מד"ר - משוואות דיפרנציאליות רגילות - ארז שיינר
מתוך Math-Wiki
תוכן עניינים
הרצאה 1 הקדמה ומשוואה פרידה
- משוואה דיפרנציאלית מכילה את המשתנה, הפונקציה ונגזרותיה.
- בחקירת פונקציות, במציאת תחומי עלייה וירידה, אנו פותרים את המשוואה . האם זו משוואה דיפרנציאלית?
- לא, כיוון שבמשוואות דיפרנציאלית אנו מחפשים פונקציה שמקיימת את המשוואה לכל ערך של המשתנה.
- כאן הפונקציה נתונה, ואנו מחפשים ערך של המשתנה שמקיים את המשוואה.
נפילה חופשית
- גוף הנופל חופשית נופל בתאוצה שבקירוב היא קבועה .
- נסמן ב את הגובה של הגוף (כאשר הכיוון החיובי הוא לכיוון כדור הארץ)
- היא המהירות
- היא התאוצה.
- לכן על מנת לדעת את מיקומו של הגוף בכל נקודה בזמן, עלינו לפתור את המשוואה , הרי התאוצה קבועה.
- לכן
- לכן
- כיצד נחשב את הקבועים? לפי תנאי ההתחלה.
- נסמן את הגובה ההתחלתי בתור 0 (נזכור כי הכיוון החיובי הוא לכיוון כדור הארץ). ולכן ולכן
- נניח כי המהירות ההתחלתית גם היא הייתה 0 ולכן ולכן גם .
ריבית דריבית
- נניח שסכום הכסף בבנק לאורך זמן מתואר על ידי הפונקציה .
- נניח שאנו מרוויחים תשואה של 2 אחוז בשנה, לכן לאחר שנה יתקיים כי .
- אבל מה היה קורה אילו הבנק היה משלם את הריבית פעם בחצי שנה?
- בחצי השנה הראשונה נקבל מחצית מהריבית
- ובחצי השנה השנייה נקבל מחצית מהריבית, אך סכום הקרן שלנו כבר גדל
- סה"כ
- זה גדול יותר מהריבית השנתית, כיוון שצברנו ריבית על הקרן וגם על הריבית החצי שנתית.
- האם יש דרך להפוך את התהליך לרציף?
- כלומר, בהנתן שתי נקודות זמן קרובות אנו מעוניינים לקבל את הריבית היחסית על הזמן שעבר:
- נעביר אגף ונחלק
- אם נשאיף נקבל כי
- כלומר אנו מעוניינים בפונקציה שמקיימת את המשוואה הדיפרנציאלית כאשר היא הריבית השנתית.
המשוואה
- בהמשך הקורס נעסוק בשאלה האם למשוואה דיפרנציאלית יש פתרון, וכמה פתרונות יש למשוואה.
- מידי פעם נחזור ונפתור את המשוואה הזו בכלים שונים.
- כעת נשים לב כי:
- כיוון שהנגזרת שווה אפס הפונקציה קבועה
- סה"כ
- על מנת לחשב את הקבוע C עבור המקרה של ריבית דריבית, עלינו לדעת כמה כסף היה בחשבון בזמן t=0.
- שימו לב שלכל תנאי התחלה קיבלנו פתרון יחיד.
סדר ומעלה
- משוואה דיפרנציאלית נקראת מסדר n אם הנגזרת הגבוהה ביותר היא מסדר n.
- המשוואה היא משוואה מסדר שני.
- המשוואה היא משוואה מסדר ראשון.
- משוואה דיפרנציאלית נקראת ממעלה n אם הנגזרת מהסדר הגבוה ביותר היא ממעלה n.
- המשוואה היא מסדר 3 ומעלה 2.
משוואות פרידות
- משוואה דיפרנציאלית נקראת פרידה אם היא מהצורה .
- נהוג גם להחליף ולכן המשוואה תרשם כך .
- לבסוף, אם נזהר עם חלוקה באפס, משוואה פרידה באופן כללי יכולה להיות מהצורה , כלומר .
- משוואות פרידות אנו יכולים לפתור באמצעות אינטגרלים באופן הבא:
- ראשית נפריד (ומכאן השם) את המשתנים לשני צידי המשוואה:
- הקדומות של שני הצדדים שוות עד כדי קבוע.
- במקום t נשאר עם המשתנה y ובעצם אנו מחשבים אינטגרלים לשני הצדדים , כל אחד לפי המשתנה שלו!
