הבדלים בין גרסאות בדף "שיחה:88-132 סמסטר א' תשעא"

מתוך Math-Wiki
קפיצה אל: ניווט, חיפוש
(תשובה)
(שאלה קלה מדי?)
 
(853 גרסאות ביניים של יותר מ־100 משתמשים אינן מוצגות)
שורה 9: שורה 9:
 
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 45| ארכיון 5]]
 
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 45| ארכיון 5]]
 
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 6| ארכיון 6]]
 
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 6| ארכיון 6]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 7| ארכיון 7]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 8| ארכיון 8]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 9| ארכיון 9]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 10| ארכיון 10]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 11| ארכיון 11]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 12| ארכיון 12]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 13| ארכיון 13]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 14| ארכיון 14]]
 +
*[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 15| ארכיון 15]]
 +
  
 
=שאלות=
 
=שאלות=
  
 +
== הערה בקשר למבחן ביום שני ==
  
 +
אני תלמיד של מיכאל שיין ולא היה לנו תרגול אחד על חתכי דדקינד בכל הסמסטר ואני בספק אם מישהו יודע איך לפתור את התרגילים בנושא חתכי דדקינד.
  
== שאלה 1 תרגיל 6 ==
+
אשמח אם תתחשבו בנו.
  
האם שאלה 1 תרגיל 6 הכוונה למתבדר/מתכנס במובן הרחב או במובן הצר?
+
:מצטרפת. לא היו שיעורי בית בנושא, בהרצאה לא פתרנו תרגילים, ואין במיזלר. אשמח אם תענו לי למטה על השאלה לגבי חתכי דדקינד.
  
===תשובה===
 
במובן הצר. כלומר מתכנס = מתכנס לגבול ממשי ומתבדר = לא מתכנס לגבול ממשי. --[[משתמש:ארז שיינר|ארז שיינר]] 16:52, 16 בנובמבר 2010 (IST)
 
  
== טור מתבדר ==
+
מצטרף גם.. אין לנו מושג איך לגשת לתרגילים האלו כי אף פעם לא הראנו לנו איך לפתור תרגילים כאלה.. אפשר להעלות חומר ללימוד או לפחות פתרון לתרגיל שאדווארד העלה לאתר:
 +
http://sites.google.com/site/eduardkontorovich/
  
אם טור מתבדר אז אפשר להגיד ש0.5 טור גם מתבדר??
+
אני חושב שכמעט אף אחד בקבוצה לא יודע לפתור תרגילים כאלה..
 +
::ואם מישהו יודע (ולא נראה לי), אז הוא בטוח למד ממקור נוסף שאני לא מכירה.
  
===תשובה===
+
http://dl.dropbox.com/u/2237179/infi1dedekind.pdf
יש משפט שאומר שאם <math>\sum a_n</math> מתכנס אז גם <math>\sum 2\cdot a_n</math> מתכנס. תסיק לבד --[[משתמש:ארז שיינר|ארז שיינר]] 22:57, 16 בנובמבר 2010 (IST)
+
  
== שאלה כללית ==
+
== שאלה בקשר למבחן ביום שני ==  
  
בכדי להראות שאפסילון גדול 1\שורש n אפשר להישתמש בארכימדס ואם כן אז איך בדיוק?
+
מישהו יכול בבקשה לפרט אילו שאלות עלולות להופיע במבחן באינפי 1 ביום שני? יופיעו שאלות חישוביות?
 +
תודה.
 +
:תלוי באיזו קבוצה אתה. אם אתה אצל התיכוניסטים, מבנה המבחן הוא כדלקמן:
 +
:יש שש שאלות ואין בחירה ביניהן, סה"כ זמן המבחן שעתיים וחצי. כל שאלה 18 נקודות = סה"כ 108 נקודות.
 +
:תהיה שאלה על סדרות, על טורים, על פונקציות (גבולות וכדומה), רציפות/רציפות במ"ש, נגזרות ויישמון של נזגרות (טיילור, לופיטל וכו...). עבור תלמידיו של ד"ר שיין - יהיו חתכי דדקינד במקום ישומי הנגזרות.
 +
:כל מה שנכתב כאן נאמר על ידי ד"ר הורוביץ.
 +
:[[משתמש:Gordo6|גל א.]]
 +
::לא בדיוק - גם בקבוצה של שיין לופיטל בחומר.
  
===תשובה===
+
== שאלה על פתרון שאלה ==
לא רוצים להראות שאפסילון גדול מאחד חלק שורש n אלא רוצים להראות שקיים n שמקיים את אי השיוויון הנ"ל. לכן, רוצים n שמקיים את אי השיוויון <math>n>\frac{1}{\epsilon^2}</math> (העלאנו בריבוע ועשינו 'אחד חלקי').
+
  
עכשיו <math>\frac{1}{\epsilon^2}</math> מספר ממשי ולכן לפי ארכימדס קיים מספר טבעי גדול ממנו, כפי שרצינו.
+
תרגיל 10 (http://www.math-wiki.com/images/d/db/10Infi1Targil10Sol.pdf) שאלה 2- כתבתם שקיים M כך ש fx<M>-אמ. אבל אז בפונקציה g לקחתם את הערך 1/M+1 - והרי איך אפשר לדעת בוודאות שהפונקציה רציפה בו (צריך שהיא תהיה רציפה כדי להשתמש במשפט ערך הביניים)? אם f חסומה בין שליש למינוס שליש, אז 1/M+1 הוא 4, והפונקציה מ2 ל4 לא בהכרח רציפה!
 +
:אפשר לקחת M גדול כרצוננו, הרי זה חסם. אם היא חסומה על ידי שליש, היא בוודאי גם חסומה על ידי אחד --[[משתמש:ארז שיינר|ארז שיינר]] 13:58, 29 בינואר 2011 (IST)
 +
::אוקי.
  
== עוד שאלה כללית:] ==
+
== עזרה בשאלה ממבחן ==
  
צריך לדעת \ לכתוב בתרגיל [כלשהו] את ההוכחה לכך שהגבול של שורש n של n הוא 1? , או שמספיק לומר "ידוע שהגבול של an="..." הוא 1?
+
תהי {an} כך שלכל K טבעי <math>a_{2k+1}-a_{2k-1}<0 \and a_{2k+2}-a_{2k}>0</math>, וגם ש <math>lim_{n->infinity}a_{n+1}-a_n=0</math>. הוכח שהסדרה מתכנסת. תודה!
  
===תשובה===
+
:יש תת סדרה מונוטונית עולה, ותת סדרה מונוטונית יורדת. אתה צריך להראות ששתיהן חסומות ולכן מתכנסות, ואחר כך שבהכרח לאותו הגבול. --[[משתמש:ארז שיינר|ארז שיינר]] 13:55, 29 בינואר 2011 (IST)
אם זה לא התרגיל עצמו לא חייבים לדעת לפתור, אבל ייתכן שיבקשו מכם לפתור את זה. --[[משתמש:ארז שיינר|ארז שיינר]] 22:31, 17 בנובמבר 2010 (IST)
+
::הבנתי אותך. רק לא הצלחתי להוכיח שהתת סדרות חסומות. אפשר עזרה?
 +
:::הסדרה העולה חייבת להיות קטנה מהסדרה היורדת. אם הן היו עוברות אחת את השנייה, ההפרש בין שני איברים עוקבים לא היה יכול לשאוף לאפס. --[[משתמש:ארז שיינר|ארז שיינר]] 17:06, 29 בינואר 2011 (IST)
 +
::::אוקי..
  
