייחס לקבוצות כאלה בתור מספרים?
- עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר בשדה.
- כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר.
חיבור חתכי דדקינד
- יהיו שתי חתכים , נגדיר את החיבור:
- החיבור הוא חתך דדקינד בעצמו:
- כיוון שA,B אינן ריקות גם A+B אינה ריקה.
- סכום חסמי מלעיל של A וB חוסם את A+B.
- יהי , כיוון שאיברי החתכים אינם חסמי מלעיל, קיימים וכן ולכן ו אינו חסם מלעיל של
- יהי שאינו חסם מלעיל של , לכן קיימים . כעת כלומר אינו חסם מלעיל של B ולכן שייך לקבוצה. סה"כ .
חתך האפס
- נגדיר את חתך האפס, בהמשך נוכיח שהוא נייטרלי לחיבור.
נגדי
- יהי חתך A, נגדיר את הנגדי:
- לדוגמא
- הנגדי הוא חתך דדקינד בעצמו:
- הנגדי לא ריק:
- כיוון שA חסומה מלעיל יש לה חסם, וכל המספרים שקטנים ממינוס החסם שייכים לנגדי, ולכן
- הנגדי חסום מלעיל:
- יהי לכן לכל מתקיים כי ולכן
- לכל קיים כך ש ולכן
- בעצם הנגדי של כל איבר בA הוא חסם מלעיל של .
- כל איבר בנגדי אינו חסם מלעיל:
- לכל איבר בנגדי לכן אמצע הקטע בין גדול מ וקטן מ ולכן שייך לנגדי ולכן אינו חסם מלעיל.
- אם איבר אינו חסם מלעיל, הוא שייך לנגדי:
- נניח אינו חסם מלעיל של לכן קיים ולכן קיים כך ש ולכן
- הנגדי לא ריק:
יחס סדר
- יחס ההכלה הוא יחס סדר לינארי (מלא) על קבוצת חתכי דדקינד
- הוכחה:
- יהיו שני חתכים A,B.
- אם קיים חסם מלעיל של A כך ש אזי כל איבר של A אינו חסם מלעיל של B ולכן שייך לB, כלומר
- אחרת, לכל מתקיים כי . כלומר ולכן
- נגדיר את החתכים החיוביים להיות כל החתכים A כך ש ונגדיר את החתכים השליליים על ידי
- טענה: אם ורק אם
- הוכחה:
- ראשית נניח כי
- כלומר בעצם ולכן לכל חסם מלעיל מתקיים כי .
- לכן לכל מתקיים כי
- כלומר כל האיברים ב שליליים, ולכן כלומר
- בכיוון ההפוך, נניח כי
- לכן כל האיברים ב שליליים.
- אם קיים אזי בסתירה.
- לכן כל המספרים השליליים שייכים לA, כלומר ולכן
- ראשית נניח כי
כפל חתכי דדקינד
- יהיו שני חתכי דדקינד אי שליליים , נגדיר את הכפל:
- אם A שלילי, וB אי שלילי, נגדיר:
- אם A אי שלילי, וB שלילי, נגדיר:
- אם A,B שליליים נגדיר:
חתך היחידה
שדה הממשיים
הגדרת המספרים הממשיים
- הגדרה:
- הוא קבוצת כל חתכי דדקינד.
- נוכיח שמדובר בשדה סדור ביחס לפעולות החיבור והכפל ויחס הסדר שהגדרנו לעיל, ולאחר מכן נתאר את הייצוג העשרוני של המספרים הממשיים.
שלמות הממשיים
- תהי קבוצה לא ריקה של מספרים ממשיים, וחסומה מלעיל (כלומר קיים כך ש. אזי קיים ל חסם עליון ממשי.
רעיון ההוכחה
- נוכיח כי האיחוד הכללי של כל חתכי הדדקינד הוא גם חתך דדקינד.
- ברור כי האיחוד הוא חסם מלעיל של הקבוצה כיוון שהוא מכיל את כל איברי הקבוצה.
- נוכיח כי האיחוד הוא חסם עליון של הקבוצה.