88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 0
מתוך Math-Wiki
סיכום הנושא המלא נמצא בדף 88-101 חשיבה מתמטית.
קשרים, כמתים, הצרנה
ראשית, נכיר את הקשרים הלוגיים (וגם, או, שלילה, גורר), הכמתים (לכל, קיים) ואת מושג ההצרנה.
תרגיל: הגדרה: איחוד של שתי קבוצות A וB הוא קבוצת האיברים שנמצאים לפחות באחת הקבוצות. החיתוך הוא קבוצת האיברים שנמצאים בשתי הקבוצות.
- הצרן תנאי השקול לכך ש-a שייך לאיחוד של הקבוצות A וB
- הצרן תנאי השקול לכך ש-a אינו שייך לאיחוד של הקבוצות A וB
- הצרן תנאי השקול לכך ש-a שייך לחיתוך של הקבוצות A וB
- הצרן תנאי השקול לכך ש-a אינו שייך לחיתוך של הקבוצות A וB
הגדרה: קבוצה A מוכלת בקבוצה B אם בB נמצאים כל האיברים מA (למשל הטבעיים מוכלים בשלמים , והשלמים מוכלים בממשיים ).
- הצרן תנאי השקול לכך ש-C מוכלת בחיתוך של A וB
- הצרן תנאי השקול לכך ש-C אינה מוכלת באיחוד של A וB
טבלאות אמת
הוכח באמצעות טבלאות אמת שניתן להציג את הקשרים 'גרירה' ו'וגם' באמצעות 'או' ושלילה בלבד