== הבהרת מושגים ==
+
== עזרה בשאלה נוספת ממבחן ==
  
לפני כשבוע כתבתי sup{an}, וארז, אמרת שזה סימון לא נכון ושזה לא קיים, אך כך הגדרנו בהרצאה ובתרגול את הסופ' של הקבוצה של איברי an מהאיבר הn.
+
יהי n טבעי, נניח f מוגדרת וגזירה n פעמים בסביבת 0, ו f0=f'0=f''0=..=f^(n-1)(0)=0 (נגזרות ב0)., f^(n)(0)=5. חשב <math>lim_{x->0}(fx/(sin2x)^n)</math>. תודה מראש
 +
:אני מניח שלקחת את השאלה הזו מתוך מבחן של ד"ר הורוביץ (עשיתי אותה לפני כעשר דקות). שים לב לרמז שמופיעה מתחתיה (כאשר x->0 יתקיים ש sinx/x->1), היעזר בו למציאת פונקציה שתהיה במכנה שתהיה נוחה לגזירה, והשתמש בכלל לופיטל n פעמים. מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
 +
::לא הבנתי איך אפשר להשתמש ברמז כדי לפתור את התרגיל- גזרתי את הפונקציה עם לופיטל N פעמים ואף פעם לא היה "x" - רק סינוס, קוסינוס ודברים שקשורים לn. לא הבנתי מה זה אומר למה התכוונת כשאמרת להיעזר בו כדי למצוא פונקציה במכנה נוחה לגזירה.
 +
:::<math>Lim\frac{f(x)}{(sin2x)^n}=Lim\frac{f(x)}{(2x)^n}*\frac{(2x)^n}{(sin2x)^n}=...=Lim\frac{f(x)}{(2x)^n}</math> כל הגבולות כאשר איקס שואף לאפס. כעת הפונקציה במכנה "נוחה לגזירה". מה הנגזרת ה-nית שלה? הפעל את כלל לופיטל עבור הנגזרת ה-nית, קבל מסקנה עבור הנגזרת ה-(n-1) והפעל את הכלל שוב ושוב עד שתקבל מסקנה על הפונקציה המקורית. מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
 +
::::נראה לי שהבנתי. האם הפתרון הוא 5 חלקי N עצרת כפול 2 בחזקת N?
 +
:::::אכן.
  
===תשובה===
+
== רציפות במ"ש ==
אם יש לכם הגדרה כזו, אז מצויין, תשתמשו בה, כל עוד אתם מבינים שמדובר בעצם על <math>sup\{a_n,a_{n+1},...\}</math>. כל מרצה/מתרגל יכול להשתמש בסימונים שלו, אבל המהות נשארת אחת. --[[משתמש:ארז שיינר|ארז שיינר]] 22:30, 17 בנובמבר 2010 (IST)
+
  
== תרגיל 6 ==
+
מישהו יכול לעזור לי למצוא שתי סדרות כדי להפריך רציפות במ"ש של פונקציות xsinx xcosx?
 +
:<math>f(x)=xsinx</math> ו<math>x_n=2\pi k, y_n=2\pi k + \frac{1}{k}</math>. אזי <math>f(y_n)-f(x_n)=2\pi k sin(\frac{1}{k}) + \frac{1}{k}sin(\frac{1}{k}) \rightarrow 2\pi + 0 \neq 0</math> --[[משתמש:ארז שיינר|ארז שיינר]] 17:11, 29 בינואר 2011 (IST)
  
האם בטורים קיים משפט הסנדוויץ?
+
== קירוב ליניארי ==
  
===תשובה===
+
היי ארז,
לא יודע אם למדנו בכיתה, אבל זה נובע ישירות ממשפט הסנדוויץ של סדרות. אם <math>\forall n: a_n\leq b_n \leq c_n</math> אזי גם <math>a_1+..+a_n \leq b_1+...+b_n \leq c_1 + ...+ c_n</math> ולכן אם <math>\sum a_n = \sum c_n</math> אז סדרות הסכומים החלקיים של הטורים האלה שואפות לאותו מספר. לפי משפט הסנדביץ לסדרות, סדרת הסכומים החלקיים של <math>\sum b_n</math> מתכנסת לאותו מספר גם כן ולפיכך הטור. --[[משתמש:ארז שיינר|ארז שיינר]] 00:12, 18 בנובמבר 2010 (IST)
+
  
== גדולללללל ==
+
באחד המבחנים ביקשו להגדיר את הקירוב הליניארי ולהסביר את חשיבותו....
  
בואנה אדווה כל הכבודדדד!
+
איך מגדירים זאת בצורה מדוייקת ומה ההסבר הנדרש פה?
חבר'ה תסתכלו על פתרון של תרגיל 5 יש הוסיפו שמה דרך פתרון נוספת שאדווה חשבה עליה....
+
  
== שאלה 1 תרגיל 6 ==
+
תודה!
  
האם מותר להשתמש במשפט הבא:"אם טור מתכנס איברו הכללי שואף ל-0 (מופיע בספר של ד. מייזלר)?
+
:אני לא בטוח למה הוא מכוון בשאלה, עניתי על זה בתרגיל החזרה. מגדירים את זה בצורה מדוייקת (יש את הנוסחא בדפי התרגיל) ולדעתי ההסבר הוא שניתן כך להעריך פונקציות מבלי להיות מסוגלים לחשב אותן במפורש כאשר אנו כן יודעים לחשב את הפונקציה ואת הנגזרת קרוב לערך המבוקש. --[[משתמש:ארז שיינר|ארז שיינר]] 16:56, 29 בינואר 2011 (IST)
  
===תשובה===
+
== עזרה בפתרון שאלה ==
כן, גם קל להוכיח את זה. --[[משתמש:ארז שיינר|ארז שיינר]] 14:20, 18 בנובמבר 2010 (IST)
+
  
== שאלה ==
+
שאלתי את השאלה קודם, אך אני לא בטוח שהפתרון שנתנו לי נכון, לכן אבקש, ארז, אם תוכל, לבדוק שהפתרון שנתנו אכן נכון. הנה השאלה [[http://math-wiki.com/index.php?title=%D7%A9%D7%99%D7%97%D7%94:88-132_%D7%A1%D7%9E%D7%A1%D7%98%D7%A8_%D7%90'_%D7%AA%D7%A9%D7%A2%D7%90#.D7.A2.D7.96.D7.A8.D7.94_.D7.91.D7.A4.D7.AA.D7.A8.D7.95.D7.9F_.D7.A9.D7.90.D7.9C.D7.94]]. תודה!
  
האם אחד מהמשפטים הבאים קיים וניתן להשתמש בו ללא הוכחה?
+
:לא קראתי את הפתרון הזה, אבל פתרתי את זה בכיתה בשיעור החזרה. אם a_n אינה קושי, אז היא אינה מתכנסת ולכן הגבול החלקי העליון והתחתון שלה שונים, לכן יש לה תת סדרה ששואפת לעליון ותת סדרה ששואפת לתחתון. ניתן לכן לבנות תת סדרה אחרת כך שאיברים הזוגיים שלה יהיו מהראשונה והאיבריים האי זוגיים שלה יהיו מהשנייה. עבור תת סדרה זו, <math>\lim |a_{n_{k+1}}-a_{n_k}| = \limsup - \liminf \neq 0</math> בסתירה. --[[משתמש:ארז שיינר|ארז שיינר]] 16:52, 29 בינואר 2011 (IST)
:-אם 1 חלקי an שואפת לאפס אז |an| שואף לאינסוף?
+
::תודה.
:-אם 1 חלקי an שואפת לאפס וan סדרה עולה וחיובית אז an שואף לאינסוף?
+
תודה!
+
  
===תשובה===
+
== מישפט היינה בורל  ==
  
1. נכון ומותר להשתמש.
+
מישהוא יכול ליכתוב אותו בבקשה
 +
:"יהי <math>K</math> קטע סגור, ויהיו <math>\{I_a\}_{a\ in\ A}</math> קטעים פתוחים ב-<math>\R</math> כך ש-<math>K</math> מוכל ממש באיחוד של כולם. אזי קיים מספר סופי של קטעים כאלו כך ש-<math>K</math> מוכל ממש בתוך האיחוד שלהם". (אני לא הייתי בהרצאה הזו, זה מתוך מחברת שצילמתי ממישהו). מקווה שעזרתי [[משתמש:Gordo6|גל א.]]
  