- לדוגמא נפתור את המשוואה כמשוואה פרידה.
- ראשית נפריד את המשתנים ונקבל כי .
- נשים לב כי הנחנו כאן כי .
- כעת .
- .
- וביחד .
- לכן .
- לכן .
- כעת, קל לראות מהצבה במשוואה כי y=0 גם פותר את המשוואה.
- בסה"כ הפתרון הכללי הוא (שוב) .
- שימו לב - חלקנו למקרים בהם הפונקציה שונה מאפס או קבועה אפס, אך לא טיפלנו במקרים בהם הפונקציה מידי פעם שווה אפס.
- בתרגיל זה איננו צריכים, כי מצאנו את הפתרון הכללי בדרך פשוטה יותר למעלה.
- בהמשך, משפט הקיום והיחידות יעזור לנו להתמודד עם השאלה הזו, אך באופן כללי לא נעסוק הרבה במקרי קצה בקורס זה.
הפיכת משוואה לפרידה
- נביט במשוואה שאינה משוואה פרידה.
- נדגים עכשיו טריק שיהפוך את המשוואה לפרידה.
- נגדיר את הפונקציה .
- מתקיים כי וביחד המשוואה המקורית מקבלת את הצורה .
- זוהי משוואה פרידה .
- נפעיל אינטגרל על שני הצדדים ונקבל כי
- ולכן
- ולכן
- שימו לב לדוגמא, כאן לא התייחסנו למקרה הקצה בו מחוץ לתחום .
- שיטה אחת לוודא שהפתרון שלנו אכן נכון היא להציב את התוצאה שקיבלנו ישירות במשוואה.
- על מנת לדעת אם לא פספסנו פתרונות אחרים, נעזר בהמשך במשפט הקיום והיחידות.
- אבל כאמור - אנחנו לא נתייחס באופן כזה לכל מקרה קצה בהמשך הקורס.
הרצאה 2 מד"ר הומוגנית, מד"ר לינאריות מסדר ראשון ומשוואת ברנולי
מד"ר הומוגנית
- פונקציה נקראת הומוגנית מסדר k אם לכל מתקיים כי .
- לדוגמא הומוגנית מסדר 1.
- טענה: פונקציה היא מהצורה לכל אם"ם היא הומוגנית מסדר לכל .
- הוכחה:
- אם אזי לכל מתקיים .
- אם , נציב ונקבל כי .
- מד"ר הומוגנית (בניגוד למד"ר לינארית הומוגנית שנראה בהמשך) היא משוואה מהצורה כאשר הומוגנית מסדר .
- נפתור מד"ר הומוגנית באמצעות ההצבה באופן הבא:
- ראשית נסמן .
- כעת נגזור את שני צידי המשוואה , ונקבל כי .
- לכן לאחר החלפת המשתנה קיבלנו משוואה פרידה .
- נפריד את המשתנים .
- ולכן .
- נמצא את ונציב בחזרה .
- דוגמא - נפתור את המשוואה
- ולבסוף
- דוגמא - נפתור את המשוואה
מד"ר לינארית מסדר ראשון
- הגדרה: משוואה מסדר ראשון נקראת לינארית אם היא מהצורה .
- מד"ר לינארית הומוגנית (בניגוד למד"ר הומוגנית שראינו לעיל) היא מהצורה .
- נחשב נוסחא לפתרון מד"ר לינארית כללית ע"י מציאת פתרון למשוואה לינארית הומוגנית ובאמצעות שיטת וריאצית המקדמים.
- נשים לב כי המשוואה הלינארית ההומוגנית היא פרידה.
- נפריד את המשתנים ונקבל .
- נבצע אינטגרציה ונקבל כי .
- ולכן
- כעת נשתמש בשיטת וריאצית המקדמים על מנת לפתור את המד"ר הלא הומוגנית.
- נציב במקום המקדם הקבוע פונקציה , וננחש שזה פתרון של המד"ר.
- כיוון שאנו מנחשים שזה פתרון של המד"ר, נציב אותו בתוך המשוואה ונמצא (בתקווה) פונקציה כך שהמשוואה תתקיים.
- כלומר, נציב במשוואה .
- נקבל
- משוואה זו מתקיימת אם"ם .
- כלומר .
- לכן נבחר
- סה"כ הפתרון הכללי למד"ר הלינארית הוא:
- דוגמא - המשוואה החביבה עלינו :
- ראשית, נשים לב כי ו.
