88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 3
מתוך Math-Wiki
יחסי סדר
הגדרה: יחס R על A נקרא אנטי-סימטרי אם מתקיים
כלומר, אם אז לא יכול להיות שמתקיים היחס בין x לבין y וגם היחס בין y לx.
הגדרה: יחס R על A נקרא יחס סדר חלקי אם R רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
דוגמאות ליחסי סדר חלקי:
- היחס 'קטן-שווה' על המספרים
- היחס 'מוכל-שווה' על הקבוצות
הגדרה: דיאגרמת הסה Hassse
הגדרות. יהיו A קבוצה וR יחס סדר חלקי על הקבוצה:
- איבר נקרא מינמלי ביחס לR אם . כלומר, אין איבר 'קטן' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מקסימלי ביחס לR אם . כלומר, אין איבר 'גדול' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מינימום ביחס לR אם . כלומר, x 'קטן' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה הריקה תחת יחס הכלה)
- איבר נקרא מקסימום ביחס לR אם . כלומר, x 'גדול' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה B תחת יחס ההכלה על קבוצת החזקה של B)
הערה: קל להוכיח מתוך תכונת האנטי-סימטריות שאם קיים איבר מינימום הוא יחיד (למרות שהוא לא חייב להיות קיים), ונכון הדבר לגבי המקסימום.
הגדרה: יהי R יחס על A, אזי היחס ההופכי מוגדר להיות
תרגיל.
הוכח שאם R יחס סדר חלקי, גם ההופכי שלו יחס סדר חלקי
פתרון.
- רפלקסיביות: לכל איבר a מתקיים ולכן
- טרנזיטיביות: נניח לכן מתקיים לכן לפי הטרנזיטיביות של R מתקיים ולכן .
- אנטי-סימטריות: אם x ביחס לy וגם y ביחס לx הדבר נכון באופן זהה לR ולהופכי שלו, ולכן x=y.