2. נובע מאחד, ואין צורך ב'עולה'
+
תודה פשוט בוויקפדיה זה רשום  בצורה קצת פחות פורמלית
  
--[[משתמש:ארז שיינר|ארז שיינר]] 18:11, 18 בנובמבר 2010 (IST)
+
אולי יש לכה במיקרה גם את המישפט של בולצאנו ויירשטראס לקבוצות
 +
:"תהי <math>S</math> קבוצה המוכלת ממש בממשיים, קבוצה אינסופית אך גם חסומה. אזי קיימת לה נקודת הצטברות". מקווה שעזרתי, [[משתמש:Gordo6|גל א.]]
 +
::אגב, אני לומד אצל ד"ר הורוביץ. אם אתה לא לומד אצלו, ייתכן שהמרצה שלך ניסח את זה קצת אחרת, אבל בסופו של דבר זה אותם משפטים.
 +
:::בולצאנו-ויירשטראס זה לא זה שלכל סדרה חסומה יש תת סדרה מתכנסת?
 +
::::אני מנחש שהוא מתכוון לגרסא: "לכל קבוצה אינסופית וחסומה יש נקודות הצטברות" --[[משתמש:ארז שיינר|ארז שיינר]] 19:26, 30 בינואר 2011 (IST)
  
== עוד שאלה ==
+
== עזרה בבדיקת היתכנסות הטור ==
  
אם אני רוצה להוכיח שסדרה מתכנסת על פי הקריטריון של קושי. האם זה טריוויאלי מספיק להגיד שאפשר להוכיח את הטענה ע"י להראות ש <math>|a_{n+1}-a_n|</epsilon</math> במקום  <math>|a_m-a_n|</epsilon</math> ?
+
<math>\sum \frac{(2n)!}{(2n)^{2n}}</math>
אם לא, האם אפשר להוכיח את הטענה בקצרה במקום בצורה מלאה עם אינדוקציה?
+
:{{לא מתרגל}} מתכנס, אני מיד אכתוב למה.
 +
:{{הערה|חזרתי:}}
 +
{|
 +
{{=|l=\overline{\lim_{n\to\infty} }\frac{(2n+2)!/(2n+2)^{2n+2} }{(2n)!/(2n)^{2n} }
 +
  |r=\overline{\lim}\frac{(2n)!(2n+1)(2n+2)(2n)^{2n} }{(2n)!(2n+2)^{2n}(2n+2)^2 }
 +
}}
 +
{{=|r=\lim\left(\frac{2n+1}{2n+2}\cdot\left(\frac{2n}{2n+2}\right)^{2n}\right)
 +
}}
 +
{{=|r=\lim\frac{2n+1}{2n+2}\ \cdot\ \lim\left(\left(1+\frac1n\right)^n\right)^{-2}
 +
}}
 +
{{=|r=1\cdot e^{-2}
 +
}}
 +
{{=|r=1
 +
  |o=<
 +
}}
 +
|}
 +
:והודות לד'אלמבר הטור (שהוא טור חיובי) מתכנס. {{משל}}
 +
פשש  זה בדיוק מה שלא ראיתי החלק של המנה שמיתכנס ל e תודה רבה
  
===תשובה===
+
== בקשה ==
לא רק שזה לא טריוויאלי, זה בכלל לא נכון, כפי שראינו בתרגיל.
+
  
אני לא יודע מתי צריך אינדוקציה, אני הראתי דוגמאות ללא אינדוקציה, לכן אני לא יכול לומר שבאופן כללי אפשר לדלג על חלק מהטענה. --[[משתמש:ארז שיינר|ארז שיינר]] 18:12, 18 בנובמבר 2010 (IST)
+
שלום רב,
:זה לא נכון??? הנה הוכחה בקצרה (ללא אינדוקציה)
+
למישהו יש מושג איך לפתור את שאלה 1א במבחן הזה: http://www.studenteen.org/inf1_exam_blei_2008_a.pdf
אם הוכחנו ש <math>|an+1-an|<e</math>. אזי גם <math>|an+1-an|<e/p</math> לכל P טבעי ואז
+
תודה מראש!
<+|a_{n+1}-a_n|< e/p+...+e/p<e .//math>|a_{n+p}-a_n|<|a_{n+p}-a_{n+p-1}+a_{n+p-1}-...-a_{n+1}+a_{n+1}-a_n|<|a_{n+p}-a_{n+p-1}|+...{</math>
+
:{{לא מתרגל}} יש לי רעיון מתחכם, אבל יקח לי קצת זמן לכתוב אותו.
(אחד מהמעברים היה אי שוויון המשולש רק לכמה גורמים). יש משהו לא נכון בהוכחה שלי?
+
::יש סיכוי שתכתוב אותו כאן בכל זאת היום או מחר? תודה מראש!
:עריכה: משהו השתבש מתמטיקה, לא מוצא איך לתקן, מקווה שתבין
+
:::{{לא מתרגל}}הרעיון הכללי - נוכיח שזה שואף לאינסוף. לשם כך מוכיחים שהטור <math>\sum \frac{2^n n! (4n)^n}{(4n)!}</math> מתכנס (מבחן ד'אלמבר), לכן <math>\frac{2^n (n!) (4n)^n}{(4n)!}\to0</math> ולכן (מכיוון שהסדרה הזו חיובית), <math>\frac{(4n)!}{2^n (n!) (4n)^n}\to\infty</math>. אח"כ, מכיוון ש-<math>\forall n\in\mathbb N:\ \binom{3n}{n}\ge1</math>, מתקיים <math>\forall n\in\mathbb N:\ \sqrt[n]{\binom{3n}{n}}\ge1</math> ולבסוף נקבל שהסדרה הכללית מתכנסת במובן הרחב לאינסוף. {{משל}}
 +
::::או, זה יפה ^^
  
 +
== שאלה אלמנטרית ==
  
::כן, יש משהו לא נכון. לכל <math>\frac{\epsilon}{p}</math> יש מקום אחר בסדרה שהחל ממנו יתקיים אי השיוויון. בסדרת קושי צריך עבור כל אפסילון מקום '''קבוע''' בסדרה כך שהחל ממנו והלאה המרחק בין '''כל''' שני זוגות איברים יהיה קטן ממנו. נניח לקחת <math>\frac{\epsilon}{p}</math>  אז  ניקח <math>a_n,a_{n+p+1}</math> עבור הזוג הזה אי השיוויון לא יתקיים. --[[משתמש:ארז שיינר|ארז שיינר]] 18:56, 18 בנובמבר 2010 (IST)
+
המרצה שלנו כתב בתחילת הקורס: P בריבוע זוגי -> P זוגי. זה כנראה נכון רק כאשר P שלם. יש לזה הוכחה קלה?
:::לא הבנתי, למה אי השוויון לא יתקיים? לא הבנתי גם מה לא נכון בהוכחה. כתבת את ההגדרה של סדרת קושי, וגם אני השתמשתי בהגדרה.
+
  
::::אתה מתחיל מאמירה שגוייה: '''אם הוכחנו ש <math>|a_{n+1}-a_n|<\epsilon</math>. אזי גם <math>|a_{n+1}-a_n|<\frac{\epsilon}{p}</math> לכל P טבעי'''. הרי בוודאי אי השיוויון השני לא נובע מהראשון. אם תנסח את זה '''היטב''' תראה שזה לא עובד, כפי שתארתי (עבור כל p אתה צריך להזיז את המקום בסדרה, שאמור להיות קבוע עבור אפסילון). --[[משתמש:ארז שיינר|ארז שיינר]] 20:44, 18 בנובמבר 2010 (IST)
+
:גם אני חיפשתי הוכחה עוד מזמן, והגעתי למסקנה שההוכחה היא פשוט של-p בריבוע יש את כל הגורמים של p, פעמיים. אז אם הוא זוגי זה אומר שיש לו את הגורם 2. נניח בשלילה של-p אין את הגורם 2. אבל ל-p בריבוע יש את הגורם 2, לכן חייב להיות ל-p את שורש 2. בסתירה לכך שהוא שלם. לכן יש ל-p את הגורם 2 כלומר הוא זוגי.
:::::בטח שזה כן נכון להגיד את זה על כל P טבעי! לא חייב להיות אותו N שבשבילו לכל n>N זה מתקיים, אבל ברור שזה נכון לכל e/P כי האי שוויון an-am<e צריך להתקיים '''לכל e'''. לכן אפשר לשחק אם e ולהגיד עליו מה שרוצים כל עוד משאירים אותו חיובי, אפשר להגיד שזה נכון לשורש אפסילון, חצי אפסילון, אפסילון ועוד אלפיים חלקי מליון. זה כמו שהוכחנו כל מני הוכחות בכיתה שבהם השתמשנו בהוספה והורדה של איבר בתוך הערך המוחלט ואז הפיכתו לשני ערכים מוחלטים בעזרת אי שוויון המשולש, ואז אמרנו שכל אחד מהערכים המוחלטים קטן מe/2 כדי שהסכום שלהם יצור e. אפשר להגיד גם במילים אחרות במקום לכתוב שזה נכון ל e/p זה נכון לe ואז הסכום של הדברים בהוכחה שרשמתי יתן p*e; עכשיו נגדיר e'=pe ואז יוצא שהאי שוויון שלעיל נכון לכל e' שגדול מאפס ולכן הדרוש מוכח. ואם התכוונת שזה לא נכון כי יש בעיה כלשהי עם ה-<math>N_e</math>, אז ניקח ואת <math>N=max{N0,N1,N2,...}</math> כאשר Ni הוא הN שבשבילו לכל n<N מתקיים
+
<math>|a_{n+p-i}-a_{n+p-i-1}|<\epsilon</math> (לכל אפסילון כמובן) והNi רץ עד שמגיעים לאי שוויון
+
<math>|a_{n+1}-a_n|<\epsilon</math>. ולN הזה האי שוויון שרשמתי בטוח נכון. האם עדיין אחד מהדברים שאמרתי לא נכון?
+
  