- כלומר זו מד"ר לינארית הומוגנית, והפתרון הכללי הוא
נפילה חופשית כולל התנגדות אוויר
- גוף בעל מסה נמצא בנפילה חופשית, מצד אחד הוא מושפע מכוח הכבידה שנחשב קבוע ומצד שני מכוח התנגדות האוויר.
- במהירויות גבוהות נניח שהוא פרופורציונלי למהירות הנפילה בריבוע , ובמהירויות נמוכות נניח שהוא פרופורציונלי למהירות הנפילה .
במהירות גבוהה
- לפי החוק השני של ניוטון .
- כלומר
- נבצע הפרדת משתנים
- נבצע פירוק לשברים חלקיים:
- ולכן
- מצד שני
- לכן
- נסדר קצת
- נשים לב שכאשר אנו מתכנסים למהירות הסופית .
- אם זו הייתה המהירות ההתחלתית היינו מקבלים פונקצית מהירות קבועה.
במהירות נמוכה
- לפי החוק השני של ניוטון .
- כלומר קיבלנו את המד"ר הלינארית .
- ולכן הפתרון הוא .
- וכאשר המהירות שואפת למהירות הסופית .
משוואת ברנולי
- משוואת ברנולי היא משוואה מהצורה עבור .
- נפתור את המשוואה על ידי הצבה שתהפוך אותה למשוואה לינארית, אותה כבר למדנו לפתור.
- נניח כי , ונחלק ב.
- נקבל את המשוואה .
- נציב .
- נגזור .
- נקבל משוואה לינארית .
- נפתור עבור ונציב חזרה לקבל .
- דוגמא - נפתור את המשוואה .
- נציב .
- נקבל ולכן .
- לכן
- לכן
- לכן
- ולבסוף
- דוגמא - גוף בתנועה עם כוח גרר לא לינארי ביחס למהירות
- נתון גוף הנע חצי באוויר וחצי בתוך נוזל כלשהו. נניח כי החיכוך עם הנוזל פרופורציונלי למהירות, והחיכוך עם האוויר פרופורציונלי למהירות בריבוע.
- ולכן (לצורך הפשטות הכנסנו את המסה לתוך הקבועים).
- זוהי משוואת ברנולי, נציב .
- לכן
- נפתור את המשוואה הדיפרנציאלית:
- ולכן
- כמובן שכאשר המהירות מתכנסת מהר מאד לאפס.
הרצאה 3 משוואות מדוייקות ומשפט הקיום והיחידות
הקדמה - פונקציות בשני משתנים
- נגזרות חלקיות
- דוגמא עבור מתקיים ו
- עבור פונקציות דיפרנציאביליות (כמו הפונקציות האלמנטריות), מתקיים כי (כלומר סדר הנגזרות לא משנה).
- כלל השרשרת: אם אזי
- בפרט, עבור מתקיים
מד"ר מדוייקת
- מד"ר נקראת מדוייקת אם היא מהצורה , עבור דיפרנציאבילית.
- פתרון המד"ר ניתן בצורה סתומה על ידי המשוואה , כאשר C קבוע כלשהו.
- מד"ר מהצורה היא מדוייקת אם"ם ו בעלות נגזרות רציפות.
- הוכחה לפתרון המד"ר המדויקת:
- נגזור את הפונקציה לפי המשתנה באמצעות כלל השרשרת ונקבל כי
- לפי הנתון נובע כי ולכן פונקציה קבועה.
- הוכחה לתנאי השקול למד"ר מדויקת:
- כיוון ראשון, נניח מדוייקת.
- לכן קיימת דיפרנציאבילית כך ש .
- לכן .
- כיוון שני, נניח כי .
- אנו מחפשים עבורה .
- נעשה אינטגרציה לפי ונקבל כי .
- לכן ברור כי , השאלה היא אם ניתן לבחור עבורו .
- כלומר אנו רוצים
- משוואה זו תהיה פתירה, אם הצד הימני הוא פונקציה שאינה תלוייה בx.
- אכן .
- כיוון ראשון, נניח מדוייקת.
- דוגמא: נפתור את המשוואה .
- ראשית נוודא שמדובר במשוואה מדוייקת: .
- נבצע אינטגרציה .
- נגזור לפי y ונקבל כי .
- לכן .
- לכן וסה"כ .
- לכן הפתרון למד"ר הוא .