משתמש:אור שחף/133 - רשימת משפטים
מתוך Math-Wiki
במשפטים הבאים, אלא אם צויין אחרת, נסמן:
- הוא קבוע.
- פונקציות.
- הקטע הנתון הוא הקטע הסגור .
- אם מצויין שלפונקציה יש תכונה מסויימת אזי הכוונה לכך שהתכונה מתקיימת בקטע הנתון (למשל: " חסומה" = " חסומה ב-").
- היא חלוקה של הקטע הנתון כך ש-.
- היא העדנה של .
- היא חלוקה נוספת של הקטע הנוצרת מהחלוקה כך ש- ו-.
תוכן עניינים
אינטגרלים
- אם ו- קדומות ל- בנקודה כלשהי אז קיים כך ש-.
- אם חסומה ב- אזי .
- אם (כלומר, מתקבלת מ- ע"י הוספת נקודות) ו- חסומה בקטע אזי וכן .
- לכל חלוקה של הקטע הנתון (לאו דווקא העדנה של ), אם חסומה בקטע אזי .
- לכל אינטגרבילית מתקיים .
- תהי חסומה. אזי וגם .
- נניח ש- חסומה. אינטגרבילית אם"ם .
- נניח ש- חסומה. אינטגרבילית אם"ם לכל קיימת חלוקה של כך ש-.
- אם רציפה אז אינטגרבילית.
- הכללה: אם רציפה וחסומה בקטע הפתוח אזי אינטגרבילית.
- הכללה להכללה: אם רציפה בקטע בכל נקודה למעט במספר סופי של נקודות והיא חסומה אזי אינטגרבילית.
- אם מונוטונית אזי היא אינטגרבילית.
- נניח ש-. אזי אינטגרבילית ב-, ב- וב- אם"ם היא אינטגרבילית ב-, ואם כן אז .
- הכללה: עבור כנ"ל ו- (הנקודות לאו דווקא מסודרות בסדר עולה) מתקיים .
- אם חסומה אז . יתר על כן, ו-.
- הגדרות האינטגרל לפי דרבו ולפי רימן שקולות.
- לינאריות: עבור אינטגרביליות מתקיים .
- מונוטוניות: אם אינטגרביליות וכן אזי .
- חיוביות: בפרט מתקיים שאם אינטגרביליות ואי-שלילית אזי .
- הכללה לאי-שיוויון המשולש: אם אינטגרבילית אז אינטגרבילית ו-.
- אם אינטגרבילית וחסומה אז .
- מקרה פרטי: אם ו- אינטגרבילית אז .
- מקרה פרטי: אם (פונקציה קבועה) אז .
- המשפט היסודי של חשבון אינטגרלי: תהי אינטגרבילית ותהי כך ש-. אזי רציפה וכן לכל נקודה ב- שבה רציפה, קדומה ל- (כלומר, גזירה ב- כך ש-).
- נוסחת ניוטון-לייבניץ: תהי רציפה. אזי .
- לכל רציפה יש פונקציה קדומה.
- אינטגרציה בחלקים: נניח כי רציפות. אזי .
- שיטת ההצבה: .
- כל פונקציה רציונלית כך ש- ניתנת לפירוק יחיד כסכום של שברים חלקיים כאשר ול- אין שורשים ממשיים.
- נפח גוף הסיבוב הנוצר מסיבוב השטח שמתחת ל- אי-שלילית בין ל- סביב ציר ה- הוא .
- אם רציפה אז הממוצע שלה בקטע הוא .
- אם גזירה אז אורך הגרף שלה בקטע הוא .
- שטח המעטפת (ללא הבסיסים) של גוף סיבוב הנוצר מסיבוב הגרף של רציפה סביב ציר ה- בקטע הוא .
- קירוב האינטגרל בעזרת טורי טיילור: תהא בעלת נגזרת -ית רציפה. אזי כאשר הוא פיתוח טיילור מסדר של והשארית היא עבור כאשר פיתוח טיילור נעשה סביב .
- קירוב האינטגרל בשיטת המלבנים: תהא בעלת נגזרת רציפה והחלוקה היא חלוקה שווה כאשר לכל מתקיים . אזי והשארית חסומה ע"י כאשר .
- קירוב האינטגרל בשיטת הטרפזים: תהא בעלת נגזרת שנייה רציפה והחלוקה היא חלוקה שווה כאשר לכל מתקיים . אזי והשארית חסומה ע"י כאשר .
- קירוב האינטגרל בשיטת סימפסון: תהא בעלת נגזרת רביעית רציפה והחלוקה היא חלוקה שווה כאשר לכל מתקיים ו- זוגי. אזי והשגיאה חסומה ע"י כאשר .
- תהיינה אינטגרביליות ב-. אזי אינטגרבילית ב- ומתקיים .
- תהא אינטגרבילית מקומית ב- ויהי . אזי אינטגרבילית ב- אם"ם אינטגרבילית ב- ואם כן .
- מונוטונית עולה ב-. אזי קיים אם"ם ואם כן .
- אי-שלילית ואינטגרבילית מקומית ב-. אזי מתכנס אם"ם האינטגרלים החלקיים חסומים מלעיל, ואם לא אז .
- מבחן ההשוואה: נניח ש- אי-שליליות ואינטגרביליות מקומית ב- וכן . אם מתכנס אז מתכנס.
- מבחן ההשוואה הגבולי: אי-שליליות ואינטגרביליות מקומית ב- וכן . אזי אם מתכנס אז מתכנס.