::::::יפה מאד, אתה יודע מה הMAX הזה יהיה? בהכרח אינסוף. ואינסוף אינו מספר טבעי (במדויק - לא קיים המקסימום לקבוצה הזו) --[[משתמש:ארז שיינר|ארז שיינר]] 21:41, 18 בנובמבר 2010 (IST)
+
::זה נכון עבור שלמים, אחרת אין משמעות לזוגי. זה נובע מחומר שהוא לא של הקורס הזה. יש משפט שאומר שאם ראשוני מחלק את ab אז הוא מחלק את a או מחלק את b, לכן אם 2 מחלק את aa=a^2 סימן שהוא מחלק את a. --[[משתמש:ארז שיינר|ארז שיינר]] 13:08, 30 בינואר 2011 (IST)
:::::::2 דברים חשובים: 1) למה, באמת למה, שהMAX הזה יהיה אינסוף- זה לא הגיוני בכלל- יש מספר בר מניה של מספרים טבעיים Ni. המקסימלי מביניהם הוא אחד מהם ולכן חייב להיות טבעי וסופי!!! זה לא הגיוני! ו-2) אני פשוט בטוח ב100 אחוזים שהטענה שאמרתי נכונה. אתה יכול להפריך אותה על ידי דוגמה נגדית? ובנוסף, אתה הרבה פעמים משתמש במושג- הטענה לא בהכרח נכונה "כפי שראינו בתרגיל". אתה צריך לזכור שיש הרבה קבוצות וזה שהקבוצה שלך ראתה את זה בתרגול לא אומר שהקבוצה שלנו ראתה את זה. להפך, רוב הפעמים שאתה אומר "כפי שראינו בתרגול", אני לא זוכר שראיתי משהו כפי שאמרת בתרגול שלי. אז נגיד במקרה הזה, אתה יכול להסביר את מה שראיתם בתרגול וכך להסביר למה הטענה לא נכונה? אני חייב שהטענה הזאת תהיה נכונה כדי לפתור את תרגילים 4,6,8 ו-9 בתרגיל 5 (כל תרגיל שמכיל נוסחת נסיגה).
+
  
 +
:::ואני הופתעתי שלא מצאתי דרך מתמטית להוכחה אפילו שהמרצה כתב "קל להוכיח ש...".
  
===תשובה===
+
== חתכי דדקינד ==
  
1. למספר סופי של מספרים טבעיים קיים מקסימום. למספר אינסופי של מספרים טבעיים, '''לעולם אין מקסימום'''. הרי יש רק מספר סופי של מספרים טבעיים שקטנים שווים מM מסויים, איך תדחוף שם אינסוף?
+
לקבוצה של ד"ר שיין תהיה במבחן שאלה על חתכי דדקינד. הבעיה היא שלא היה תרגול בנושא, וגם אין שאלות עם תשובות במיזלר או בכל מקום אחר שבו חיפשתי.
  
2. אני לא יכול לומר בוודאות שתמיד אין מקסימום, הרי לסדרות הקושי כן ניתן למצוא מקסימום כזה. אני פשוט אומר שהוא לא חייב להיות קיים בהנתן תנאי השאלה.
+
שיין מסר 3 תרגילים בנושא, אבל אין לי מושג לאיזה פתרון הוא מצפה. כלומר, מה הכוונה "שפה של חתכי דדקינד"? אפשר בבקשה לראות פתרון של אחת או כמה מהשאלות הבאות: http://sites.google.com/site/eduardkontorovich/home/%D7%94%D7%9B%D7%A0%D7%94%D7%9C%D7%9E%D7%91%D7%97%D7%9F.pdf?attredirects=0&d=1 בבקשה ותודה רבה מראש!
 +
:מצטרף, במיוחד אם אפשר את הפתרון לשאלה 1 (הפתרון היחיד שאני מצאתי הוא "שסדרת החסמים העליונים של An מתכנסת", אבל סדרת החסמים העליונים של An היא בעצם סדרת הממשיים הנוצרים ע"י החתכים, כלומר לא אמרתי כלום בפתרון הזה.)
  
3. אתם יכולים לשאול ספציפית על משהו שאמרתי ראיתי בתרגול, ואני אבהר אותו.
+
::לי בפתרון חשוב במיוחד לראות את הנימוקים והניסוח, כלומר ה"שפה" של דדקינד. אז למרות שאני חושבת שאני יודעת את התשובה הסופית של 1, יעזור לי מאוד מאוד לראות פתרון מלא של 100 במבחן. אז התשובה, כלומר התנאי, הוא: לכל אפסילון חיובי קיים N כך שלכל n טבעי גדול מ-N, מתקיים שהקבוצה <math>A_n/A_{L-\epsilon}</math> מוכלת ב-<math>(L-\epsilon,L)</math>. בעצם שינוי של ההגדרה של ההתכנסות.
 +
:::התבלבלת, מה זה An/A_L-e?
 +
::::לא התבלבלתי, זה הקבוצה <math>A_n</math> בלי הקבוצה <math>A_{L-\epsilon}</math>. תיזכר בסימונים של בדידה.
 +
:::::אוקי.. אבל אני לא רואה איך התנאי פה קשור להתכנסות של סדרת המספרים. אולי תסבירי מה הכוונה פה. אבל בעצם, הרעיון הזה של לקחת את תנאי ההתכנסות למספרים ולהעתיק אותו לחתכים הוא רעיון ממש טוב, נראה לי שהוא יכול לעבוד. בזכות הרעיון שלך פתרתי את זה כך: צריך לעשות קודם כמה הכנות. נגדיר: חתך  A הוא "חיובי" אם המס' שמייצר אותו (תמיד קיים) גדול מאפס, או במילים אחרות שכל מספר שקטן nאפס שייך לA (כנ"ל עם שלילי, אי שלילי וכו'). (הערה- כשאני אומר חתך A אני מתכוון לחתך A,A'). כמו כן "A-" הוא החתך שמייצר את המספר הנגדי לA, והרי הוכחנו בכיתה שלכל מספר ממשי יש נגדי ושכל מספר מיוצר ע"י חתך יחיד (כי אם המספר רציונלי, ניקח תמיד חתך מהסוג הראשון, ואם המספר אי רציונלי ניקח חתך מהסוג השלישי), ולכן ההגדרה טובה, ולבסוף נגדיר "|A|" כ-A אם A חיובי וכ- A- אם A שלילי, וב0 ברור. כעת התנאי יהיה שאם לכל אפסילון גדולה E (חתך) חיובית (גדולה מאפס=חיובית כמו שהגדרתי) קיים N כך שלכל n>N מתקיים שהחתך |An-L| מוכל בחתך E. (שוב, החלק השמאלי של החתך), אז סדרת החתכים מתכנסת לL. עכשיו רק צריך להוכיח שזה תנאי הכרחי ומספיק. אולי אנסה בהמשך ואגיד לך אם יש תוצאות..
  
