88-211 מבוא לתורת החבורות
מתוך Math-Wiki
(הופנה מהדף 88-211 אלגברה מופשטת 1)
הקורס מבוא לתורת החבורות הוא קורס ראשון באלגברה מודרנית, העוסק בתורת החבורות. רקע באלגברה לינארית (1 ו-2) רצוי אבל אינו הכרחי. ראו גם את הקורס המקביל תורת החבורות.
תוכן עניינים
נושאי הקורס
- חבורות למחצה, מונוידים וחבורות.
- דוגמאות לחבורות - החבורות הציקליות, החבורות הסימטריות, חבורות מטריצות.
- המבנה של חבורות: תת-חבורות, תת-חבורות נורמליות, חבורות מנה; משפטי האיזומורפיזם.
- פעולת חבורה על קבוצה; משפט קיילי; מרכזים ומנרמלים.
- חבורות-p. משפטי סילו ושימושים שלהם.
- משפט המיון לחבורות אבליות נוצרות סופית.
- חבורות פתירות ונילפוטנטיות.
ספרות מומלצת
- חוברת הקורס מאת עוזי וישנה.
- החלק הראשון של Groups, Rings, and Fields, מאת L.H. Rowen.
- An Introduction to the Theory of Groups ,J.J. Rotman, פרקים 1-5 ופרק 10.
- החלק הראשון של "מבנים אלגבריים" מאת אלכס לובוצקי, דורון פודר ואהוד דה שליט (הוצאת מגנס).
- סדרת "מבנים אלגבריים" של האוניברסיטה הפתוחה.
- "עיונים באלגברה מודרנית", מאת יונתן גולן.
- Abstract Algebra: Theory and Applications מאת T. W. Judson ספר חופשי, יותר אלמנטרי הכולל תרגילים ממוחשבים.
- Algebra: Abstract and Concrete מאת F. M. Goodman.
- להעשרה Permutation Puzzles: A Mathematical Perspective של ג'יימי מלהולנד, ולא רק חוברת הקורס.
- מאגרים והדמיות: GroupNames מאת Tim Dokchitser, חבורות מופשטות ב-LMFDB ו-Permutation Group Visualizer מאת Nat Alison.
- מבחנים משנים קודמות.
מועדי הלימוד
- סמסטר א' תש"ף
- סמסטר א' תשע"ט
- סמסטר א' תשע"ח
- סמסטר א' תשע"ז
- סמסטר א' תשע"ו
- סמסטר א' תשע"ה
- קיץ תשע"ד
- סמסטר א' תשע"ד
- קיץ תשע"ג
- סמסטר א' תשע"ג
- קיץ תשע"ב
- חורף תשע"ב
- קיץ תשע"א