88-341 תשעג סמסטר א/תרגילים/תרגיל 1

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש

שאלה 1

לכל קבוצה E \subseteq \mathbb{R} ומספרים a,b \in \mathbb{R} מגדירים aE+b:=\{ a x+b:x \in E \} (ז"א ש-aE+b היא תמונת E תחת הפונקציה הלינארית x \mapsto ax+b).

הוכיחו: m^*(aE+b)=|a| m^*(E)

שאלה 2

הוכיחו כי כל קבוצה קומפקטית הינה מדידה.

שאלה 3

הגדרה: נאמר שקבוצה G \subseteq \mathbb{R} היא מטיפוס G_\delta אם ניתן להציג אותה כחיתוך בן-מנייה של קבוצות פתוחות.


תהי E \subseteq \mathbb{R} הוכיחו שקיימת קבוצה G \in G_\delta המקיימת E \subseteq G וכן m^*(G)=m^*(E)

הדרכה: עקבו אחרי השלבים הבאים:

א. הוכיחו שלכל קבוצה E \subseteq \mathbb{R} ולכל \varepsilon>0 קיימת קבוצה פתוחה O, המקיימת E \subseteq O וכן m^*(O) \leq m^*(E)+\varepsilon

ב. בנו סדרה של קבוצות פתוחות מתאימות ע"פ א' וחיתכו אותן.


בהצלחה!