4. דוגמאות לאיך להוכיח שסדרה עם נוסחאת נסיגה היא סדרת קושי יש באתר
 
  
5. ראיתם את הסדרה <math>a_{n+1} = a_n + \frac{1}{n+1}</math>? אנחנו הוכחנו בתרגיל וגם ברצאה (אני מנחש שגם אתם) שהסדרה הזו אינה יכולה להיות סדרת קושי ולכן אינה מתכנסת. זאת מכיוון שאם תיקח זוג איברים <math>a_n,a_{2n}</math> ההפרש בינהם יהיה תמיד גדול מחצי, ללא תלות בn (אפשר להוכיח את זה). --[[משתמש:ארז שיינר|ארז שיינר]] 22:53, 18 בנובמבר 2010 (IST)
+
http://dl.dropbox.com/u/2237179/infi1dedekind.pdf
:לא הספקתי לבדוק את התשובות האחרות, אבל לגבי המקסימום- אני עדיין ממש, ממש לא מסכים איתך. יש 2 מקומות בסדרה, a_(n+p), an. יש ביניהם p אנים. (nים). לכל n כזה מותאם Ni טבעי סופי שבשבילו לכל n<Ni מתקיימים כל מיני אי שוויונים שהצגתי קודם. נסמן N שווה למקסימלי מבין כל הNi-ים האלה. יש רק p סופי של כאלה. לכן קל מאוד לראות שN הוא טבעי סופי בהחלט.
+
:לא הבנתי אף אחד מהפתרונות שלו ואני גם לא בטוח שהם נכונים.
::אתה מתבלבל בסדר ההגדרה. קודם יש N אחרי זה יש זוג איברים. אתה לא בוחר את N בהתאם לזוג, פשוט זה לא עובד ככה. N אחד חייב להתאים '''לכל''' הזוגות. ואם תיקח אינסוף זוגות יהיו אינסוף N-ים. --[[משתמש:ארז שיינר|ארז שיינר]] 23:59, 18 בנובמבר 2010 (IST)
+
'''מי כתב את הפתרון הזה?'''
:::'''אין אינסוף זוגות, יש מספר סופי של זוגות. מה קרה לך??? N הוא אחד מתוך מספר סופי של מספרים שכל אחד מהם הוא מספר סופי, לכן ברור שהוא סופי!!!!!''' דבר שני, יש N שמתאים לכל הזוגות, והN הזה הוא המקסימלי מבין הNi-ים. הN הזה מתאים בוודאות לכל הזוגות.
+
::זה מה ששיין שלח לתלמידים שלו במייל. תודה שיין, אבל זה כל כך לא בסדר ומלחיץ שלא פתרנו תרגילים כאלו קודם...
:::'''עוד 2 דברים. דבר ראשון, אתה יכול לתת דוגמה נגדית כדי שאני יראה שזה לא נכון? דבר שני, איך אפשר לפתור את כל התרגילים עם ה an+1 בלי המשפט הזה????'''
+
  
== תרגיל 5 שאלה 2 ==
+
== בפתרון למבחן של זלצמן 2010 ==
  
ידוע שאברי הסדרה <math>a_n</math> אי שליליים? אחרת איך אפשר לעשות גבול לשורש <math>a_n</math>?
+
כתוב בפיתרון לשאלה 5.ג
 +
ש<<math>e^{(x^2)}</math> רציפה במ"ש.
  
              אני לא מתרגל, אבל כשפתרתי הנחתי שזה ככה בגלל הסיבה שאמרת.
+
למה זה נכון?
  
== שאלה על משפט. ==
+
:זה לא נכון, וגם לא רשום שם. רשום שם שהיא רציפה, ובגלל שסינוס גם רציפה, ההרכבה רציפה ומחזורית ולכן '''ההרכבה''' רציפה במ"ש. --[[משתמש:ארז שיינר|ארז שיינר]] 13:12, 30 בינואר 2011 (IST)
  
יש איזה משפט אחד מהתרגול שהיה די לא מובן ודיברנו עליו ממש קצת זמן ועברנו הלאה. חשבתי שאולי המשפט הזה הוא הדרך לפתור את השאלות 4,5,6,9 וכל אלה עם הan+1. זה המשפט איך שהוא נכתב על הלוח בצורה מדויקת:
+
== כלל לופיטל ==
{an} סדרה חיובית. אם קיים גבול <math>lim_{n->\infty}a_{n+1}/an=L</math> אז
+
 
:א. L=lim(the nth root of an) (הגבול הוא השורש האני של an, לא יודע איך כותבים בשפה מתמטית)
+
כלל לופיטל הוא בחומר של הקבוצה של שיין?
:ב. L<1 -> liman=0
+
:למדנו את זה אז כנראה שכן...
:ג. L>1 -> liman=infinity
+
 
:ד. L=1 -> אי ודאות.
+
== כלל לופיטל ==
אפשר הסבר מדויק לגבי מה המשפט אומר, איך א. בדיוק מתקשר לשאר הסעיפים, האם המשפט נכון או שהמתרגל טעה במשהו, האם יש "או" או "וגם" בין הסעיפים (בין א. לשאר), מה זה אומר האי ודאות בסעיף ד', האם המשפט באמת שימושי או שלא באמת משתמשים בו בדרך כלל, והאם באמת צריך להשתמש בו בשביל לפתור את השאלות עם ה an+1? תודה!!
+
 
 +
האם אפשר להשתמש בכלל לופיטל כדי למצוא גבולות בקצוות כאשר בודקים רציפות במ"ש של פונקציה?
 +
 
 +
:לדעתי כן, מומלץ לשאול את המרצה או המתרגל בעת המבחן בנוסף. --[[משתמש:ארז שיינר|ארז שיינר]] 13:24, 30 בינואר 2011 (IST)
 +
 
 +
== מבחני קושי ודלמבר ==
 +
 
 +
מבחן קושי הוא עם limsup בשני המקרים (התכנסות והתבדרות) ומבחן דלמבר הוא עם limsup במקרה של התכנסות ו liminf במקרה של התבדרות, או שיש לי טעות? תודה!
 +
:אין טעות. תסתכל על ההוכחות שלהם ותבין למה.
 +
 
 +
== חקירת פונקציות, המבחן של ד"ר הורוביץ ==
 +
 
 +
צריך לזכור בעל-פה את הסדר של הסעיפים בחקירת פונקציות? (תחום הגדרה ונקודות אי רציפות, האם הפונקציה זוגית/אי-זוגית/לא זה ולא זה, אסימפטוטות, תחומי עלייה+ירידה+נקודות קריטיות, תחומי קעירות+קמירות+נקודות פיתול, טבלת ערכים)<br/>או שזה כתוב במבחן?
 +
:הוא אמר שלא בטוח שהוא יכתוב את זה. אבל הוא גם אמר שאין חובה לעשות לפיהסדר שהוא רשם אם כל הסעיפים כלולים. [[משתמש:Gordo6|גל א.]]
 +
 
 +
== [[מדיה:10Infi1TargilFinalGrades.pdf|ציונים]] ==
 +
 
 +
מספר תעודת הזהות שלי (312491822), ואפילו לא מספר דומה לו, לא מופיע בדף הציונים שפורסם היום. אתם יכולים לבדוק את זה? תודה רבה
 +
:יתכן ואתה תיכוניסט? אלו ציונים רק לתלמידים של זלצמן.
 +
::כן, תיכוניסט. תודה
 +
:::הציונים של התיכוניסטים שאדוארד מתרגל מופיעים באתר שלו: sites.google.com/site/eduardkontorovich
 +
 
 +
== איקס בריבוע ==
 +
 
 +
איך מוכיחים ש-<math>x^2</math> לא רציפה במ"ש? תודה.
 +
:{{לא מתרגל}}ראה [[מדיה:10Infi1Targil8Sol.pdf|פתרון תרגיל 8]], שאלה 9.
 +
::תודה.
 +
 
 +
== שאלה קלה מדי? ==
 +
 
 +
צ"ל או להפריך שאם הטור an מתכנס והטור bn מתבדר אז הטור an+bn מתבדר. לכאורה אפשר להניח בשלילה שהטור an+bn מתכנס, ואז הטור an + הטור bn מתכנס (*), לכן הטור an ועוד הטור bn פחות הטור an = הטור bn מתכנס, בסתירה. אבל ב-(*) הזזנו את המקום של אינסוף איברים, ולכן ההוכחה לא מספיקה. מה לעשות? (ניסיתי לרפד באפסים כמו שכתוב ב[[שיחה:88-132 סמסטר א' תשעא/ ארכיון 15#משפט רימן|ארכיון 15]])
 +
:מישהו יודע?
 +
 
 +
== פתרון של הבחינות ==
 +
 
 +
הי ארז,
 +
 
 +
ראשית תודה שהעלת לנו את הפתרון לבחינות כל כך מהר. יתכן ששאלתי לא במקום משום שאני לא לומד אצל זלצמן - אבל מה עם הפתרון לשאלות 3 ו-6 בבחינה שלו? הן היו שאלות של ציטוט משפטים?
 +
 