- מקרה פרטי: אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
- המבחן האינטגרלי לטורים: תהא אי-שלילית, מונוטונית יורדת ואינטגרבילית מקומית ב- עבור כלשהו. אזי מתכנס אם"ם מתכנס.
- בפרט מתקיים .
- תהא מוגדרת ב-. קיים אם"ם הוא מקיים את תנאי קושי בקטע, כלומר לכל קיים כך שאם אזי .
- תהא אינטגרבילית מקומית ב-. אזי מתכנס אם"ם .
- תהא אינטגרבילית מקומית ב-. אם אינטגרבילית בקטע אזי גם אינטגרבילית בו.
- מבחן דיריכלה: תהא רציפה ב- ונניח שהאינטגרלים החלקיים חסומים כאשר . כמו כן תהא מונוטונית ובעלת נגזרת רציפה ב- ו-. אזי מתכנס.
- סכימה בחלקים: כאשר .
- משפט דיריכלה לטורים: נניח שלטור יש סכומים חלקיים חסומים ונניח ש- סדרה מונוטונית כך ש-. אזי מתכנס.
- אם אינטגרביליות ב- אזי לכל מתקיים .
- עבור ו- אינטגרבילית מקומית ב-, אינטגרבילית בקטע אם"ם אינטגרבילית ב-, ואם כן .
- תהי מונוטונית ב-. אזי קיים אם"ם חסומה ב-.
- אם אי-שלילית ואינטגרבילית מקומית ב- אז אינטגרבילית ב- אם"ם האינטגרלים החלקיים חסומים כאשר .
- מבחן ההשוואה: אי-שליליות ואינטגרביליות מקומיות ב- וכן . אם מתכנס אזי מתכנס.
- מבחן ההשוואה הגבולי: אי-שליליות ואינטגרביליות מקומית ב- וקיים . אם מתכנס אז מתכנס.
- מקרה פרטי: אם בפרט הגבול שונה מ-0 אז שני האינטגרלים מתכנסים ומתבדרים כאחד.
- תהא אינטגרבילית מקומית ב-. אזי מתכנס אם"ם .
- תהא אינטגרבילית מקומית ב-. אם מתכנס אז מתכנס.
סדרות וטורים של פונקציות
התכנסות במ"ש
סדרות
- במ"ש על , כלומר , אם"ם .
- נניח כי במ"ש ב-, ועבור כלשהו רציפה ב- לכל . אזי רציפה ב-.
- במ"ש ב- וכל אינטגרבילית בקטע. אזי אינטגרבילית בקטע ומתקיים .
- היא סדרת פוקציות בעלות נגזרות רציפות ב-, המתכנסות במ"ש ב- לפונקציה . כמו כן, מתכנסת בנקודה אחת לפחות ב-. אזי מוגדרת ב- ומתקיים .
- סדרת פונקציות מתכנסת במ"ש אם"ם היא מקיימת את תנאי קושי במ"ש, כלומר .
- משפט דיני: נתון כי כל רציפה בקטע סגור והסדרות עולות לכל או יורדות לכל . כמו כן, נקודתית ו- רציפה ב-. אזי במ"ש.
טורים
- טור פונקציות מתכנס במ"ש אם"ם הוא מקיים את תנאי קושי במ"ש, כלומר .
- מבחן ה-M של ויירשטראס: נניח שכל מוגדרת ב- וחסומה שם, כלומר עבור כלשהו, וכן מתכנס במובן הצר. אזי מתכנס בהחלט במ"ש על .
- נתון כי כל רציפה ב- וכן במ"ש על . אזי רציפה ב-.
- במ"ש על וכל אינטגרבילית ב-. אזי אינטגרבילית בקטע ומתקיים .
- היא סדרת פוקציות בעלות נגזרות רציפות ב-. הטור מתכנס בנקודה אחת לפחות בקטע, וטור הנגזרות מתכנס במ"ש על . אזי מתכנס במ"ש לפונקציה גזירה כך ש-.
טורי חזקות
- יהי טור חזקות. רדיוס ההתכנסות מקיים שאם הנקודה מקיימת אזי הטור מתכנס בהחלט, ואם הטור מתבדר. כמו כן, הטור מתכנס במ"ש ב- לכל .
- יהי טור חזקות עם רדיוס התכנסות . אם קיים במובן הרחב אזי .
- יהי טור חזקות עם רדיוס התכנסות . אזי היא פונציה המוגדרת ב-, כך שנגזרתה בקטע זה היא .
- הכללה: בתנאים הללו, גזירה אינסוף פעמים ו- לכל . יתרה מזאת, רדיוס ההתכנסות של הטורים הגזורים הוא .
- יהי טור חזקות עם רדיוס התכנסות . אזי לכל מתקיים , ז"א הטור הוא טור טיילור של סביב .
- יהי טור חזקות עם רדיוס התכנסות . אזי אינטגרבילית ב- ומתקיים לכל בקטע . רדיוס ההתכנסות של טור האינטגרל הוא .
- משפט היחידות לטורי חזקות: אם לכל אזי .
- משפט אבל: נניח ש- טור חזקות בעל רדיוס התכנסות . אם קיים אזי קיים ושווה לו, ואם קיים אזי קיים ושווה לו.
השתנות חסומה
- בעלת השתנות חסומה בקטע סגור. אזי חסומה.
- בעלת השתנות חסומה בקטע סגור אם"ם יש מונוטוניות עולות בקטע כך ש-.
- תהי בעלת השתנות חסומה ב-. אזי לכל קיים ולכל קיים .
- תהי בעלת השתנות חסומה ב-. אזי f אינטגרבילית ב-.