שיחה:88-195 בדידה לתיכוניסטים תשעא
תוכן עניינים
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
החידה בתרגיל 1
לאן שולחים את החידה בתרגיל 1?
מצטרף לשאלה..
שאלתי אותו דבר ומחקו לי..
מוזמנים לשלוח למייל שלי. matan.fatal@gmail.com
קבוצה חלקית
מה ההגדרה של קבוצה חלקית?
- בקבוצה חלקית אנו מתכוונים לקבוצה המוכלת (אחת מהקבוצות השייכות לקבוצת החזקה) --ארז שיינר 21:39, 26 ביולי 2011 (IDT)
הוכחה באמצעות טבלת אמת
האם הוכחה באמצעות טבלת אמת היא פורמלית?
כן (מתן פטאל)
בשאלה 12
נראה לי יש לכם טעות בשאלה 12 כי רשמת רגיל ולא עצמה את הקבוצת חזקה הזאת
- נכון, זה צריך להיות העוצמה של קבוצת החזקה. --ארז שיינר 17:09, 27 ביולי 2011 (IDT)
תרגיל 3
לא הבנתי מה עושים בתרגיל 3
- מוצאים קבוצות כך שהפסוקים הנתונים יהיו פסוקי אמת. --ארז שיינר 17:10, 27 ביולי 2011 (IDT)
- אני יכול להביא סתם קבוצה מהראש {עם מספרים שלי} או להביא קבוצה ספציפית כמו הריקה וכו...?
תרגיל 1 שאלה 6
האם להתייחס ל- A ו-B כקבוצות זרות?
האם הוכחה פורמלית דורשת בהכרח טבלת אמת? או שאני יכול לפשט ביטוי ולהוכיח בעזרת החוקים שהראנו בכיתה?
- מותר כפי שעשינו בכיתה, אין צורך בטבלאות אמת. --ארז שיינר 09:12, 28 ביולי 2011 (IDT)
- תודה, אבל לא התייחסת לשאלה הראשונה, האם A,B זרות?
- אה, אם זה לא נתון לא ניתן להניח את זה, כמובן.... --ארז שיינר 10:57, 28 ביולי 2011 (IDT)
דרך אגב בתרגיל אחד שאלה 10 זה אותו ילד מעצבן ממיקודם שאמר ש 12 לא נכון
בשאלה 10 הייתם צריכים להפריד את סעיף c מהשאלה כי אחרת אפשר לחשוב שנתונים לנו השדות מתחילת השדות אבל זאת רק הערה
- שוב צודק, סעיף c נכון לקבוצות כלשהן ולא לאלה הנתונות בשאלה. --ארז שיינר 09:13, 28 ביולי 2011 (IDT)
תרגיל 2
בתרגיל מספר 2 בשאלה הראשונה לא הבנתי איך אני יכול להוכיח דבר כזה, אתם יכולים לתת לי כיוון או להסביר יותר טוב את השאלה?
בנוסף, בשאלה השלישית סעיף a מה זה אומר כמה יחסים יש על הקבוצה? איזה סוג יחסים?
- בשאלה הראשונה, תנסה כמה דוגמאות עם קבוצות סופיות עד שתבין איך זה עובד. אין דרך להסביר יותר טוב את השאלה כי היא כתובה באופן לוגי ברור. "קיים T כך ש(R מוכל בT וגם לכל S (אם R מוכל בS אזי T מוכל בS))" (פלוס השייכות לאוסף יחסי השקילות במקומות המתאימים, כמובן).
- בשאלה שלוש הכוונה לכל היחסים, לא משנה אם הם מסוג מוגדר או לא --ארז שיינר 10:55, 28 ביולי 2011 (IDT)
אני מבין למה זה נכון, זה ברור שפשוט צריך להוסיף כמות מינימאלית של איברים ל-R בכדי לקבל יחס שקילות הכי קטן המכיל את R, אבל אני לא יודע איך לגשת בכלל לשאלה, אני לא מבין מה אני צריך לקחת כנתונים ומה אני צריך להוכיח.
שאלה 6a
מותר להשתמש בזהויות כמו פילוג, איחוד וחיתוך עם הקבוצה הריקה? (בשאלה 6b מן הסתם אסור להשתמש בפילוג..)