 +
אגב, אולי לבחינות של התיכוניסטים כדאי להוסיף הבהרה ששאר השאלות שלא פורסם להן פתרון היו בבחינה של זלצמן (שאלה 1 של הורוביץ = שאלה 1 של זלצמן, שאלה 2 של הורוביץ = שאלה 7 של זלצמן, שאלה 4 של הורוביץ = שאלה 4 של זלצמן, שאלה 5 של הורוביץ = שאלה 2 של זלצמן). כמו כן כדאי להוסיף שהבחינה של ד"ר שיין זהה לבחינה של ד"ר הורוביץ, למעט בשאלה 6 שעסקה בחתכי דדקינד.
 +
 
 +
כעת שאלה לגבי הפתרונות עצמם: בשאלה 5ג (של זלצמן) כתבת ששורש איקס רציפה בכל הממשיים, אבל זה כמובן לא נכון כי היא מוגדרת רק בממשיים החיוביים. האם יש דרך אחרת להוכיח רציפות במ"ש בסעיף זה בלי להתבסס על טענה זו?
 +
 
 +
שוב תודה על פרסום הפתרונות (במיוחד עבור המבחן של ד"ר הורוביץ שזה בכלל לא מובן מאליו).
 +
 
 +
===תשובה===
 +
שאלה 3 הייתה ציטוט משפטים, שאלה 6 עסקה בנגזרות, ושאלה 8 הייתה להוכיח את משפט קנטור - לא כתבתי להן פתרונות, כמו כן לא כתבתי פתרון לשאלה על חתכי דדיקינד.
  
== סדרת קושי ==
+
לגבי 5ג, לא צריך ששורש איקס יהיה רציף במ"ש על כל הממשיים, אלא רציף במ"ש בתמונה של הפונקציה עליה הוא מורכב - במקרה זה הערך המוחלט ותמונתו <math>[0,\infty)</math> ולכן זה פתרון תקין.
  
בדוגמאות לסדרות קושי רק הראיתם ש <math>|am-an|<f(n)->0</math> במקום להראות ש (לכל אפסילון ושאר הדברים) מתקיים <math>|am-an|<\epsilon</math>. אנא הרחיבו בנושא.
+
====תשובה====
 +
אוקי, שוב תודה :-)

גרסה אחרונה מ־15:34, 5 בפברואר 2011

חזרה לדף הקורס


גלול לתחתית העמוד


הוספת שאלה חדשה

הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).

-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן

אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.

ארכיון


שאלות

הערה בקשר למבחן ביום שני

אני תלמיד של מיכאל שיין ולא היה לנו תרגול אחד על חתכי דדקינד בכל הסמסטר ואני בספק אם מישהו יודע איך לפתור את התרגילים בנושא חתכי דדקינד.

אשמח אם תתחשבו בנו.

מצטרפת. לא היו שיעורי בית בנושא, בהרצאה לא פתרנו תרגילים, ואין במיזלר. אשמח אם תענו לי למטה על השאלה לגבי חתכי דדקינד.


מצטרף גם.. אין לנו מושג איך לגשת לתרגילים האלו כי אף פעם לא הראנו לנו איך לפתור תרגילים כאלה.. אפשר להעלות חומר ללימוד או לפחות פתרון לתרגיל שאדווארד העלה לאתר: http://sites.google.com/site/eduardkontorovich/

אני חושב שכמעט אף אחד בקבוצה לא יודע לפתור תרגילים כאלה..

ואם מישהו יודע (ולא נראה לי), אז הוא בטוח למד ממקור נוסף שאני לא מכירה.

http://dl.dropbox.com/u/2237179/infi1dedekind.pdf

שאלה בקשר למבחן ביום שני

מישהו יכול בבקשה לפרט אילו שאלות עלולות להופיע במבחן באינפי 1 ביום שני? יופיעו שאלות חישוביות? תודה.

תלוי באיזו קבוצה אתה. אם אתה אצל התיכוניסטים, מבנה המבחן הוא כדלקמן:
יש שש שאלות ואין בחירה ביניהן, סה"כ זמן המבחן שעתיים וחצי. כל שאלה 18 נקודות = סה"כ 108 נקודות.
תהיה שאלה על סדרות, על טורים, על פונקציות (גבולות וכדומה), רציפות/רציפות במ"ש, נגזרות ויישמון של נזגרות (טיילור, לופיטל וכו...). עבור תלמידיו של ד"ר שיין - יהיו חתכי דדקינד במקום ישומי הנגזרות.
כל מה שנכתב כאן נאמר על ידי ד"ר הורוביץ.
גל א.
לא בדיוק - גם בקבוצה של שיין לופיטל בחומר.

שאלה על פתרון שאלה

תרגיל 10 (http://www.math-wiki.com/images/d/db/10Infi1Targil10Sol.pdf) שאלה 2- כתבתם שקיים M כך ש fx<M>-אמ. אבל אז בפונקציה g לקחתם את הערך 1/M+1 - והרי איך אפשר לדעת בוודאות שהפונקציה רציפה בו (צריך שהיא תהיה רציפה כדי להשתמש במשפט ערך הביניים)? אם f חסומה בין שליש למינוס שליש, אז 1/M+1 הוא 4, והפונקציה מ2 ל4 לא בהכרח רציפה!

אפשר לקחת M גדול כרצוננו, הרי זה חסם. אם היא חסומה על ידי שליש, היא בוודאי גם חסומה על ידי אחד --ארז שיינר 13:58, 29 בינואר 2011 (IST)
אוקי.

עזרה בשאלה ממבחן

תהי {an} כך שלכל K טבעי a_{2k+1}-a_{2k-1}<0 \and a_{2k+2}-a_{2k}>0, וגם ש lim_{n->infinity}a_{n+1}-a_n=0. הוכח שהסדרה מתכנסת. תודה!

יש תת סדרה מונוטונית עולה, ותת סדרה מונוטונית יורדת. אתה צריך להראות ששתיהן חסומות ולכן מתכנסות, ואחר כך שבהכרח לאותו הגבול. --ארז שיינר 13:55, 29 בינואר 2011 (IST)
הבנתי אותך. רק לא הצלחתי להוכיח שהתת סדרות חסומות. אפשר עזרה?
הסדרה העולה חייבת להיות קטנה מהסדרה היורדת. אם הן היו עוברות אחת את השנייה, ההפרש בין שני איברים עוקבים לא היה יכול לשאוף לאפס. --ארז שיינר 17:06, 29 בינואר 2011 (IST)
אוקי..

עזרה בשאלה נוספת ממבחן

יהי n טבעי, נניח f מוגדרת וגזירה n פעמים בסביבת 0, ו f0=f'0=f0=..=f^(n-1)(0)=0 (נגזרות ב0)., f^(n)(0)=5. חשב lim_{x->0}(fx/(sin2x)^n). תודה מראש

אני מניח שלקחת את השאלה הזו מתוך מבחן של ד"ר הורוביץ (עשיתי אותה לפני כעשר דקות). שים לב לרמז שמופיעה מתחתיה (כאשר x->0 יתקיים ש sinx/x->1), היעזר בו למציאת פונקציה שתהיה במכנה שתהיה נוחה לגזירה, והשתמש בכלל לופיטל n פעמים. מקווה שעזרתי, גל א.
לא הבנתי איך אפשר להשתמש ברמז כדי לפתור את התרגיל- גזרתי את הפונקציה עם לופיטל N פעמים ואף פעם לא היה "x" - רק סינוס, קוסינוס ודברים שקשורים לn. לא הבנתי מה זה אומר למה התכוונת כשאמרת להיעזר בו כדי למצוא פונקציה במכנה נוחה לגזירה.
Lim\frac{f(x)}{(sin2x)^n}=Lim\frac{f(x)}{(2x)^n}*\frac{(2x)^n}{(sin2x)^n}=...=Lim\frac{f(x)}{(2x)^n} כל הגבולות כאשר איקס שואף לאפס. כעת הפונקציה במכנה "נוחה לגזירה". מה הנגזרת ה-nית שלה? הפעל את כלל לופיטל עבור הנגזרת ה-nית, קבל מסקנה עבור הנגזרת ה-(n-1) והפעל את הכלל שוב ושוב עד שתקבל מסקנה על הפונקציה המקורית. מקווה שעזרתי, גל א.
נראה לי שהבנתי. האם הפתרון הוא 5 חלקי N עצרת כפול 2 בחזקת N?
אכן.

