מכינה למחלקת מתמטיקה/מערכי שיעור/4

מתוך Math-Wiki
גרסה מ־06:50, 8 באוגוסט 2012 מאת ארז שיינר (שיחה | תרומות) (מספרים מרוכבים)

קפיצה אל: ניווט, חיפוש

חזרה למערכי השיעור

פונקציות טריגונומטריות הופכיות

ניתן להגדיר פונקציה הופכית רק כאשר לכל איבר בתמונה קיים מקור יחיד. לכל פונקציה טריגונומטרית נבחר את התחום המתאים.


arcsin(x):[-1,1]\rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]


arccos(x):[-1,1]\rightarrow [0,\pi]


arctan(x):[-\infty,\infty]\rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]


תרגיל: הוכח כי sin\Big(arccos(x)\Big)=\sqrt{1-x^2}


תרגילים

מצא לאילו ערכי x מתקיימים אי השיוויונים הבאים:

  • |cos(x)|\leq \frac{1}{\sqrt{2}}


  • sin(x^2+1)<0


  • sin(ax)>0


  • arcsin(|x-1|)>\frac{\pi}{4}


  • sin(2x) < 2sin(x)


  • \sqrt{2}sin^2(x)-(\sqrt{2}+1)sin(x)+1 < 0


מספרים מרוכבים

נביט באוסף האיברים מהצורה

a+b\cdot i


כאשר a,b\in\mathbb{R} והאות i הינה לצורך סימון בלבד. נקרא לאוסף זה מספרים מרוכבים.


נגדיר פעולות חיבור וכפל בין מספרים מרוכבים:


(a+b\cdot i) + (c + d\cdot i) = (a+c) + (b+d)\cdot i


(a+b\cdot i)(c+d\cdot i) = (ac-bd) + (bc+ad)\cdot i


שימו לב כי i^2 = -1


תרגיל הוכח שלכל מספר מרוכב z קיים מספר מרוכב w כך ש z\cdot w = 1.

הערה: באופן כללי נסמן w=\frac{1}{z}


תרגיל חשב את הביטוי \frac{5+2i}{2-3i}