88-195 בדידה לתיכוניסטים תשעא/מערך שיעור/שיעור 3
יחסי סדר
הגדרה: יחס R על A נקרא אנטי-סימטרי אם מתקיים
כלומר, אם אז לא יכול להיות שמתקיים היחס בין x לבין y וגם היחס בין y לx.
הגדרה: יחס R על A נקרא יחס סדר חלקי אם R רפלקסיבי, טרנזיטיבי ואנטי-סימטרי
דוגמאות ליחסי סדר חלקי:
- היחס 'קטן-שווה' על המספרים
- היחס 'מוכל-שווה' על הקבוצות
הגדרה: דיאגרמת הסה Hassse
הגדרות. יהיו A קבוצה וR יחס סדר חלקי על הקבוצה:
- איבר נקרא מינמלי ביחס לR אם . כלומר, אין איבר 'קטן' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מקסימלי ביחס לR אם . כלומר, אין איבר 'גדול' מx. לא חייב להתקיים ש-x ביחס כלשהו עם איבר כלשהו.
- איבר נקרא מינימום ביחס לR אם . כלומר, x 'קטן' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה הריקה תחת יחס הכלה)
- איבר נקרא מקסימום ביחס לR אם . כלומר, x 'גדול' מכל האיברים. x חייב להיות ביחס עם כל האיברים בקבוצה. (דוגמא: הקבוצה B תחת יחס ההכלה על קבוצת החזקה של B)
הערה: קל להוכיח מתוך תכונת האנטי-סימטריות שאם קיים איבר מינימום הוא יחיד (למרות שהוא לא חייב להיות קיים), ונכון הדבר לגבי המקסימום.
דוגמא.
נביט בקבוצה ונגדיר עליה יחס סדר חלקי:
(הזוגיים 'גדולים' מכל אי הזוגיים ומהזוגיים הקטנים מהם)
- 5,3,1 הינם איברים מינימליים שכן אין איבר שקטן מאף אחד מהם. הם אינם מינימום כי אף אחד מהם לא קטן מכל האיברים האחרים.
- 4 הינו מקסימום של הקבוצה, הוא בוודאי מקסימלי
- 2 קטן מחלק מהאיברים וגדול מאחרים לכן הוא כלום.
הגדרה: יהי R יחס על A, אזי היחס ההופכי מוגדר להיות
תרגיל.
הוכח שאם R יחס סדר חלקי, גם ההופכי שלו יחס סדר חלקי
פתרון.
- רפלקסיביות: לכל איבר a מתקיים ולכן
- טרנזיטיביות: נניח לכן מתקיים לכן לפי הטרנזיטיביות של R מתקיים ולכן .
- אנטי-סימטריות: אם x ביחס לy וגם y ביחס לx הדבר נכון באופן זהה לR ולהופכי שלו, ולכן x=y.
הגדרות. יהיו A קבוצה, B קבוצה המוכלת בה וR יחס סדר חלקי:
- חסם מלעיל של B הוא איבר כך שמתקיים
- חסם מלרע של B הוא איבר כך שמתקיים
- החסם העליון (סופרמום) של B הינו המינימום של קבוצת חסמי המלעיל (אם קיים). מסומן
- החסם התחתון (אינפימום) של B הינו המקסימום של קבוצת חסמי המלרע (אם קיים). מסומן
דוגמא.
נשוב לדוגמא הקודמת. נביט בתת הקבוצה המכילה את המספרים האי זוגיים בלבד . קבוצת חסמי המלעיל של B הינה . המינימום של קבוצה זו הוא 2 ולכן הוא החסם העליון של B. אין חסם מלרע ל-B ולכן בוודאי אין לה חסם תחתון.
דוגמא. נביט במספרים הממשיים ובתת הקבוצה של כל המספרים עם מספר סופי של ספרות ששווים לספרות הראשונות של שורש 2. . חסמי המלעיל של הקבוצה הינם כל המספרים שגדולים או שווים לשורש 2 ואילו שורש 2 הוא החסם העליון של הקבוצה.
שימו לב, אם נביט בקבוצה B כתת קבוצה של המספרים הרציונאליים, חסמי המלעיל שלה יהיו כל האיברים הגדולים משורש 2 אך מכיוון ששורש 2 אינו רציונאלי, אין לB חסם עליון.
הגדרה. יהי R יחס סדר חלקי על A. אם לכל שני איברים a,b בA מתקיים ]</math> אזי R נקרא יחס סדר מלא.
דוגמא. נביט בקבוצת השלמים, ובתת קבוצה סופית שלה B. נביט ביחס "מחלק את". הסופרמום של B הוא המכפלה המשותפת המינימלית (lcm), והאינפימום הוא המחלק המשותף המקסימלי(gcd).