רציפות במ"ש

מישהו יכול לעזור לי למצוא שתי סדרות כדי להפריך רציפות במ"ש של פונקציות xsinx xcosx?

f(x)=xsinx וx_n=2\pi k, y_n=2\pi k + \frac{1}{k}. אזי f(y_n)-f(x_n)=2\pi k sin(\frac{1}{k}) + \frac{1}{k}sin(\frac{1}{k}) \rightarrow 2\pi + 0 \neq 0 --ארז שיינר 17:11, 29 בינואר 2011 (IST)

קירוב ליניארי

היי ארז,

באחד המבחנים ביקשו להגדיר את הקירוב הליניארי ולהסביר את חשיבותו....

איך מגדירים זאת בצורה מדוייקת ומה ההסבר הנדרש פה?

תודה!

אני לא בטוח למה הוא מכוון בשאלה, עניתי על זה בתרגיל החזרה. מגדירים את זה בצורה מדוייקת (יש את הנוסחא בדפי התרגיל) ולדעתי ההסבר הוא שניתן כך להעריך פונקציות מבלי להיות מסוגלים לחשב אותן במפורש כאשר אנו כן יודעים לחשב את הפונקציה ואת הנגזרת קרוב לערך המבוקש. --ארז שיינר 16:56, 29 בינואר 2011 (IST)

עזרה בפתרון שאלה

שאלתי את השאלה קודם, אך אני לא בטוח שהפתרון שנתנו לי נכון, לכן אבקש, ארז, אם תוכל, לבדוק שהפתרון שנתנו אכן נכון. הנה השאלה [[1]]. תודה!

לא קראתי את הפתרון הזה, אבל פתרתי את זה בכיתה בשיעור החזרה. אם a_n אינה קושי, אז היא אינה מתכנסת ולכן הגבול החלקי העליון והתחתון שלה שונים, לכן יש לה תת סדרה ששואפת לעליון ותת סדרה ששואפת לתחתון. ניתן לכן לבנות תת סדרה אחרת כך שאיברים הזוגיים שלה יהיו מהראשונה והאיבריים האי זוגיים שלה יהיו מהשנייה. עבור תת סדרה זו, \lim |a_{n_{k+1}}-a_{n_k}| = \limsup - \liminf \neq 0 בסתירה. --ארז שיינר 16:52, 29 בינואר 2011 (IST)
תודה.

מישפט היינה בורל

מישהוא יכול ליכתוב אותו בבקשה

"יהי K קטע סגור, ויהיו \{I_a\}_{a\ in\ A} קטעים פתוחים ב-\R כך ש-K מוכל ממש באיחוד של כולם. אזי קיים מספר סופי של קטעים כאלו כך ש-K מוכל ממש בתוך האיחוד שלהם". (אני לא הייתי בהרצאה הזו, זה מתוך מחברת שצילמתי ממישהו). מקווה שעזרתי גל א.

תודה פשוט בוויקפדיה זה רשום בצורה קצת פחות פורמלית

אולי יש לכה במיקרה גם את המישפט של בולצאנו ויירשטראס לקבוצות

"תהי S קבוצה המוכלת ממש בממשיים, קבוצה אינסופית אך גם חסומה. אזי קיימת לה נקודת הצטברות". מקווה שעזרתי, גל א.
אגב, אני לומד אצל ד"ר הורוביץ. אם אתה לא לומד אצלו, ייתכן שהמרצה שלך ניסח את זה קצת אחרת, אבל בסופו של דבר זה אותם משפטים.
בולצאנו-ויירשטראס זה לא זה שלכל סדרה חסומה יש תת סדרה מתכנסת?
אני מנחש שהוא מתכוון לגרסא: "לכל קבוצה אינסופית וחסומה יש נקודות הצטברות" --ארז שיינר 19:26, 30 בינואר 2011 (IST)

עזרה בבדיקת היתכנסות הטור

\sum \frac{(2n)!}{(2n)^{2n}}

(לא מתרגל/ת): מתכנס, אני מיד אכתוב למה.
חזרתי:
\overline{\lim}\frac{(2n)!(2n+1)(2n+2)(2n)^{2n} }{(2n)!(2n+2)^{2n}(2n+2)^2 } = \overline{\lim_{n\to\infty} }\frac{(2n+2)!/(2n+2)^{2n+2} }{(2n)!/(2n)^{2n} }
\lim\left(\frac{2n+1}{2n+2}\cdot\left(\frac{2n}{2n+2}\right)^{2n}\right) =
\lim\frac{2n+1}{2n+2}\ \cdot\ \lim\left(\left(1+\frac1n\right)^n\right)^{-2} =
1\cdot e^{-2} =
1 <
והודות לד'אלמבר הטור (שהוא טור חיובי) מתכנס. \blacksquare

פשש זה בדיוק מה שלא ראיתי החלק של המנה שמיתכנס ל e תודה רבה

בקשה

שלום רב, למישהו יש מושג איך לפתור את שאלה 1א במבחן הזה: http://www.studenteen.org/inf1_exam_blei_2008_a.pdf תודה מראש!

(לא מתרגל/ת): יש לי רעיון מתחכם, אבל יקח לי קצת זמן לכתוב אותו.
יש סיכוי שתכתוב אותו כאן בכל זאת היום או מחר? תודה מראש!
(לא מתרגל/ת): הרעיון הכללי - נוכיח שזה שואף לאינסוף. לשם כך מוכיחים שהטור \sum \frac{2^n n! (4n)^n}{(4n)!} מתכנס (מבחן ד'אלמבר), לכן \frac{2^n (n!) (4n)^n}{(4n)!}\to0 ולכן (מכיוון שהסדרה הזו חיובית), \frac{(4n)!}{2^n (n!) (4n)^n}\to\infty. אח"כ, מכיוון ש-\forall n\in\mathbb N:\ \binom{3n}{n}\ge1, מתקיים \forall n\in\mathbb N:\ \sqrt[n]{\binom{3n}{n}}\ge1 ולבסוף נקבל שהסדרה הכללית מתכנסת במובן הרחב לאינסוף. \blacksquare
או, זה יפה ^^

שאלה אלמנטרית

המרצה שלנו כתב בתחילת הקורס: P בריבוע זוגי -> P זוגי. זה כנראה נכון רק כאשר P שלם. יש לזה הוכחה קלה?

גם אני חיפשתי הוכחה עוד מזמן, והגעתי למסקנה שההוכחה היא פשוט של-p בריבוע יש את כל הגורמים של p, פעמיים. אז אם הוא זוגי זה אומר שיש לו את הגורם 2. נניח בשלילה של-p אין את הגורם 2. אבל ל-p בריבוע יש את הגורם 2, לכן חייב להיות ל-p את שורש 2. בסתירה לכך שהוא שלם. לכן יש ל-p את הגורם 2 כלומר הוא זוגי.
זה נכון עבור שלמים, אחרת אין משמעות לזוגי. זה נובע מחומר שהוא לא של הקורס הזה. יש משפט שאומר שאם ראשוני מחלק את ab אז הוא מחלק את a או מחלק את b, לכן אם 2 מחלק את aa=a^2 סימן שהוא מחלק את a. --ארז שיינר 13:08, 30 בינואר 2011 (IST)
ואני הופתעתי שלא מצאתי דרך מתמטית להוכחה אפילו שהמרצה כתב "קל להוכיח ש...".

חתכי דדקינד

לקבוצה של ד"ר שיין תהיה במבחן שאלה על חתכי דדקינד. הבעיה היא שלא היה תרגול בנושא, וגם אין שאלות עם תשובות במיזלר או בכל מקום אחר שבו חיפשתי.

שיין מסר 3 תרגילים בנושא, אבל אין לי מושג לאיזה פתרון הוא מצפה. כלומר, מה הכוונה "שפה של חתכי דדקינד"? אפשר בבקשה לראות פתרון של אחת או כמה מהשאלות הבאות: http://sites.google.com/site/eduardkontorovich/home/%D7%94%D7%9B%D7%A0%D7%94%D7%9C%D7%9E%D7%91%D7%97%D7%9F.pdf?attredirects=0&d=1 בבקשה ותודה רבה מראש!

מצטרף, במיוחד אם אפשר את הפתרון לשאלה 1 (הפתרון היחיד שאני מצאתי הוא "שסדרת החסמים העליונים של An מתכנסת", אבל סדרת החסמים העליונים של An היא בעצם סדרת הממשיים הנוצרים ע"י החתכים, כלומר לא אמרתי כלום בפתרון הזה.)
לי בפתרון חשוב במיוחד לראות את הנימוקים והניסוח, כלומר ה"שפה" של דדקינד. אז למרות שאני חושבת שאני יודעת את התשובה הסופית של 1, יעזור לי מאוד מאוד לראות פתרון מלא של 100 במבחן. אז התשובה, כלומר התנאי, הוא: לכל אפסילון חיובי קיים N כך שלכל n טבעי גדול מ-N, מתקיים שהקבוצה A_n/A_{L-\epsilon} מוכלת ב-(L-\epsilon,L). בעצם שינוי של ההגדרה של ההתכנסות.
התבלבלת, מה זה An/A_L-e?
לא התבלבלתי, זה הקבוצה A_n בלי הקבוצה A_{L-\epsilon}. תיזכר בסימונים של בדידה.
אוקי.. אבל אני לא רואה איך התנאי פה קשור להתכנסות של סדרת המספרים. אולי תסבירי מה הכוונה פה. אבל בעצם, הרעיון הזה של לקחת את תנאי ההתכנסות למספרים ולהעתיק אותו לחתכים הוא רעיון ממש טוב, נראה לי שהוא יכול לעבוד. בזכות הרעיון שלך פתרתי את זה כך: צריך לעשות קודם כמה הכנות. נגדיר: חתך A הוא "חיובי" אם המס' שמייצר אותו (תמיד קיים) גדול מאפס, או במילים אחרות שכל מספר שקטן nאפס שייך לA (כנ"ל עם שלילי, אי שלילי וכו'). (הערה- כשאני אומר חתך A אני מתכוון לחתך A,A'). כמו כן "A-" הוא החתך שמייצר את המספר הנגדי לA, והרי הוכחנו בכיתה שלכל מספר ממשי יש נגדי ושכל מספר מיוצר ע"י חתך יחיד (כי אם המספר רציונלי, ניקח תמיד חתך מהסוג הראשון, ואם המספר אי רציונלי ניקח חתך מהסוג השלישי), ולכן ההגדרה טובה, ולבסוף נגדיר "|A|" כ-A אם A חיובי וכ- A- אם A שלילי, וב0 ברור. כעת התנאי יהיה שאם לכל אפסילון גדולה E (חתך) חיובית (גדולה מאפס=חיובית כמו שהגדרתי) קיים N כך שלכל n>N מתקיים שהחתך |An-L| מוכל בחתך E. (שוב, החלק השמאלי של החתך), אז סדרת החתכים מתכנסת לL. עכשיו רק צריך להוכיח שזה תנאי הכרחי ומספיק. אולי אנסה בהמשך ואגיד לך אם יש תוצאות..


http://dl.dropbox.com/u/2237179/infi1dedekind.pdf

לא הבנתי אף אחד מהפתרונות שלו ואני גם לא בטוח שהם נכונים.

מי כתב את הפתרון הזה?

זה מה ששיין שלח לתלמידים שלו במייל. תודה שיין, אבל זה כל כך לא בסדר ומלחיץ שלא פתרנו תרגילים כאלו קודם...

בפתרון למבחן של זלצמן 2010

כתוב בפיתרון לשאלה 5.ג ש<e^{(x^2)} רציפה במ"ש.

למה זה נכון?

זה לא נכון, וגם לא רשום שם. רשום שם שהיא רציפה, ובגלל שסינוס גם רציפה, ההרכבה רציפה ומחזורית ולכן ההרכבה רציפה במ"ש. --ארז שיינר 13:12, 30 בינואר 2011 (IST)

כלל לופיטל

כלל לופיטל הוא בחומר של הקבוצה של שיין?

למדנו את זה אז כנראה שכן...

כלל לופיטל

האם אפשר להשתמש בכלל לופיטל כדי למצוא גבולות בקצוות כאשר בודקים רציפות במ"ש של פונקציה?

לדעתי כן, מומלץ לשאול את המרצה או המתרגל בעת המבחן בנוסף. --ארז שיינר 13:24, 30 בינואר 2011 (IST)

מבחני קושי ודלמבר

מבחן קושי הוא עם limsup בשני המקרים (התכנסות והתבדרות) ומבחן דלמבר הוא עם limsup במקרה של התכנסות ו liminf במקרה של התבדרות, או שיש לי טעות? תודה!

אין טעות. תסתכל על ההוכחות שלהם ותבין למה.

חקירת פונקציות, המבחן של ד"ר הורוביץ

צריך לזכור בעל-פה את הסדר של הסעיפים בחקירת פונקציות? (תחום הגדרה ונקודות אי רציפות, האם הפונקציה זוגית/אי-זוגית/לא זה ולא זה, אסימפטוטות, תחומי עלייה+ירידה+נקודות קריטיות, תחומי קעירות+קמירות+נקודות פיתול, טבלת ערכים)
או שזה כתוב במבחן?

הוא אמר שלא בטוח שהוא יכתוב את זה. אבל הוא גם אמר שאין חובה לעשות לפיהסדר שהוא רשם אם כל הסעיפים כלולים. גל א.

ציונים

מספר תעודת הזהות שלי (312491822), ואפילו לא מספר דומה לו, לא מופיע בדף הציונים שפורסם היום. אתם יכולים לבדוק את זה? תודה רבה

יתכן ואתה תיכוניסט? אלו ציונים רק לתלמידים של זלצמן.
כן, תיכוניסט. תודה
הציונים של התיכוניסטים שאדוארד מתרגל מופיעים באתר שלו: sites.google.com/site/eduardkontorovich

איקס בריבוע

איך מוכיחים ש-x^2 לא רציפה במ"ש? תודה.

(לא מתרגל/ת): ראה פתרון תרגיל 8, שאלה 9.
תודה.

שאלה קלה מדי?

צ"ל או להפריך שאם הטור an מתכנס והטור bn מתבדר אז הטור an+bn מתבדר. לכאורה אפשר להניח בשלילה שהטור an+bn מתכנס, ואז הטור an + הטור bn מתכנס (*), לכן הטור an ועוד הטור bn פחות הטור an = הטור bn מתכנס, בסתירה. אבל ב-(*) הזזנו את המקום של אינסוף איברים, ולכן ההוכחה לא מספיקה. מה לעשות? (ניסיתי לרפד באפסים כמו שכתוב בארכיון 15)

מישהו יודע?

פתרון של הבחינות

הי ארז,

ראשית תודה שהעלת לנו את הפתרון לבחינות כל כך מהר. יתכן ששאלתי לא במקום משום שאני לא לומד אצל זלצמן - אבל מה עם הפתרון לשאלות 3 ו-6 בבחינה שלו? הן היו שאלות של ציטוט משפטים?

אגב, אולי לבחינות של התיכוניסטים כדאי להוסיף הבהרה ששאר השאלות שלא פורסם להן פתרון היו בבחינה של זלצמן (שאלה 1 של הורוביץ = שאלה 1 של זלצמן, שאלה 2 של הורוביץ = שאלה 7 של זלצמן, שאלה 4 של הורוביץ = שאלה 4 של זלצמן, שאלה 5 של הורוביץ = שאלה 2 של זלצמן). כמו כן כדאי להוסיף שהבחינה של ד"ר שיין זהה לבחינה של ד"ר הורוביץ, למעט בשאלה 6 שעסקה בחתכי דדקינד.

כעת שאלה לגבי הפתרונות עצמם: בשאלה 5ג (של זלצמן) כתבת ששורש איקס רציפה בכל הממשיים, אבל זה כמובן לא נכון כי היא מוגדרת רק בממשיים החיוביים. האם יש דרך אחרת להוכיח רציפות במ"ש בסעיף זה בלי להתבסס על טענה זו?

שוב תודה על פרסום הפתרונות (במיוחד עבור המבחן של ד"ר הורוביץ שזה בכלל לא מובן מאליו).

תשובה

שאלה 3 הייתה ציטוט משפטים, שאלה 6 עסקה בנגזרות, ושאלה 8 הייתה להוכיח את משפט קנטור - לא כתבתי להן פתרונות, כמו כן לא כתבתי פתרון לשאלה על חתכי דדיקינד.

לגבי 5ג, לא צריך ששורש איקס יהיה רציף במ"ש על כל הממשיים, אלא רציף במ"ש בתמונה של הפונקציה עליה הוא מורכב - במקרה זה הערך המוחלט ותמונתו [0,\infty) ולכן זה פתרון תקין.

תשובה

אוקי, שוב תודה :-)